

Boston Columbus Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto

Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Editorial Director, ECS: Marcia Horton
Editor-in-Chief: Michael Hirsch
Acquisitions Editor: Matt Goldstein
Editorial Assistant: Chelsea Kharakozova
Director of Marketing: Patrice Jones
Marketing Manager: Yezan Alayan
Marketing Coordinator: Kathryn Ferranti
Director of Production: Vince O’Brien

Managing Editor: Jeff Holcomb
Manufacturing Buyer: Lisa McDowell
Cover Designer: Anthony Gemmellaro
Media Editor: Daniel Sandin
Media Project Manager: John Cassar
Full-Service Project Management: Peggy Kellar,

Aptara® Corporation
Composition: Aptara® Corporation

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear
on appropriate page within text. Reprinted with permission.

Unless otherwise noted, Screenshot by Microsoft. Copyright © 2011 by the Microsoft Corporation. Reprinted with
permission./Screenshot by Python. Copyright © 2001–2010 by Python Software Foundation. All Rights Reserved.
Reprinted with permission.

Cover Photo Credit: LanaN./Shutterstock.com, Stephen Aaron Rees/Shutterstock.com, Fotonic/Shutterstock.com,
Robert Adrian Hillman/Shutterstock.com, dmiskv/Shutterstock.com, Dan Ionut Popescu/Shutterstock.com,
AlexRoz/Shutterstock.com, Irin-K/Shutterstock.com, S.Borisov/Shutterstock.com, © UK History/Alamy

The programs and applications presented in this book have been included for their instructional value. They have been
tested with care but are not guaranteed for any particular purpose. The publisher does not offer any warranty or
representation, nor does it accept any liabilities with respect to the programs or applications.

Copyright © 2013, 2011 Pearson Education, Inc., publishing as Addison-Wesley. All rights reserved. Printed in the
United States of America. This publication is protected by Copyright, and permission should be obtained from the
publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any
means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission(s) to use material from this
work, please submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper
Saddle River, New Jersey 07458, or you may fax your request to 201-236-3290.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been
printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data available upon request.

10 9 8 7 6 5 4 3 2 1

ISBN 10: 0-13-280557-X
ISBN 13: 978-0-13-280557-5

To our long-suffering spouses, Laurie and Wendy;

our kids, Zach, Alex, Abby, Carina, and Erik;

and our parents.

We love you and couldn’t have done this

without your love and support.

This page intentionally left blank

•B R I E F
C O N T E N T S

P R E F A C E x x i i i

P A R T 1 T H I N K I N G A B O U T C O M P U T I N G 1

Chapter 0 The Study of Computer Science 3

P A R T 2 S T A R T I N G T O P R O G R A M 3 5

Chapter 1 Beginnings 37
Chapter 2 Control 81
Chapter 3 Algorithms and Program Development 153
Chapter 4 Working with Strings 179
Chapter 5 Files and Exceptions I 227

P A R T 3 F U N C T I O N S A N D D A T A S T R U C T U R E S 2 5 5

Chapter 6 Functions—QuickStart 257
Chapter 7 Lists and Tuples 283
Chapter 8 More on Functions 357
Chapter 9 Dictionaries and Sets 383
Chapter 10 More Program Development 437

P A R T 4 C L A S S E S , M A K I N G Y O U R O W N D A T A S T R U C T U R E S
A N D A L G O R I T H M S 4 7 5

Chapter 11 Introduction to Classes 477
Chapter 12 More on Classes 517
Chapter 13 Program Development with Classes 561

P A R T 5 B E I N G A B E T T E R P R O G R A M M E R 5 8 9

Chapter 14 Files and Exceptions II 591
Chapter 15 Testing 631

v

vi B R I E F C O N T E N T S

Chapter 16 Recursion: Another Control Mechanism 649
Chapter 17 Other Fun Stuff with Python 667
Chapter 18 The End, or Perhaps the Beginning 695

A P P E N D I C E S 6 9 7

Appendix A Getting and Using Python 697
Appendix B Simple Drawing with Turtle Graphics 709
Appendix C Plotting and Numeric Tools: A Quick Survey 721
Appendix D Table of UTF-8 One-Byte Encodings 735
Appendix E Precedence 737
Appendix F Naming Conventions 739
Appendix G Check Yourself Solutions 743

I N D E X 7 4 9

•C O N T E N T S

P R E F A C E x x i i i

P A R T 1 T H I N K I N G A B O U T C O M P U T I N G 1

Chapter 0 The Study of Computer Science 3

0.1 Why Computer Science? 3
0.1.1 Importance of Computer Science 3
0.1.2 Computer Science Around You 4
0.1.3 Computer “Science” 4
0.1.4 Computer Science Through Computer Programming 6

0.2 The Difficulty and Promise of Programming 6
0.2.1 Difficulty 1: Two Things at Once 6
0.2.2 Difficulty 2: What Is a Good Program? 9
0.2.3 The Promise of a Computer Program 10

0.3 Choosing a Computer Language 11
0.3.1 Different Computer Languages 11
0.3.2 Why Python? 11
0.3.3 Is Python the Best Language? 13

0.4 What Is Computation? 13

0.5 What Is a Computer? 13
0.5.1 Computation in Nature 14
0.5.2 The Human Computer 17

0.6 The Modern, Electronic Computer 18
0.6.1 It’s the Switch! 18
0.6.2 The Transistor 19

0.7 A High-Level Look at a Modern Computer 24

0.8 Representing Data 26
0.8.1 Binary Data 26
0.8.2 Working with Binary 27

vii

viii C O N T E N T S

0.8.3 Limits 28
0.8.4 Representing Letters 29
0.8.5 Representing Other Data 30
0.8.6 What Does a Number Represent? 31
0.8.7 How to Talk About Quantities of Data 32
0.8.8 Quantities of Data 32

0.9 Overview of Coming Chapters 34

P A R T 2 S T A R T I N G T O P R O G R A M 3 5

Chapter 1 Beginnings 37

1.1 Practice, Practice, Practice 37

1.2 QuickStart, the Circumference Program 38
1.2.1 Examining the Code 40

1.3 An Interactive Session 42

1.4 Parts of a Program 43
1.4.1 Modules 43
1.4.2 Statements and Expressions 43
1.4.3 Whitespace 45
1.4.4 Comments 46
1.4.5 Special Python Elements: Tokens 46
1.4.6 Naming Objects 48
1.4.7 Recommendations on Naming 49

1.5 Variables 49
1.5.1 Variable Creation and Assignment 50

1.6 Objects and Types 53
1.6.1 Numbers 55
1.6.2 Other Built-in Types 57
1.6.3 Object Types: Not Variable Types 58
1.6.4 Constructing New Values 59

1.7 Operators 61
1.7.1 Integer Operators 61
1.7.2 Floating-Point Operators 63
1.7.3 Mixed Operations 63
1.7.4 Order of Operations and Parentheses 64
1.7.5 Augmented Assignment Operators: A Shortcut! 65

1.8 Your First Module, Math 67

1.9 Developing an Algorithm 68
1.9.1 New Rule, Testing 72

1.10 Visual Vignette: Turtle Graphics 73

C O N T E N T S ix

Chapter 2 Control 81

2.1 The Selection Statement for Decisions: if 81
2.1.1 Booleans for Decisions 83
2.1.2 The if Statement 83
2.1.3 Example: What Lead Is Safe in Basketball? 86
2.1.4 Repetition 90
2.1.5 Example: Finding Perfect Numbers 94
2.1.6 Example: Classifying Numbers 99

2.2 In-Depth Control 103
2.2.1 True and False: Booleans 103
2.2.2 Boolean Variables 104
2.2.3 Relational Operators 104
2.2.4 Boolean Operators 109
2.2.5 Precedence 110
2.2.6 Boolean Operators Example 111
2.2.7 Another Word on Assignments 114
2.2.8 The Selection Statement for Decisions 116
2.2.9 More on Python Decision Statements 116
2.2.10 Repetition: The while Statement 120
2.2.11 Sentinel Loop 130
2.2.12 Summary of Repetition 130
2.2.13 More on the for Statement 131
2.2.14 Nesting 134
2.2.15 Hailstone Sequence Example 136

2.3 Visual Vignette: Plotting Data with Pylab 137
2.3.1 First Plot and Using a List 138
2.3.2 More Interesting Plot: A Sine Wave 140

2.4 Computer Science Perspectives 142
2.4.1 Minimal Universal Computing 142

Chapter 3 Algorithms and Program Development 153

3.1 What Is an Algorithm? 153
3.1.1 Example Algorithms 154

3.2 Algorithm Features 155
3.2.1 Algorithm Versus Program 155
3.2.2 Qualities of an Algorithm 157
3.2.3 Can We Really Do All That? 159

3.3 What Is a Program? 159
3.3.1 Readability 159
3.3.2 Robustness 163
3.3.3 Correctness 164

x C O N T E N T S

3.4 Strategies for Program Design 165
3.4.1 Engage and Commit 165
3.4.2 Understand, then Visualize 166
3.4.3 Think Before You Program 167
3.4.4 Experiment 167
3.4.5 Simplify 167
3.4.6 Stop and Think 169
3.4.7 Relax: Give Yourself a Break 169

3.5 A Simple Example 169
3.5.1 Build the Skeleton 170
3.5.2 Output 170
3.5.3 Input 171
3.5.4 Doing the Calculation 173

Chapter 4 Working with Strings 179

4.1 The String Type 180
4.1.1 The Triple-Quote String 180
4.1.2 Non-Printing Characters 181
4.1.3 String Representation 181
4.1.4 Strings as a Sequence 182
4.1.5 More Indexing and Slicing 183
4.1.6 Strings Are Iterable 187

4.2 String Operations 189
4.2.1 Concatenation (+) and Repetition (*) 189
4.2.2 Determining when + Indicates Addition or

Concatenation 190
4.2.3 Comparison Operators 191
4.2.4 The in Operator 192
4.2.5 String Collections Are Immutable 193

4.3 A Preview of Functions and Methods 194
4.3.1 First Cut: What Is a Function? 194
4.3.2 A String Method 195
4.3.3 Determining Method Names and Method

Arguments 198
4.3.4 String Methods 200
4.3.5 String Functions 201

4.4 Formatted Output for Strings 201
4.4.1 Descriptor Codes 202
4.4.2 Width and Alignment Descriptors 203
4.4.3 Floating-Point Precision Descriptor 204

4.5 Control and Strings 205

C O N T E N T S xi

4.6 Working with Strings 208
4.6.1 Example: Reordering a Person’s Name 208
4.6.2 Palindromes 210

4.7 More String Formatting 213

4.8 Computer Science Perspectives: Unicode 216

Chapter 5 Files and Exceptions I 227

5.1 What Is a File? 227

5.2 Accessing Files: Reading Text Files 227
5.2.1 What’s Really Happening? 228

5.3 Accessing Files: Writing Text Files 229

5.4 Reading and Writing Text Files in a Program 230

5.5 File Creation and Overwriting 231

5.6 First Cut, Handling Errors 232
5.6.1 Error Names 233
5.6.2 The try-except Construct 233
5.6.3 try-except Flow of Control 234
5.6.4 Exception Example 235

5.7 Example: Counting Poker Hands 238
5.7.1 Program to Count Poker Hands 241

P A R T 3 F U N C T I O N S A N D D A T A S T R U C T U R E S 2 5 5

Chapter 6 Functions—QuickStart 257

6.1 What Is a Function? 257
6.1.1 Why Have Functions? 258

6.2 Python Functions 259

6.3 Flow of Control with Functions 262
6.3.1 Function Flow in Detail 263
6.3.2 Parameter Passing 263
6.3.3 Another Function Example 265
6.3.4 Function Example: Word Puzzle 267
6.3.5 Functions Calling Functions 273
6.3.6 When to Use a Function 273
6.3.7 What if There Is No Return Statement? 274
6.3.8 What if There Are Multiple Return Statements? 275

6.4 Visual Vignette: Turtle Flag 276

Chapter 7 Lists and Tuples 283

7.1 What Is a List? 283

xii C O N T E N T S

7.2 What You Already Know How to Do with Lists 285
7.2.1 Iteration 286
7.2.2 Indexing and Slicing 286
7.2.3 Operators 287
7.2.4 Functions 289
7.2.5 List Iteration 290

7.3 Lists Are Different than Strings 290
7.3.1 Lists Are Mutable 290
7.3.2 List Methods 292

7.4 Old and New Friends: Split and Other Functions and Methods 295
7.4.1 Split and Multiple Assignment 295
7.4.2 List to String and Back Again, Using join 296
7.4.3 The sorted Function 297

7.5 Working with Some Examples 299
7.5.1 Anagrams 299
7.5.2 Example: File Analysis 305

7.6 Mutable Objects and References 310
7.6.1 Shallow vs. Deep Copy 316
7.6.2 Mutable vs. Immutable 320

7.7 Tuples 321
7.7.1 Tuples from Lists 323
7.7.2 Why Tuples? 324

7.8 Lists: The Data Structure 324
7.8.1 Example Data Structure 325
7.8.2 Other Example Data Structures 326

7.9 Algorithm Example: U.S. EPA Automobile
Mileage Data 327

7.10 Python Diversion: List Comprehension 337
7.10.1 Comprehensions, Expressions, and the

Ternary Operator 339

7.11 Visual Vignette: More Plotting 340
7.11.1 NumPy Arrays 340
7.11.2 Plotting Trigonometric Functions 342

Chapter 8 More on Functions 357

8.1 Scope: A First Cut 357
8.1.1 Arguments, Parameters, and Namespaces 359
8.1.2 Passing Mutable Objects 361
8.1.3 Returning a Complex Object 363
8.1.4 Refactoring evens 365

C O N T E N T S xiii

8.2 Default Values and Parameters 365
8.2.1 Example: Default Values and Parameter Keywords 366

8.3 Functions as Objects 369
8.3.1 Function Annotations 370
8.3.2 Docstrings 371

8.4 Example: Determining a Final Grade 371
8.4.1 The Data 372
8.4.2 The Design 372
8.4.3 Function: weighted grade 372
8.4.4 Function: parse line 373
8.4.5 Function: main 374
8.4.6 Example Use 374

8.5 Esoterica: “by value" or “by reference" 375

Chapter 9 Dictionaries and Sets 383

9.1 Dictionaries 383
9.1.1 Dictionary Example 384
9.1.2 Python Dictionaries 385
9.1.3 Dictionary Indexing and Assignment 385
9.1.4 Operators 386

9.2 Word Count Example 391
9.2.1 Count Words in a String 392
9.2.2 Word Frequency for the Gettysburg Address 393
9.2.3 Output and Comments 396

9.3 Periodic Table Example 398
9.3.1 Working with CSV Files 398
9.3.2 Algorithm Overview 400
9.3.3 Functions for Divide and Conquer 401

9.4 Sets 404
9.4.1 History 405
9.4.2 What’s in a Set? 405
9.4.3 Python Sets 405
9.4.4 Methods, Operators, and Functions for Python Sets 406
9.4.5 Set Methods 407

9.5 Set Applications 411
9.5.1 Relationship Between Words of Different Documents 412
9.5.2 Output and Comments 415

9.6 Scope: The Full Story 416
9.6.1 Namespaces and Scope 416
9.6.2 Search Rule for Scope 416

xiv C O N T E N T S

9.6.3 Local 417
9.6.4 Global 418
9.6.5 Built-ins 422
9.6.6 Enclosed 422

9.7 Python Pointer: Using zip to Create Dictionaries 424

9.8 Python Diversion: Dictionary and Set Comprehension 424

9.9 Visual Vignette: Bar Graph of Word Frequency 425
9.9.1 Getting the Data Right 426
9.9.2 Labels and the xticks Command 426
9.9.3 Plotting 427

Chapter 10 More Program Development 437

10.1 Introduction 437

10.2 Divide and Conquer 437
10.2.1 Top-Down Refinement 438

10.3 The Breast Cancer Classifier 438
10.3.1 The Problem 438
10.3.2 The Approach: Classification 439
10.3.3 Training and Testing the Classifier 439
10.3.4 Building the Classifier 439

10.4 Designing the Classifier Algorithm 441
10.4.1 Divided, Now Conquer 444
10.4.2 Data Structures 445
10.4.3 File Format 445
10.4.4 The make training set Function 446
10.4.5 The make test set Function 450
10.4.6 The train classifier Function 451
10.4.7 train classifier, Round 2 453
10.4.8 Testing the Classifier on New Data 456
10.4.9 The report results Function 460

10.5 Running the Classifier on Full Data 462
10.5.1 Training Versus Testing 462

10.6 Other Interesting Problems 466
10.6.1 Tag Clouds 466
10.6.2 S&P 500 Predictions 467
10.6.3 Predicting Religion with Flags 470

P A R T 4 C L A S S E S , M A K I N G Y O U R O W N D A T A S T R U C T U R E S
A N D A L G O R I T H M S 4 7 5

Chapter 11 Introduction to Classes 477
11.0.5 Simple Student Class 477

C O N T E N T S xv

11.1 Object-Oriented Programming 478
11.1.1 Python Is Object Oriented! 478
11.1.2 Characteristics of OOP 479

11.2 Working with Object-Oriented Programming 479
11.2.1 Class and Instance 479

11.3 Working with Classes and Instances 481
11.3.1 Built-in Class and Instance 481
11.3.2 Our First Class 482
11.3.3 Changing Attributes 484
11.3.4 The Special Relationship Between an Instance and Class:

instance-of 485

11.4 Object Methods 488
11.4.1 Using Object Methods 488
11.4.2 Writing Methods 489
11.4.3 The Special Argument self 491
11.4.4 Methods Are the Interface to a Class Instance 492

11.5 Fitting into the Python Class Model 493
11.5.1 Making Programmer-Defined Classes 493
11.5.2 A Student Class 493
11.5.3 Python Standard Methods 494
11.5.4 Now There Are Three: Class Designer, Programmer,

and User 498

11.6 Example: Point Class 499
11.6.1 Construction 500
11.6.2 Distance 501
11.6.3 Summing Two Points 501
11.6.4 Improving the Point Class 502

11.7 Python and OOP 506
11.7.1 Encapsulation 506
11.7.2 Inheritance 506
11.7.3 Polymorphism 507

11.8 An Aside: Python and Other OOP Languages 507
11.8.1 Public Versus Private 507
11.8.2 Indicating Privacy Using Double

Underscores () 508
11.8.3 Python’s Philosophy 509
11.8.4 Modifying an Instance 509

Chapter 12 More on Classes 517

12.1 More About Class Properties 517
12.1.1 Rational Number (Fraction) Class Example 518

xvi C O N T E N T S

12.2 How Does Python Know? 520
12.2.1 Classes, Types, and Introspection 520
12.2.2 Remember Operator Overloading 523

12.3 Creating Your Own Operator Overloading 523
12.3.1 Mapping Operators to Special Methods 524

12.4 Building the Rational Number Class 526
12.4.1 Making the Class 527
12.4.2 Review Fraction Addition 529
12.4.3 Back to Adding Fractions 532
12.4.4 Equality and Reducing Rationals 536
12.4.5 Divide and Conquer at Work 539

12.5 What Doesn’t Work (Yet) 539
12.5.1 Introspection 540
12.5.2 Repairing int + Rational Errors 542

12.6 Inheritance 544
12.6.1 The “Find the Attribute” Game 544
12.6.2 Using Inheritance 548
12.6.3 Example: The Standard Model 549

Chapter 13 Program Development with Classes 561

13.1 Predator-Prey Problem 561
13.1.1 The Rules 562
13.1.2 Simulation Using Object-Oriented Programming 563

13.2 Classes 563
13.2.1 Island Class 563
13.2.2 Predator and Prey, Kinds of Animals 565
13.2.3 Predator and Prey Classes 568
13.2.4 Object Diagram 569
13.2.5 Filling the Island 569

13.3 Adding Behavior 572
13.3.1 Refinement: Add Movement 572
13.3.2 Refinement: Time Simulation Loop 575

13.4 Refinement: Eating, Breeding, and Keeping Time 576
13.4.1 Improved Time Loop 577
13.4.2 Breeding 580
13.4.3 Eating 582
13.4.4 The Tick of the Clock 583

13.5 Refinements 584
13.5.1 Refinement: How Many Times to Move? 584
13.5.2 Refinement: Graphing Population Size 585

C O N T E N T S xvii

P A R T 5 B E I N G A B E T T E R P R O G R A M M E R 5 8 9

Chapter 14 Files and Exceptions II 591

14.1 More Details on Files 591
14.1.1 Other File Access Methods, Reading 593
14.1.2 Other File Access Methods, Writing 595
14.1.3 Universal New Line Format 596
14.1.4 Moving Around in a File 597
14.1.5 Closing a File 599
14.1.6 The with Statement 599

14.2 CSV Files 601
14.2.1 csv Module 601
14.2.2 CSV Reader 602
14.2.3 CSV Writer 603
14.2.4 Example: Update Some Grades 603

14.3 Module: os 606
14.3.1 Directory (Folder) Structure 606
14.3.2 os Module Functions 608
14.3.3 os Module Example 609

14.4 More on Exceptions 612
14.4.1 Basic Exception Handling 612
14.4.2 A Simple Example 613
14.4.3 Events 616
14.4.4 A Philosophy Concerning Exceptions 616

14.5 Exception: else and finally 618
14.5.1 finally and with 618
14.5.2 Example: Refactoring the Reprompting of a

File Name 618

14.6 More on Exceptions 620
14.6.1 Raise 620
14.6.2 Create Your Own 621

14.7 Example: Password Manager 622

Chapter 15 Testing 631

15.1 Why Testing? 631
15.1.1 Kinds of Errors 631
15.1.2 “Bugs” and Debugging 632

15.2 Kinds of Testing 633
15.2.1 Testing Is Hard! 634
15.2.2 Importance of Testing 635

xviii C O N T E N T S

15.3 Example Problem 636
15.3.1 NBA Efficiency 636
15.3.2 Basic Algorithm 636

15.4 Incorporating Testing 639
15.4.1 Catching User Errors 639
15.4.2 Catching Developer Errors 641

15.5 Automation of Testing 643
15.5.1 doctest 643
15.5.2 Other Kinds of Testing 647

Chapter 16 Recursion: Another Control Mechanism 649

16.1 What Is Recursion? 649

16.2 Mathematics and Rabbits 651

16.3 Let’s Write Our Own: Reversing a String 654

16.4 How Does Recursion Actually Work? 656
16.4.1 Stack Data Structure 657
16.4.2 Stacks and Function Calls 659

16.5 Recursion in Figures 661
16.5.1 Recursive Tree 661
16.5.2 Sierpinski Triangles 663

16.6 Recursion to Nonrecursion 664

Chapter 17 Other Fun Stuff with Python 667

17.1 Function Stuff 667
17.1.1 Having a Varying Number of Parameters 668
17.1.2 Iterators and Generators 671
17.1.3 Other Functional Programming Ideas 676
17.1.4 Some Functional Tools: map, reduce, filter 677
17.1.5 Decorators: Functions Calling Functions 678

17.2 Classes 684
17.2.1 Properties 684
17.2.2 Serializing an Instance: pickle 688
17.2.3 Random Numbers 691

17.3 Other Things in Python 693
17.3.1 Data Types 693
17.3.2 Built-in Modules 693
17.3.3 Modules on the Internet 694

Chapter 18 The End, or Perhaps the Beginning 695

A P P E N D I C E S 6 9 7
Appendix A Getting and Using Python 697

A.1 About Python 697

C O N T E N T S xix

A.1.1 History 697
A.1.2 Python 3 697
A.1.3 Python Is Free and Portable 698
A.1.4 Starting Python Up 699
A.1.5 Working with Python 700
A.1.6 Making a Program 702

A.2 Some Conventions for This Book 706
A.2.1 Interactive Code 706
A.2.2 Program: Written Code 707
A.2.3 Combined Program and Output 707

A.3 Summary 707

Appendix B Simple Drawing with Turtle Graphics 709
B.1.1 What Is a Turtle? 709
B.1.2 Motion 711
B.1.3 Drawing 711
B.1.4 Color 714
B.1.5 Drawing with Color 715
B.1.6 Other Commands 717

B.2 Tidbits 719
B.2.1 Keeping the Window Open 719
B.2.2 Working Nicely with IDLE 720

Appendix C Plotting and Numeric Tools: A Quick Survey 721
C.1 Matplotlib 721

C.1.1 Getting matplotlib 722

C.2 Working with matplotlib 727
C.2.1 plot Command 727
C.2.2 Plot Properties 728
C.2.3 Tick Labels 729
C.2.4 Bar Graphs 729
C.2.5 Histograms 730
C.2.6 Pie Charts 731

C.3 Numeric Python (NumPy) 732
C.3.1 Arrays Are Not Lists 732
C.3.2 Creating a NumPy Array 732
C.3.3 Manipulating Arrays 732

Appendix D Table of UTF-8 One-Byte Encodings 735

Appendix E Precedence 737

Appendix F Naming Conventions 739
F.1 Python-Style Elements 740

xx C O N T E N T S

F.2 Naming Conventions 740
F.2.1 Our Added Naming Conventions 741

F.3 Other Python Conventions 741

Appendix G Check Yourself Solutions 743
Chapter 1 743

Variables and Assignments 743
Types and Operators 743

Chapter 2 744
Basic Control Check 744
Loop Control Check 744
More Control Check 744
for and range Check 745

Chapter 4 745
Slicing Check 745
String Comparison Check 745

Chapter 5 745
File Check 745
Exception Check 745

Chapter 6 745
Simple Functions Check 745
Function Practice with Strings 746

Chapter 7 746
Basic Lists Check 746
Lists and Strings Check 746

Chapter 8 746
Passing Mutables Check 746
More on Functions Check 747

Chapter 9 747
Dictionary Check 747
Set Check 747

Chapter 11 747
Basic Classes Check 747
Defining Special Methods 747

Chapter 12 748
Check Defining Your Own Operators 748

Chapter 14 748
Basic File Operations 748
Basic Exception Control 748

I N D E X 7 4 9

•V I D E O N O T E S

VideoNote 0.1 Getting Python 13

VideoNote 1.1 Simple Arithmetic 63

VideoNote 1.2 Solving Your First Problem 72

VideoNote 2.1 Simple Control 90

VideoNote 2.2 Nested Control 134

VideoNote 3.1 Algorithm Decomposition 169

VideoNote 3.2 Algorithm Development 177

VideoNote 4.1 Playing with Strings 201

VideoNote 4.2 String Formatting 204

VideoNote 5.1 Reading Files 228

VideoNote 5.2 Simple Exception Handling 235

VideoNote 6.1 Simple Functions 263

VideoNote 6.2 Problem Design Using Functions 276

VideoNote 7.1 List Operations 297

VideoNote 7.2 List Application 320

VideoNote 8.1 More on Parameters 366

VideoNote 9.1 Using a Dictionary 396

VideoNote 9.2 More Dictionaries 424

VideoNote 10.1 Program Development: Tag Cloud 466

VideoNote 11.1 Designing a Class 493

VideoNote 11.2 Improving a Class 502

VideoNote 12.1 Augmenting a Class 539

VideoNote 12.2 Create a Class 542

xxi

xxii V I D E O N O T E S

VideoNote 13.1 Improve Simulation 569

VideoNote 14.1 Dictionary Exceptions 613

VideoNote 15.1 Doctest 643

VideoNote 16.1 Recursion 654

VideoNote 17.1 Properties 684

•P R E F A C E

A FIRST COURSE IN COMPUTER SCIENCE IS ABOUT A NEW WAY OF SOLVING PROBLEMS:

computationally. Our goal is that after the course, students when presented with a problem
will think, “Hey, I can write a program to do that!”

The teaching of problem solving is inexorably intertwined with the computer lan-
guage used. Thus, the choice of language for this first course is very important. We
have chosen Python as the introductory language for beginning programming students—
majors and nonmajors alike—based on our combined 30 years of experience teaching
undergraduate introductory computer science at Michigan State University. Having taught
the course in Pascal, C/C++, and now Python, we know that an introductory program-
ming language should have two characteristics. First, it should be relatively simple to
learn. Python’s simplicity, powerful built-in data structures, and advanced control con-
structs allow students to focus more on problem solving and less on language issues.
Second, it should be practical. Python supports learning not only fundamental program-
ming issues such as typical programming constructs, a fundamental object-oriented ap-
proach, common data structures, and so on, but also more complex computing issues,
such as threads and regular expressions. Finally, Python is “industrial strength,” forming
the backbone of companies such as YouTube, DropBox, Industrial Light and Magic, and
many others.

The main driver for the second edition of this textbook came from requests for a Python
3 version. We began our course with Python 2 because Python 3 hadn’t been released when
we started in 2007 and because we expected that it would take some time for important
open-source packages such as NumPy and matplotlib to transition to Python 3. When
NumPy and matplotlib converted to Python 3 in 2011, we felt comfortable making the
transition. Of course, many other useful modules have also been converted to Python 3—the
default installation now includes thousands of modules. With momentum building behind
Python 3, it was time for us to rewrite our course and this text.

Why Python 3? Python 3 is a major step in the development of Python and is a new and
improved version. Some nagging inconsistencies in the Python 2 branch required fixing,
and the Python community decided that these changes were worth breaking backward

xxiii

xxiv P R E F A C E

compatibility. One glaring example is that print acted like a function but didn’t have
standard function syntax. Another important change was moving the default character
encoding to Unicode, recognizing the worldwide adoption of the Python language. In many
ways beyond the introductory level, Python 3 is a better language, and the community is
making the transition to Python 3.

At the introductory level, the transition to Python 3 appears to be relatively small, but
the change resulted in touching nearly every page of the book. With a major rewrite in play,
we made a number of other improvements as well. We tried to incorporate every aspect
of Python 3 that was reasonable for an introductory book. Here are some of the many
changes:

� For Python 3:
- print is now a function requiring parenthesis.
- We adopted the new string formatting approach.
- Unicode UTF-8 has replaced ASCII as the default character encoding.
- The “/” operator returns float even for int operands. This has implications for

students moving on to C++/Java.
- Sets and their operations have nearly equivalent binary operators. Both are discussed.
- Comprehensions have been extended to include sets and dictionaries. Though not

emphasized, comprehensions are introduced.
- Many functions now return iterators (e.g., range , map)
- Dictionary methods such as items return dictionary views.
- input has replaced raw input .
- Comparison of dissimilar types results in an error.
- Literal base specifications changed.
- File reading and writing changed with the adoption of Unicode default.
- Some exception code has changed (e.g., as).
- Use of next function instead of the .next method for iterators.

� We redid every program and session so that they all met the Python’s PEP 8 naming
conventions. We introduced some extensions as well to help new students read and
write code better.

� Many programs were repaired or wholesale replaced based on the changes to Python 3.
� We added a set of nine Rules to guide novice programmers.
� Each chapter now has a reference summary to make it easier to refer to syntax and

semantics.
� The Quick Check exercises now have answers in the back of the book.
� We inserted an early chapter that briefly introduces file reading and exceptions, because

our approach uses file reading throughout. A more detailed coverage occurs later.
� We removed as many forward reference elements (talking about a feature before it was

fully presented) as possible.
� We added a chapter at the end on Python features that more advanced students will

find useful and interesting.

P R E F A C E xxv

� All the exercises were ordered, from easy to hard, with a line marking the transition
from easy to hard.

� Of course, we fixed many errors.

As in the first edition, we emphasize both the fundamental issues of programming and
practicality by focusing on data manipulation and analysis as a theme—allowing students
to work on real problems using either publicly available data sets from various Internet
sources or self-generated data sets from their own work and interests. We also emphasize
the development of programs, providing multiple, worked-out examples and three entire
chapters for detailed design and implementation of programs. As part of this one-semester
course, our students analyzed breast cancer data, cataloged movie actor relationships, pre-
dicted disruptions of satellites from solar storms, and completed many other data analysis
problems. We have also found that concepts learned in a Python CS1 course transitioned
to a CS2 C++ course with little or no negative impact on either the class material or the
students.

Our goals for the book are as follows:

� Teach problem solving within the context of CS1 to both majors and nonmajors using
Python as a vehicle.

� Provide examples of developing programs focusing on the kinds of data-analysis problems
students might ultimately face.

� Give students who take no programming course other than this CS1 course a practical
foundation in programming, enabling them to produce useful, meaningful results in
their respective fields of study.

B O O K O R G A N I Z A T I O N
At the highest level, our text follows a fairly traditional CS1 order, though there are some
differences. For example, we cover strings rather early (before functions) so that we can do
more data manipulation early on. We also include elementary file I/O early for the same
reason, leaving detailed coverage for a later chapter. Given our theme of data manipulation,
we feel this is appropriate. We also “sprinkle” topics like plotting and drawing throughout
the text in service of the data-manipulation theme.

We use an “object-use-first” approach where we use built-in Python objects and their
methods early in the book, leaving the design and implementation of user-designed objects
for later. We have found that students are more receptive to building their own classes
once they have experienced the usefulness of Python’s existing objects. In other words, we
motivate the need for writing classes. Functions are split into two parts because of how
Python handles mutable objects, such as lists, as parameters; discussion of those issues can
only come after there is an understanding of lists as mutable objects.

Three of the chapters (3, 10, and 13) are primarily program design chapters, providing
an opportunity to “tie things together,” as well as showing how to design a solution. A few

xxvi P R E F A C E

chapters are intended as supplemental reading material for the students, though lecturers may
choose to cover these topics as well. For background, we provide a Chapter 0 that introduces
some general concepts of a computer as a device and some computer terminology. We feel
such an introduction is important—everyone should understand a little about a computer,
but this material can be left for outside reading. The last chapters in the text may not be
reached in some courses.

B O O K F E A T U R E S

Data Manipulation
Data manipulation is a theme. The examples range from text analysis to breast cancer
classification. Along the way, we provide some analysis examples using simple graphing. To
incorporate drawing and graphing, we use established packages instead of developing our
own: one is built in (Turtle Graphics); the other is widely used (matplotlib with NumPy).

We have tried to focus on non-numeric examples in the book, but some numeric
examples are classics for a good reason. For example, we use a rational-numbers example for
creating classes that overload operators. Our goal is always to use the best examples.

Problem Solving and Case Studies
Throughout the text, we emphasize problem solving, especially a divide-and-conquer ap-
proach to developing a solution. Three chapters (3, 10, and 13) are devoted almost exclusively
to program development. Here we walk students through the solution of larger examples.
In addition to design, we show mistakes and how to recover from them. That is, we don’t
simply show a solution but show a process of developing a solution.

Code Examples
There are over 180 code examples in the text—many are brief, but others illustrate piecemeal
development of larger problems.

Interactive Sessions
The Python interpreter provides a wonderful mechanism for briefly illustrating pro-
gramming and problem-solving concepts. We provide almost 250 interactive sessions for
illustration.

Exercises and Programming Projects
Practice, practice, and more practice. We provide over 275 short exercises for students and
nearly 30 longer programming projects (many with multiple parts).

P R E F A C E xxvii

Self-Test Exercises
Embedded within the chapters are 24 self-check exercises, each with five or more associated
questions.

Programming Tips
We provide over 40 special notes to students on useful tips and things to watch out for.
These tips are boxed for emphasis.

S U P P L E M E N T A R Y M A T E R I A L (O N L I N E)
� For students

- All example source code
- Data sets used in examples
- VideoNotes (icons in the margin indicate when a VideoNote is available for a topic)

The above material is available at www.pearsonhighered.com/punch.

� For instructors
- PowerPoint slides
- Laboratory exercises
- Figures for use in your own slides (PDF)
- Exercise solutions

Qualified instructors may obtain supplementary material by visiting www.
pearsonhighered.com/irc. Register at the site for access. You may also contact your local
Pearson representative.

� Online Practice and Assessment with MyProgrammingLab

MyProgrammingLab helps students fully grasp the logic, semantics, and syntax of pro-
gramming. Through practice exercises and immediate, personalized feedback, MyProgram-
mingLab improves the programming competence of beginning students who often struggle
with the basic concepts and paradigms of popular high-level programming languages.

A self-study and homework tool, a MyProgrammingLab course consists of hundreds
of small practice exercises organized around the structure of this textbook. For students,
the system automatically detects errors in the logic and syntax of their code submissions
and offers targeted hints that enable students to figure out what went wrong and why. For
instructors, a comprehensive grade book tracks correct and incorrect answers and stores the
code inputted by students for review.

MyProgrammingLab is offered to users of this book in partnership with Turing’s
Craft, the makers of the CodeLab interactive programming exercise system. For a full

www.pearsonhighered.com/punch
www.pearsonhighered.com/irc
www.pearsonhighered.com/irc

xxviii P R E F A C E

demonstration, to see feedback from instructors and students, or to get started using
MyProgrammingLab in your course, visit www.myprogramminglab.com.

A C K N O W L E D G M E N T S
We acknowledge and thank the following reviewers for their contribution to improving the
second edition:

� Ric Heishman – George Mason University
� Erik Linstead – Chapman University
� John S. Mallozzi – Iona College
� Daniel D. McCracken – City College of New York
� Deborah S. Noonan – College of William and Mary
� Jeff Ondich – Carleton College
� Leon Tietz – Minnesota State University, Mankato

We are also appreciative of the reviewers who provided valuable feedback for the first edi-
tion: Claude Anderson (Rose-Hulman Institute of Technology), Chris Brooks (University
of San Francisco), Judy Franklin (Smith College), Alan Garvey (Truman State Univer-
sity), Ronald I. Greenberg (Loyola University), Andrew Harrington (Loyola College), Steve
Harrison (Virginia Tech), Christopher Haynes (Indiana University), Cinda Heeren (Univer-
sity of Illinois/Urbana-Champaign), Brian Howard (DePauw University) Janardhan Iyengar
(Franklin & Marshall College), Andree Jacobson (University of New Mexico), John Lasseter
(Willamette University), Jim Mahoney (Marlboro College), Joe Oldham (Centre College),
Holly Patterson-McNeill (Lewis-Clark State College), John Rabung (Randolph-Macon Col-
lege), Ben Schafer (University of Northern Iowa), David G. Sullivan (Boston University),
David A. Sykes (Wofford College). Here at Michigan State University, Erik Eid (now of
Bowling Green State University) provided valuable feedback on the first draft. Laurie Dil-
lon provided feedback when she taught from a draft. C. Titus Brown read a draft from a
Pythonic perspective and provided encouragement. As a high school student, Angus Burton
provided valuable feedback from a novice’s perspective. Srikanth Vudayagiri provided many
excellent exercises. Scott Buffa made corrections to an early draft. The summer CSE 231
class provided many exercises. Members of the class were Mohammed Alwahibi, Younsuk
Dong, Michael Ford, Gabriel Friedman, Adam Hamilton, Meagan Houang, Ruba Jiddou,
and Adam Palmer. The organization of our course was established by Mark McCullen, who
is always available for advice. Larry Nyhoff (Calvin College) shared valuable insights over a
dinner that started it all.

W. F. Punch
R. J. Enbody

www.myprogramminglab.com

•1P A R T

Thinking About Computing

Chapter 0 The Study of Computer Science

This page intentionally left blank

•0C H A P T E R

The Study of Computer
Science

Composing computer programs to solve scientific problems is like writing
poetry. You must choose every word with care and link it with the other words
in perfect syntax.

James Lovelock

0.1 W H Y C O M P U T E R S C I E N C E ?
IT IS A FAIR QUESTION TO ASK. WHY SHOULD ANYONE BOTHER TO STUDY COMPUTER

science? Furthermore, what is “computer science”? Isn’t this all just about programming?
All good questions. We think it is worth discussing them before you forge ahead with the
rest of the book.

0.1.1 Importance of Computer Science
Let’s be honest. We wouldn’t be writing the book and asking you to spend your valuable
time if we didn’t think that studying computer science is important. There are a couple of
ways to look at why this is true.

First, we all know that computers are everywhere, millions upon millions of them.
What were once rare, expensive items are as commonplace as, well, any commodity you
can imagine. (We were going to say the proverbial toaster, but there are many times more
computers than toasters. In fact, there is likely a small computer in your toaster!) However,
that isn’t enough of a reason. There are millions and millions of cars and universities don’t
require auto mechanics as an area of study.

A second aspect is that computers are not only common, but they are also more
universally applicable than any other commodity in history. A car is good for transportation,

3

4 C H A P T E R 0 • T H E S T U D Y O F C O M P U T E R S C I E N C E

but a computer can be used in so many situations. In fact, there is almost no area one can
imagine where a computer would not be useful. That is a key attribute. No matter what
your area of interest, a computer could be useful there as a tool. The computer’s universal
utility is unique, and learning how to use such a tool is important.

0.1.2 Computer Science Around You
Computing surrounds you, and it is computer science that put it there. There are a multitude
of examples, but here are a few worth noting.

Social Networking The tools that facilitate social networking sites such as Facebook or
Twitter are, of course, computer programs. However, the tools that help study the
interactions within social networks involve important computer science fields such as
graph theory. For example, Iraqi dictator Saddam Hussein was located using graph
theoretic analysis of his social network.

Smartphones Smartphones are small, very portable computers. Apps for smartphones are
simply computer programs written specifically for smartphones.

Your Car Your car hosts more than a dozen computers. They control the engine, the brakes,
the audio system, the navigation, and the climate control system. They determine if a
crash is occurring and trigger the air bags. Some cars park automatically or apply the
brakes if a crash is imminent.

The Internet The backbone of the Internet is a collection of connected computers called
routers that decide the best way to send information to its destination.

0.1.3 Computer “Science”
Any field that has the word science in its name is guaranteed thereby not to be
a science.

Frank Harary

A popular view of the term computer science is that it is a glorified way to say “computer
programming.” It is true that computer programming is often the way that people are intro-
duced to computing in general, and that computer programming is the primary reason many
take computing courses. However, there is indeed more to computing than programming,
hence the term “computer science.” Here are a few examples.

Theory of Computation
Before there were the vast numbers of computers that are available today, scientists were
thinking about what it means to do computing and what the limits might be. They would
ask questions, such as whether there exist problems that we can conceive of but cannot

0 . 1 • W H Y C O M P U T E R S C I E N C E ? 5

compute. It turns out there are. One of these problems, called the “halting problem,”1

cannot be solved by a program running on any computer. Knowing what you can and
cannot solve on a computer is an important issue and a subject of study among computer
scientists that focus on the theory of computation.

Computational Efficiency
The fact that a problem is computable does not mean it is easily computed. Knowing roughly
how difficult a problem is to solve is also very important. Determining a meaningful measure
of difficulty is, in itself, an interesting issue, but imagine we are concerned only with time.
Consider designing a solution to a problem that, as part of the solution, required you
to sort 100,000 items (say, cancer patient records, or asteroid names, or movie episodes,
etc.). A slow algorithm, such as the sorting algorithm called the Bubble Sort, might take
approximately 800 seconds (about 13 minutes); another sorting algorithm called Quick
Sort might take approximately 0.3 second. That is a difference of around 2400 times! That
large a difference might determine whether it is worth doing. If you are creating a solution,
it would be good to know what makes your solution slow or what makes it fast.

Algorithms and Data Structures
Algorithms and data structures are the currency of the computer scientist. Discussed more
in Chapter 3, algorithms are the methods used to solve problems, and data structures
are the organizations of data that the algorithms use. These two concepts are distinct: a
general approach to solving a problem (such as searching for a particular value, sorting a
list of objects, encrypting a message) differs from the organization of the data that is being
processed (as a list of objects, as a dictionary of key-value pairs, as a “tree” of records).
However, they are also tightly coupled. Furthermore, both algorithms and data structures
can be examined independently of how they might be programmed. That is, one designs
algorithms and data structures and then actually implements them in a particular computer
program. Understanding abstractly how to design both algorithms and data structures
independent of the programming language is critical for writing correct and efficient code.

Parallel Processing
It may seem odd to include what many consider an advanced topic, but parallel processing,
using multiple computers to solve a problem, is an issue for everyone these days. Why? As
it turns out, most computers come with at least two processors or CPUs (see Section 0.6),
and many come with four or more. The PlayStation3TM game console uses a special IBM
chip that has 8 processors, and Intel has recently announced prototypes of chips that have
80 processors! What does this mean to us, as both consumers and new computer scientists?

1 http://en.wikipedia.org/wiki/Halting problem

http://en.wikipedia.org/wiki/Halting_problem

6 C H A P T E R 0 • T H E S T U D Y O F C O M P U T E R S C I E N C E

The answer is that new algorithms, data structures, and programming paradigms will
be needed to take advantage of this new processing environment. Orchestrating many
processors to solve a problem is an exciting and challenging task.

Software Engineering
Even the process of writing programs itself has developed its own sub-discipline within
computer science. Dubbed “software engineering,” it concerns the process of creating pro-
grams: from designing the algorithms they use to supporting testing and maintenance of
the program once created. There is even a discipline interested in representing a developed
program as a mathematical entity so that one can prove what a program will do once
written.

Many Others
We have provided but a taste of the many fields that make computer science such a
wonderfully rich area to explore. Every area that uses computation brings its own problems
to be explored.

0.1.4 Computer Science Through Computer Programming
We have tried to make the point that computer science is not just programming. However,
it is also true that for much of the book we will focus on just that aspect of computer
science: programming. Beginning with “problem solving through programming” allows
one to explore pieces of the computer science landscape as they naturally arise.

0.2 T H E D I F F I C U L T Y A N D P R O M I S E
O F P R O G R A M M I N G

If computer science, particularly computer programming, is so interesting, why doesn’t
everybody do it? The truth is that it can be hard. We are often asked by beginning students,
“Why is programming so hard?” Even grizzled programming veterans, when honestly look-
ing back at their first experience, remember how difficult that first programming course
was. Why? Understanding why it might be hard gives you an edge on what you can do to
control the difficulty.

0.2.1 Difficulty 1: Two Things at Once
Let’s consider an example. Let us say that, when you walk into that first day of Programming
101, you discover the course is not about programming but French poetry. French poetry?

0 . 2 • T H E D I F F I C U L T Y A N D P R O M I S E O F P R O G R A M M I N G 7

Yes, French poetry. Imagine that you come in and the professor posts the following excerpt
from a poem on the board.

A une Damoyselle malade

Ma mignonne,
Je vous donne
Le bon jour;
Le séjour
C’est prison.

Clément Marot

Your assigned task is to translate this poetry into English (or German, or Russian, or
whatever language is your native tongue). Let us also assume, for the moment, that:

(a) You do not know French.
(b) You have never studied poetry.

You have two problems on your hands. First, you have to gain a better understanding
of the syntax and semantics (the form and substance) of the French language. Second, you
need to learn more about the “rules” of poetry and what constitutes a good poem.

Lest you think that this is a trivial matter, an entire book has been written by Douglas
Hofstadter on the very subject of the difficulty of translating this one poem (“Le Ton beau
de Marot”).

So what’s your first move? Most people would break out a dictionary and, line by line,
try to translate the poem. Hofstadter, in his book, does exactly that, producing the crude
translation in Figure 0.1.

My Sweet/Cute
[One] (Feminine)

My sweet/cute [one]
(feminine)
I [to] you (respectful)
give/bid/convey
The good day (i.e., a
hello, i.e., greetings).
The stay/sojourn/
visit (i.e., quarantine)
{It} is prison.

A une Damoyselle malade

Ma mignonne,
Je vous donne
Le bon jour;
Le séjour
C’est prison.

FIGURE 0.1 Crude translation of excerpt.

8 C H A P T E R 0 • T H E S T U D Y O F C O M P U T E R S C I E N C E

The result is hardly a testament to beautiful poetry. This translation does capture the
syntax and semantics, but not the poetry, of the original. If we take a closer look at the poem,
we can discern some features that a good translation should incorporate. For example:

� Each line consists of three syllables.
� Each line’s main stress falls on its final syllable.
� The poem is a string of rhyming couplets: AA, BB, CC, . . .
� The semantic couplets are out of phase with the rhyming couplets: A, AB, BC, . . .

Taking some of these ideas (and many more) into account, Hofstadter comes up with
the translation in Figure 0.2.

My Sweet Dear

My sweet dear,
I send cheer –
All the best!
Your forced rest
Is like jail.

A une Damoyselle malade

Ma mignonne,
Je vous donne
Le bon jour;
Le séjour
C’est prison.

FIGURE 0.2 Improved translation of excerpt.

Not only does this version sound far more like poetry, but it also matches the original
poem, following the rules and conveying the intent. It is a pretty good translation!

Poetry to Programming?
How does this poetry example help? Actually, the analogy is pretty strong. In coming to
programming for the first time, you face exactly the same issues:

� You are not yet familiar with the syntax and semantics of the language you are working
with—in this case, of the programming language Python and perhaps not of any
programming language.

� You do not know how to solve problems using a computer—similar to not knowing
how to write poetry.

Just like the French poetry neophyte, you are trying to solve two problems simultane-
ously. On one level, you are just trying to get familiar with the syntax and semantics of the
language. At the same time, you are tackling a second, very difficult task: creating poetry in
the previous example, and solving problems using a computer in this course.

Working at two levels, the meaning of the programming words and then the intent
of the program (what the program is trying to solve) are the two problems the beginning
programmer has to face. Just like the French poetry neophyte, your first programs will be
a bit clumsy as you learn both the programming language and how to use that language to
solve problems. For example, to a practiced eye, many first programs look similar in nature

0 . 2 • T H E D I F F I C U L T Y A N D P R O M I S E O F P R O G R A M M I N G 9

to the literal translation of Hofstadter’s in Figure 0.1. Trying to do two things simultaneously
is difficult for anyone, so be gentle on yourself as you go forward with the process.

You might ask whether there is a better way. Perhaps, but we have not found it yet.
The way to learn programming is to program, just like swinging a baseball bat, playing
the piano, and winning at bridge; you can hear the rules and talk about the strategies, but
learning is best done by doing.

0.2.2 Difficulty 2: What Is a Good Program?
Having mastered some of the syntax and semantics of a programming language, how do we
write a good program? That is, how do we create a program that is more like poetry than
like the mess arrived at through literal translation?

It is difficult to discuss a good program when, at this point, you know so little, but
there are a couple of points that are worth noting even before we get started.

It’s All About Problem Solving
If the rules of poetry are what guides writing good poetry, what are the guidelines for writing
good programs? That is, what is it we have to learn to transition from a literal translation to
a good poem?

For programming, it is problem solving. When you write a program, you are creating, in
some detail, how it is that you think a particular problem or some class of problems should
be solved. Thus, the program represents, in a very accessible way, your thoughts on problem
solving. Your thoughts! That means that before you write the program you must have some
thoughts.

It is a common practice, even among veteran programmers, to get a problem and
immediately sit down and start writing a program. Typically that approach results in a mess, and,
for the beginning programmer, it results in an unsolved problem. Figuring out how to solve a
problem requires some initial thought. If you think before you program, you better understand
what the problem requires as well as the best strategies you might use to solve that problem.

Remember the two-level problem? Writing a program as you figure out how to solve a
problem means that you are working at two levels at once: the problem-solving level and
the programming level. That is more difficult than doing things sequentially. You should sit
down and think about the problem and how you want to solve it before you start writing
the program. We will talk more about this later, but the rule is this:

Rule 1: Think before you program!

A Program as an Essay
When students are asked, “What is the most important feature a program should have?”
many answer, “It should run.” By “run,” they mean that the program executes and actually
does something.

10 C H A P T E R 0 • T H E S T U D Y O F C O M P U T E R S C I E N C E

Wrong. As with any new endeavor, it is important to get the fundamentals correct right
at the beginning. So RULE 2 is this:

Rule 2: A program is a human-readable essay on problem solving that also
happens to execute on a computer.

A program is an object to be read by another person, just as is any other essay. Although
it is true that a program is written in such a way that a computer can execute it, it is still
a human-readable essay. If your program is written so that it runs, and even runs correctly
(notice we have not discussed “correctly” yet!), but is unreadable, then it is really fairly
worthless.

The question is why? Why should it be that people must read it? Why isn’t running
good enough? Who’s going to read it anyway? Let’s answer the last question first. The person
who is going to read it the most is you! That’s correct, you have to read the programs you
are writing all the time. Every time you put your program away for some period of time
and come back to it, you have to reread what you wrote and understand what you were
thinking. Your program is a record of your thoughts on solving the problem, and you have
to be able to read your program to work with it, update it, add to it, and so on.

Furthermore, once you get out of the academic environment where you write programs
solely for yourself, you will be writing programs with other people as a group. Your mates
have to be able to read what you wrote! Think of the process as developing a newspaper
edition. Everyone has to be able to read each others’ content so that the edition, as a whole,
makes sense. Just writing words on paper isn’t enough—they have to fit together.

Our goal is to write programs that other people can read, as well as be run.

0.2.3 The Promise of a Computer Program
A program is an essay on problem solving, and that will be our major focus. However, it
is still interesting that programs do indeed run on a computer. That is, in fact, one of the
unique and most impressive parts about a program. Consider that idea for a moment. You
can think of a way to solve a problem, write that thought down in detail as a program, and
(assuming you did it correctly) that problem gets solved. More important, the problem can
be solved again and again because the program can be used independent of you. That is, your
thoughts not only live on as words (because of the essay-like nature of the program) but also
as an entity that actually implements those thoughts. How amazing is that! Do you have
some thoughts about how to make a robot dance? Write the program, and the robot dances.
Do you have some ideas on how to create music? Write the program, and music is written
automatically. Do you have an idea of how to solve a Sudoku puzzle? Write the program,
and every puzzle is solved.

So a computer program (and the computer it runs on) offers a huge leap forward,
perhaps the biggest since Gutenberg in the mid 1400s. Gutenberg invented moveable type,
so that the written word of an individual—i.e., his or her thoughts—could be reproduced

0 . 3 • C H O O S I N G A C O M P U T E R L A N G U A G E 11

independently of the writer. Now, not only can those thoughts be copied, but they can also
be implemented to be used over and over again.

Programming is as open, as universally applicable, as the thoughts of the people who
do the programming, because a program is the manifest thought of the programmer.

0.3 C H O O S I N G A C O M P U T E R L A N G U A G E
We have selected a particular programming language, the language called Python, for this
introductory text. You should know that there are lots of programming languages out there.
Wikipedia lists more than 500 such languages.2 Why so many languages, and why Python
for this text?

0.3.1 Different Computer Languages
If a program is a concrete, runnable realization of a person’s thoughts, then it makes sense that
different people would create languages that allow them to better reflect those thoughts.
In fact, computer scientists are crazy about languages, which is why there are so many.
Whatever the reason that some language was created, and there can be many reasons, they
all reflect some part of the creator’s view of how to best express solving problems on a
computer. In fact, computer scientists are specifically trained to write their own language to
suit their needs—a talent few other disciplines support so fully!

So given all these languages, why did we pick Python?

0.3.2 Why Python?
I set out to come up with a language that made programmers more productive.

Guido van Rossum, author of Python

There are three features that we think are important for an introductory programming
language:

� The language should provide a low “cognitive load” on the student. That is, it should
be as easy as possible to express your problem-solving thoughts in the mechanisms
provided by the programming language.

� Having spent all your time learning this language, it should be easy to apply it to
problems you will encounter. In other words, having learned a language, you should
be able to write short programs to solve problems that pop up in your life (sort your
music, find a file on your computer, find the average temperature for the month, etc.).

2 http://en.wikipedia.org/wiki/Alphabetical list of programming languages

http://en.wikipedia.org/wiki/Alphabetical_list_of_programming_languages

12 C H A P T E R 0 • T H E S T U D Y O F C O M P U T E R S C I E N C E

� The programming language you use should have broad support across many disciplines.
That is, the language should be embraced by practitioners from many fields (arts to
sciences, as they say), and useful packages, collections of support programs, should be
available to many different types of users.

So how does Python match up against these criteria?

Python Philosophy
Python offers a philosophy: There should be one—and preferably only one—obvious way to
do it. The language should offer, as much as possible, a one-to-one mapping between the
problem-solving need and the language support for that need. This is not necessarily the case
with all programming languages. Given the two-level problem the introductory programmer
already faces, reducing the programming language load as much as possible is important.
Though Python does have its shortcuts, they are far fewer than many other languages, and
there is less “language” one has to remember to accomplish a task.

A “Best Practices” Language
One of our favorite descriptions of Python is that it is a “best practices” language. This means
that Python provides many of the best parts of other languages directly to the user. Important
data structures are provided as part of the standard language; iteration (described later) is
introduced early and is available on standard data structures; packages for files, file paths, the
Web, and so on are part of the standard language. Python is often described as a “batteries
included” language in which many commonly needed aspects are provided by default. This
characteristic means that you can use Python to solve problems you will encounter.

Python Is Open Source
One of Python’s most powerful features is its support from the various communities and
the breadth of that support. One reason is that Python is developed under the open source
model. Open source is both a way to think about software and a culture or viewpoint used
by those who develop software. Open source for software is a way to make software freely
available and to guarantee that free availability to those who develop new software based on
open source software. Linux, a type of operating system, is such a project, as are a number
of other projects, such as Firefox (Web browser), Thunderbird (mail client), Apache (Web
server), and, of course, Python. As a culture, open-source adherents want to make software
as available and useful as possible. They want to share the fruits of their labor and, as a
group, move software forward, including the application areas where software is used. This
perspective can be summarized as follows:

A rising tide lifts all boats.

Each person is working explicitly (or implicitly) as part of a larger group toward a larger
goal, making software available and useful. As a result of Python’s open-source development,

0 . 5 • W H A T I S A C O M P U T E R ? 13

there are free, specialized packages for almost any area of endeavor, including music, games,
genetics, physics, chemistry, natural language, and geography. If you know Python and can
do rudimentary programming, there are packages available that will support almost any area
you care to choose.

VideoNote 0.1
Getting Python

0.3.3 Is Python the Best Language?
The answer to that question is that there is no “best” language. All computer programming
languages are a compromise to some degree. After all, wouldn’t it be easiest to describe
the program in your own words and just have it run? Unfortunately, that isn’t possible.
Our present natural language (English, German, Hindi, whatever) is too difficult to turn
into the precise directions a computer needs to execute a program. Each programming
language has its own strengths and weaknesses. New programmers, having mastered their
first programming language, are better equipped to examine other languages and what they
offer. For now, we think Python is a good compromise for the beginning programmer.

0.4 W H A T I S C O M P U T A T I O N ?
It can be difficult to find a good definition for a broadly used word like computation. If
you look, you will find definitions that include terms like information processing, sequence of
operations, numbers, symbols, and mathematical methods. Computer scientists interested in
the theory of computation formally define what a computation is, and what its limits are.
It is a fascinating topic, but it is a bit beyond our scope.

We will use an English language definition that suits our needs. In this book we will
define a computation as:

Computation is the manipulation of data by either humans or machines.

The data that are manipulated may be numbers, characters, or other symbols.

0.5 W H A T I S A C O M P U T E R ?
The definition of a computer then is:

A computer is something that does computation.

That definition is purposefully vague on how a computer accomplishes computation,
only that it does so. This imprecision exists because what counts as a computer is surprisingly
diverse. However, there are some features that almost any system that does computation
should have.

14 C H A P T E R 0 • T H E S T U D Y O F C O M P U T E R S C I E N C E

� A computer should be able to accept input. What counts as input might vary among
computers, but data must be able to enter the computer for processing.

� If a computer is defined by its ability to do computation, then any object that is a
computer must be able to manipulate data.

� A computer must be able to output data.

Another characteristic of many computers is their ability to perform computation using
an assembly of only simple parts. Such computers are composed of huge numbers of simple
parts assembled in complex ways. As a result, the complexity of many computers comes
from the organization of their parts, not the parts themselves.

0.5.1 Computation in Nature
There are a number of natural systems that perform computation. These are areas of
current, intense investigation in computer science as researchers try to learn more from
existing natural systems.

The Human Brain
When electronic computers were first brought to the public’s attention in the 1950s and
even into the 1960s, they were often referred to as “electronic brains.” The reason for this
was obvious. The only computing object we had known up to that time was the human
brain.

The human brain is in fact a powerful computing engine, though it is not often thought
of in quite that way. It constantly takes in a torrent of input data—sensory data from the
five senses—manipulates that data in a variety of ways, and provides output in the form of
both physical action (both voluntary and involuntary) as well as mental action.

The amazing thing about the human brain is that the functional element of the brain
is a very simple cell called the neuron (Figure 0.3).

Though a fully functional cell, a neuron also acts as a kind of small switch. When
a sufficient signal reaches the dendrites of a neuron, the neuron “fires” and a signal is
transmitted down the axon of the neuron to the axon terminals. Neurons are not directly
connected to one another; rather, the dendrites of one neuron are located very close to
the axon terminals of another neuron, separated by a space known as the synapse. When
the signal reaches the axon terminal, chemicals called neurotransmitters are secreted across
the synapse. It is the transmission of a signal, from neurotransmitters secreted by the axon
terminals of one neuron to the dendrites of a connecting neuron that constitutes a basic
computation in the brain.

Here are a few interesting facts about neuronal activity:

� The signal within a neuron is not transmitted by electricity (as in a wire) but by rapid
chemical changes that propagate down the axon. The result is that the signal is very
much slower than an electrical transmission down a wire—about a million times slower.

0 . 5 • W H A T I S A C O M P U T E R ? 15

Structure of a Typical Neuron

Dendrites

Cell body

Node of Ranvier

Axon terminals

Axon Myelin sheathNucleus

Schwann’s cells

FIGURE 0.3 An annotated neuron. [SEER Training Modules, U.S. National Institutes of Health,
National Cancer Institute]

� Because the signal is chemical, a neuron must typically recover for a millisecond (one-
thousandth of a second) before it can fire again. Therefore, there is a built-in time delay
to neuronal firing.

� A neuron is “fired” in response to some combination of the number of signals that
are received at its dendrite (how many other neurons are firing in proximity) and the
strength of the signal received (how much neurotransmitter is being dumped into the
synapse).

One thing to note is how slow the neuron is as a switch. As you will see in Section 0.6.2,
electronic switches can act many millions of times faster. However, what the brain lacks in
terms of speedy switches, it makes up for in sheer size and complexity of organization. By
some estimates, the human brain consists of of 100 billion (1011) neurons and 100 trillion
(1014) synapses. Furthermore, the organization of the brain is incredibly complicated.
Scientists have spent hundreds of years identifying specific areas of the brain that are
responsible for various functions and how those areas are interconnected. Yet for all this
complexity, the main operational unit is a tiny, slow switch.

Scientists have been fascinated by the brain, so much so that there is a branch of
computer science that works with simulations of neural networks, networks consisting of
simple switches such as those found in the brain. Neural networks have been used to solve
many difficult problems.

Evolutionary Computation
The evolution of biological species can be viewed as a computation process. In this view, the
inputs of the computational process are the environmental variables the biological entity is

16 C H A P T E R 0 • T H E S T U D Y O F C O M P U T E R S C I E N C E

f(x)

Crossover reproduction

Mutation

Evaluation

Population of
solutions

Cycle until:
 good enough

FIGURE 0.4 A genetic algorithm.

subjected to; the computational process is the adaptation of the genetic code and the output
is the adaptation that results from the genetic code modification.

This point of view has been incorporated into approaches known as genetic algorithms.
These techniques take the concepts of simple genetics, as proposed by Gregor Mendel, and
the processes of evolution, as described by Charles Darwin, and use them to compute.

The basic parts of a genetic algorithm, shown in Figure 0.4, are:

� A way to encode a solution in a linear sequence, much like the sequence of information
contained in a chromosome. This encoding depends on the problem, but it typically
consists of parameters (struts for a bridge, components for a circuit, jobs for a schedule,
etc.) that are required to constitute a solution.

� A method to evaluate the “goodness” of a particular solution, called the evaluation
function and represented as f(x) in the diagram.

� A population of solutions, often initially created by random selection of the solution
components, from which new solutions can be created.

� Some genetic modification methods to create new solutions from old solutions. In
particular, there is mutation, which is a modification of one aspect of an existing
solution, and crossover, which combines aspects of two parent solutions into a new
solution.

The process proceeds as follows. Each solution in the population is evaluated to deter-
mine how fit it is. Based on the fitness of the existing solutions, new solutions are created
using the genetic modification methods. Those solutions that are more fit are given more
opportunity to create new solutions; less-fit solutions are given less opportunity. This pro-
cess incorporates a “survival of the fittest” notion. Over time, better and better solutions are
evolved that solve the existing problem.

Genetic algorithms and other similar approaches have been used to solve many complex
problems such as scheduling, circuit design, and others.

0 . 5 • W H A T I S A C O M P U T E R ? 17

FIGURE 0.5 NACA (National Advisory Committee for Aeronautics) High-Speed-Flight Station
Computer Room. [NASA/Courtesy of nasaimages.org]

0.5.2 The Human Computer
The common use of the word computer from around the seventeenth century to about
World War II referred to people. To compute difficult, laborious values for mathematical
constants (such as π or e), fission reactions (for the Manhattan Project), and gun trajectory
tables, people were used (Figure 0.5). However, using people had problems.

A classic example of such a problem was created by William Shanks, an English amateur
mathematician, who in 1873 published π calculated to 707 decimal places. The calculation
by hand took 28 years. Unfortunately, he made a calculation error at the 528th digit that
made the last two years of calculation a waste of time. His error wasn’t found until 70 years
later using a mechanical calculator.

The U.S. Army’s Ballistics Research Laboratory was responsible for the creation of gun
trajectory tables. Each new artillery piece required a table for the gunner to use to calculate
where the round would land. However, it took significant human effort to make these tables.
Kay Mauchly Antonelli, a mathematician from the University of Pennsylvania and one of

18 C H A P T E R 0 • T H E S T U D Y O F C O M P U T E R S C I E N C E

the six original programmers of the ENIAC, the first general-purpose electronic digital
computer, said, “To do just one trajectory, at one particular angle, usually took between
30 to 40 hours of calculation on this [mechanical] desk calculator.” These tables exceeded
1800 entries and required up to four years to produce by hand.3

It was obvious that something had to be done. People were neither accurate enough nor
fast enough to do this kind of calculation. A more modern, faster, and accurate approach
was needed.

0.6 T H E M O D E R N , E L E C T R O N I C C O M P U T E R
Although there may be many notions of a computer, we all know what a modern computer
is. We read e-mail on it, text message each other, listen to music, play videos, and play games
on them. The design of these computers was first conceived around World War II to solve
those tedious calculation problems that humans did so slowly, especially the army’s ballistics
tables. How do electronic computers work? What makes them so special?

0.6.1 It’s the Switch!
Modern digital computers use, as their base component, nothing more complicated than a
simple switch. Very early computers used mechanical switches or relays, later versions used
vacuum tubes, and, finally, modern computers use transistors (Figure 0.6).

FIGURE 0.6 Vacuum tube, single transistor, and chip transistor (the dot). [Reprint Courtesy of
International Business Machines Corporation, copyright © International Business Machines
Corporation]

A switch’s function is pretty obvious. It is either on or off. When turned on, electricity
flows through the switch, and when turned off, no electrical flow occurs. Using a switch
and its on/off property, you can construct simple logic circuits. In logic, we have only two
states: True and False. In our logic circuit, we translate True and False to the physical process
of a switch. The True condition is represented by a current flowing through the circuit and

3 http://www.comphist.org/pdfs/Video-Giant%20Brains-MachineChangedWorld-Summary.pdf

http://www.comphist.org/pdfs/Video-Giant%20Brains-MachineChangedWorld-Summary.pdf

0 . 6 • T H E M O D E R N , E L E C T R O N I C C O M P U T E R 19

False is represented by lack of current flow. Though we will cover Boolean logic in more
detail in Chapter 2 , there are two simple combinations of switches we can show: the and
and or circuits.

For the Boolean and, a True value results only if both of the two input values are True.
All other combinations of input have a False output. In the and circuit, we connect two
switches together in series, as shown in Figure 0.7. Electricity can flow, that is, the circuit
represents a True value, only if both switches are turned on. If either switch is turned off, no
electricity flows and the circuit represents a False value.

Flow of electricity Flow of electricity

FIGURE 0.7 Switches implementing an and gate (left) and an or gate (right).

We can do the same for the Boolean or. An or is True if either one or both of its inputs
are True; otherwise, it is False. In the or circuit of Figure 0.7, we connect two switches
together in parallel. Electricity can flow if either switch is turned on, representing a True
value. Only when both switches are turned off does the circuit represent a False value.

Similar Boolean logic elements, usually called logic gates, can be constructed from simple
circuits. The amazing thing is that using only simple logic circuits, we can assemble an entire
computer. For example, an and and or gate can be combined to make a simple circuit to
add two values, called an adder. Once we can add, we can use the adder circuit to build
a subtraction circuit. Further, once we have an adder circuit we can do multiplication (by
repeated addition), and then division, and so on. Just providing some simple elements such
as logic gates allows us to build more complicated circuits until we have a complete computer.

0.6.2 The Transistor
Although any switch will do, the “switch” that made the electronic computer what it is
today is called a transistor. The transistor is an electronic device invented in 1947 by William
Shockley, John Bardeen, and Walter Brattain at Bell Labs (for which they eventually won
the Nobel Prize in Physics in 1956). It utilized a new technology, a material called a
semiconductor, that allowed transistors to supersede the use of other components such as
vacuum tubes. Though a transistor has a number of uses, the one we care most about for
computer use is as a switch. A transistor has three wires, with the names source, sink, and
gate. Electricity flows from the source to the sink. If there is a signal, a voltage or current,

20 C H A P T E R 0 • T H E S T U D Y O F C O M P U T E R S C I E N C E

on the gate then electricity flows—the switch is “on.” If there is no signal on the gate, no
electricity flows—the switch is “off.” See Figure 0.8.

Sink

Source

Gate

OFF

Source

Sink

Gate

Sink

Source

Gate

ON

FIGURE 0.8 A diagram of a transistor and its equivalent “faucet” view.

In the switch examples shown above, we can use transistors as switches, e.g., as in
Figure 0.7. In that way, transistors are used to construct logic gates, then larger circuits,
and so on, eventually constructing the higher-level components that become the parts of a
modern electronic computer.

What makes the transistor so remarkable is how it has evolved in the 60 years since its
creation. It is this remarkable evolution that has made the modern computer what it is today.

Smaller Size
The size of a transistor has changed dramatically since its inception. The first Shockley
transistor was very large, on the order of inches (Figure 0.9). By 1954, Texas Instruments
was selling the first commercial transistor and had shrunk the transistor size to that of a
postage stamp.

However, even the small size of individual transistor components was proving to be a
limitation. More transistors were needed in a smaller area if better components were to be
designed. The solution was the integrated circuit, invented by Jack Kilby of Texas Instruments

FIGURE 0.9 The Shockley transistor—the first transistor. [Reprinted with permission of Alcatel-
Lucent USA Inc.]

0 . 6 • T H E M O D E R N , E L E C T R O N I C C O M P U T E R 21

FIGURE 0.10 Kilby’s first integrated circuit (left) and the Intel 4004 microprocessor (right).
[Image courtesy of Texas Instruments (left). Reprinted with permission from Intel Corporation
(right).]

in 1958–1959 (for which he won the 2000 Nobel Prize in Physics); see Figure 0.10. The
integrated circuit was a contiguous piece of semiconductor material upon which multiple
transistors could be manufactured. The integrated circuit allowed many transistors to be
embedded in a single piece of material, allowing a more complex functional circuit on a very
small area. By 1971, Intel managed to manufacture the first complete computer processing
unit (or CPU) on a single chip, a microprocessor named the Intel 4004 (see Figure 0.10).
It was approximately the size of a human fingernail (3 × 4 mm), with 2300 transistors. By
this time, the size of the transistor on this microprocessor had shrunk to 10 microns, the
width of the a single fiber of cotton or silk.

The shrinkage of the transistor has continued. Today, the size of a transistor has
reached amazingly small levels. Figure 0.11 shows an electron microscope picture of an IBM

100 �m

10 �m

1 �m

100 nm

10 nm

1 nm

0.1 nm

Bacteria

Virus

Atom

Molecule

Cell

H
N

H

O

O

H
O

S

{

{

{

{

Protien{

{

FIGURE 0.11 A photomicrograph of a single 50-nm IBM transistor (left) and common items
of a similar size (right). [Reprint Courtesy of International Business Machines Corporation,
copyright © International Business Machines Corporation (left) and Sebastian Kaulitzki/
Shutterstock (right)]

22 C H A P T E R 0 • T H E S T U D Y O F C O M P U T E R S C I E N C E

Year Transistor Count Model
1971 2,300 4004
1978 29,000 8086
1982 134,000 80286
1986 275,000 80386
1989 1,200,000 80486
1993 3,100,000 Pentium
1999 9,500,000 Pentium III
2001 42,000,000 Pentium 4
2007 582,000,000 Core 2 Quad
2011 2,600,000,000 10-core Westmere

TABLE 0.1 Transistor counts in Intel microprocessors, by year.

transistor gate that is 50 nanometers wide, 50×10−9 meters, a thousand times smaller than
transistors in the Intel 4004. That is more than 10 times smaller than a single wavelength of
visible light. It is approximately the thickness of a cell membrane, and only 10 times larger
than a single turn of a DNA helix. Current transistors are nearly half that size: 32 nm.

Quantity and Function
As the size of a transistor shrank, the number of transistors that could be put on a single
chip increased. This increase has been quite dramatic. In fact, there is a famous statement
made by the founder of Intel, Gordon Moore, that predicts this amazing trend. In 1965,
Moore predicted that the number of transistors that can be placed inexpensively on a single
chip would double about every two years.4 This trend has proven to be remarkably accurate
and continues to hold to this day. Named in the popular press as “Moore’s law,” it’s demise
has been predicted for many years, yet it continues to hold true. A summary of this trend is
shown in Table 0.1. By increasing the number of transistors in a CPU, more functionality
can be introduced on each CPU chip. In fact, recently the number of CPUs on a single
chip has also increased. A common chip in production at the writing of this book is the
quad-core processor (see Figure 0.12) which contains four complete CPUs.

Faster
Smaller transistors are also faster transistors, so smaller transistors provide a doubling factor:
more and faster. But how does one measure speed?

When you buy a computer, the salesman is more than happy to tell you how fast it is,
usually in terms of how many “gigahertz” the computer will run. The value the salesman
mentions is really a measure of a special feature of every computer called its clock. The clock

4 The original estimate was one year but was later revised upward.

0 . 6 • T H E M O D E R N , E L E C T R O N I C C O M P U T E R 23

FIGURE 0.12 Intel Nehalem Quad Core Processor. [Reprinted with permission from Intel
Corporation]

of a computer is not much like a wall clock, however. Rather, it is more like a drummer
in a band. The drummer’s job in the band is to keep the beat, coordinating the rhythm
of all the other members of the band. The faster the drummer beasts, the faster the band
plays. The components on a CPU chip are like the band—they need something to help
them coordinate their efforts. That is the role of the clock. The clock regularly emits a
signal indicating that the next operation is to occur. Upon every “beat” of the clock, another
“cycle” occurs on the chip, meaning another set of operations can occur.

Therefore, the faster the clock runs, the faster the chip runs and, potentially, the more
instructions that can be executed. But how fast is a gigahertz (GHz)? Literally, 1 gigahertz
means that the clock emits a signal every nanosecond, that is, every billionth of a second
(10−9). Thus, your 1-GHz computer executes instructions once every nanosecond. That is
a very fast clock indeed!

Consider that the “universal speed limit” is the speed of light, roughly 186,282 miles/
second (299,792,458 meters/second) in a vacuum. Given that an electrical signal (data) is
carried at this speed, how far can an electric signal travel in a nanosecond? If we do the math,
it turns out that an electric signal can only travel about 11.8 inches. Only 11.8 inches! At
2 GHz, it can only travel 5.9 inches; at 4 GHz, only 2.95 inches. Consider that 5.9 inches is
not even the width of a typical computer board! In fact, at the writing of this book a further
doubling of speed of present computers is limited by the distance electricity can travel.

Given a measure of the speed of a computer, how does that translate to actual work
done by the computer? Measuring computing operations, known as “benchmarking,” can
be a difficult task. Different computing systems are better or worse, depending on how you
measure the benchmark. However, manufacturers do list a measure called instructions per
second, or IPS. That is, it’s a measure of how many instructions, such as an addition, can be
done every second. In Table 0.2, we can see how the measure of increased clock rate affects
the IPS (MIPS is millions of IPS). One interesting note is that, since about 2000, the clock

24 C H A P T E R 0 • T H E S T U D Y O F C O M P U T E R S C I E N C E

Year CPU Instructions/second Clock Speed
1971 Intel 4004 1 MIPS 740 kHz
1972 IBM System/370 1 MIPS ?
1977 Motorola 68000 1 MIPS 8 MHz
1982 Intel 286 3 MIPS 12 MHz
1984 Motorola 68020 4 MIPS 20 MHz
1992 Intel 486DX 54 MIPS 66 MHz
1994 PowerPC 600s (G2) 35 MIPS 33 MHz
1996 Intel Pentium Pro 541 MIPS 200 MHz
1997 PowerPC G3 525 MIPS 233 MHz
2002 AMD Athlon XP 2400+ 5,935 MIPS 2.0 GHz
2003 Pentium 4 9,726 MIPS 3.2 GHz
2005 Xbox 360 19,200 MIPS 3.2 GHz
2006 PS3 Cell BE 10,240 MIPS 3.2 GHz
2006 AMD Athlon FX-60 18,938 MIPS 2.6 GHz
2007 Intel Core 2 QX9770 59,455 MIPS 3.2 GHz
2011 Intel Core i7 990x 159,000 MIPS 3.46 GHz

TABLE 0.2 Speed (in millions of IPS, or MIPS) and clock rates of microprocessors, by year.

speed has not increased dramatically, for the reasons mentioned previously. However, the
existence of multiple CPUs on a chip still allows for increases in IPS of a CPU.

0.7 A H I G H - L E V E L L O O K A T
A M O D E R N C O M P U T E R

Now that you know something about the low-level functional elements of a computer, it
is useful to step up to a higher-level view of the elements of a computer, often termed the
computer’s architecture. The architecture describes the various parts of the computer and
how they interact. The standard architecture, named after the stored program model of
John von Neumann, looks something like the following (see Figure 0.13):

� Processor: As we have mentioned, the processor is the computational heart of a com-
puter. Often called the CPU (Central Processing Unit), it can itself consist of a number
of parts, including the ALU (Arithmetic and Logic Unit), where logical calculations are
done; local fast storage, called the cache; connections among components, called the
bus; as well as other elements.

� Main Memory: A processor needs data to process, and main memory is where data are
stored. Main memory is traditionally volatile; i.e., when power is turned off, data are
lost. It is also called RAM = random access memory, i.e., retrievable in any order. Use
of non-volatile memory is increasing, especially in portable devices.

0 . 7 • A H I G H - L E V E L L O O K A T A M O D E R N C O M P U T E R 25

Processor
ALU

Main memory
RAM

Disk

Input
Keyboard, mouse, ...

Output
Monitor, printer,

Network

FIGURE 0.13 A typical computer architecture.

� Disk: The disk is for permanent (non-volatile) storage of data. The disk is also known
as the “hard drive.” Data must be moved from the disk to main memory before they
can be used by the processor. Disks are relatively slow mechanical devices that are being
replaced by non-mechanical memory cards in some portable devices.

� Input/Output: These devices convert external data into digital data and vice versa for
use and storage in the computer.

� Network: A network is the infrastructure that allows computers to communicate with
other computers. From the viewpoint of the processor, the network is simply another
input/output device.

Consider a simple operation theSum = num1 + num2. The theSum, num1, and
num2 terms are called variables, readable names that contain values to be used in a program.
The statement adds the two numbers stored in num1 and num2 to produce a result, which
is stored in theSum. Assume that num1 and num2 represent numbers that are stored on the
disk and that the result theSum will also be stored on the disk. Assume that the instruction
itself, theSum = num1 + num2, also resides on the disk. Here is how it works:

1 Fetch Instruction: When the processor is ready to process an instruction, it fetches the
instruction from memory. If the instruction is not in memory but on the disk, the mem-
ory must first fetch it from the disk. In this way, the instruction theSum = num1 +
num2 will move from the disk through memory to the processor.

2 Decode Instruction: The processor examines the instruction (“decodes” it) and sees
that operands num1 and num2 are needed, so it fetches them from memory. If num1
and num2 are not in memory, but on the disk, the memory must first fetch them from
the disk.

3 Execute Operation: Once the processor has both the instruction and the operands, it
can perform the operation—addition in this case.

26 C H A P T E R 0 • T H E S T U D Y O F C O M P U T E R S C I E N C E

4 Store Result: After calculating the sum, the processor will store the resulting sum in
memory. At some point before power is turned off, the data in memory will be stored
on the disk.

5 Repeat: Go back to “fetch instruction” to fetch the next instruction in a program.

The fetch-decode-execute-store cycle is fundamental for all computers. This simple,
sequential process is the basis for all modern computers. These four steps are done in
lockstep to the beat of a clock, as described previously.

How complex is each operation? Not very. The ALU of a processor can add, subtract,
multiply, and divide. It can also compare values and choose which instruction to do next
based on that comparison. That’s it. In reality, it is slightly more complex than that, but not
much.

Also, the processor can handle only two types of operands: integers and floating points.
For our purposes, you can think of floating-point values as fractional values represented in
decimal notation, e.g., 37.842. There will be a separate ALU for integers and a separate one
for floating-point numbers, called the FPU = Floating Point Unit.

The important concept is that everything a computer does boils down to a few simple
operations, but at billions of operations per second, the result is significant computational
power.

0.8 R E P R E S E N T I N G D A T A
The underlying element of a computer is typically a switch, usually a transistor. Given that,
what is the most obvious way to represent data values? The obvious choice is binary. Binary
values can only be either 1 or 0, which corresponds to the physical nature of a switch, which
is on or off. What is interesting is that we can represent not only numbers in binary, but
music, video, images, characters, and many other kinds of data also in binary.

0.8.1 Binary Data
By definition, a digital computer is binary, which is base 2. Our normal number system
is decimal, base 10, probably because we have 10 fingers for counting. People haven’t
always worked in base 10. For example, the ancient Babylonians (2000 BC) used base 60
(sexagesimal) for the most advanced mathematics of that time. As a result, they are the
source of modern timekeeping and angle measurement: 60 seconds in a minute, 60 minutes
in an hour, and 360 degrees in a circle. For decimals we use 10 digits: 0, 1, 2, 3, 4, 5, 6,
7, 8, 9. For sexagesimal, the Babylonians used 60 digits: 0, 1, 2, 3, . . . , 58, 59. For binary,
there are only two digits: 0, 1.

Why binary? Two reasons, really. As we have said, the first reason is the hardware
being used. Electronic transistors lend themselves very naturally to base 2. A transistor is
either on or off, which can be directly translated to 1 or 0. However, the second reason is
that two digits are easy to store and easy to operate on. Storage devices in binary need a

0 . 8 • R E P R E S E N T I N G D A T A 27

medium that has two states: a state called “one” and another state “zero.” Anything with two
states can become digital storage. Examples include high/low voltage, right/left magnetism,
charge/no-charge, on/off, and so on. For example, main memory has small capacitors that
hold a charge (1) or not (0). Disks are magnetized one way (1) or the other (0). CDs and
DVDs reflect light one way (1) or the other (0).

Manipulations of the underlying data can also be done simply using electronic gates
that we discussed previously, that is, the Boolean logic: and, or, not. Because such logical
circuits can be extremely small and fast, they can be implemented to do calculations quickly
and efficiently. For example, the adder circuit we discussed previously that adds two binary
digits, or bits (bit = BInary digiT), can be done with logical circuits: sum = (A and (not B))
or ((not A) and B)). From such simple logic all arithmetic operations can be built. For
example, subtraction is the addition of a negative value, multiplication is repeated addition,
and division can be done using the other three operations. A choice can be made based on
the value of a bit: choose one thing or another. That choice bit can be calculated using any
arbitrary logical expression using the logical operators: and, or, not. Therefore, the entire
ALU (and the rest of the computer) can be built from the logical operators: and, or, not.

0.8.2 Working with Binary
A brief look at the binary representation of numbers and characters provides useful back-
ground for understanding binary computation. Because our world is a world of decimal
numbers, let’s look at representing decimals in binary. We begin with a review of place
holding in decimals, by taking you back to elementary school. For example, consider the
number 735 in base 10 (written as 73510). Notice in the last line how the exponents start
at 2 and work down to 0 as you move from left to right.5

73510 = 7 hundr eds + 3 tens + 5 one s

73510 = 7 ∗ 100 + 3 ∗ 10 + 5 ∗ 1

73510 = 7 ∗ 102 + 3 ∗ 101 + 5 ∗ 100

In binary we only have two digits: 0 and 1. Also, our base is 2 rather than 10. Therefore,
our rightmost three places are fours, twos, ones. As with base 10, the exponents will decrease
as we move from left to right—in this case: 2, 1, then 0. Using the previous notation, but
working backwards from the last line to the first line, let us determine what 101 in binary
(1012) is in base 10 (decimal).

1012 = 1 ∗ 22 + 0 ∗ 21 + 1 ∗ 20

1012 = 1 ∗ 4 + 0 ∗ 2 + 1 ∗ 1

1012 = 4 + 0 + 1

1012 = 510

5 We use an asterisk (∗) to represent multiplication.

28 C H A P T E R 0 • T H E S T U D Y O F C O M P U T E R S C I E N C E

In a similar way, any decimal integer can be represented in binary. For example,

105210 = 100000111002

Fractions can be represented using integers in the scientific notation that you learned
in science classes:

1/8 = 0.125 = 125 ∗ 10−3

The mantissa (125) and exponent (−3) are integers that can be expressed and stored in
binary. The actual implementation of binary fractions is different because the starting point
is binary, but the principle is the same: binary fractions are stored using binary mantissas and
binary exponents. How many bits are allocated to the mantissa and how many to exponents
varies from computer to computer, but the two numbers are stored together.

There are four important concepts that you need to know about representation:

� All numbers in a computer are represented in binary.
� Because of fixed hardware limits on number storage, there is a limit to how big an integer

can be stored in one unit of computer memory (usually 32 or 64 bits of storage).
� Fractions are represented in scientific notation and are approximations.
� Everything is converted to binary for manipulation and storage: letters, music, pictures,

and so on.

0.8.3 Limits
We have covered the representation of numbers in binary. Let’s look at limits. Most com-
puters organize their data into words that are usually 32 bits in size (though 64-bit words
are growing in use). There are an infinite number of integers, but with only 32 bits available
in a word, there is a limited number of integers that can fit. If one considers only positive
integers, one can represent 232 integers with a 32-bit word, or a little over 4 billion inte-
gers. To represent positive and negative integers evenly, the represented integers range from
negative 2 billion to positive 2 billion. That is a lot of numbers, but there is a limit and it is
not hard to exceed it. For example, most U.S. state budgets will not fit in that size number
(4 billion). On the other hand, a 64-bit computer could represent 264 integers using a 64-bit
word, which in base 10 is 1.8 × 1019: a huge number—over 4 billion times more than can
be stored in a 32-bit word.

Fractional values present a different problem. We know from mathematics that between
every pair of Real numbers there are an infinite number of Real numbers. To see that, choose
any two Real numbers A and B, and (A + B)/2 is a Real number in between. That operation
can be repeated an infinite number of times to find more Real numbers between A and
B. No matter how we choose to represent Real numbers in binary, the representation will
always be an approximation. For example, if you enter 1.1 + 2.2 into Python, it will be
calculated as 3.3000000000000003 which is an approximation (try it!). The approximation
is a feature of storage in binary rather than a feature of Python.

0 . 8 • R E P R E S E N T I N G D A T A 29

Bits, Bytes, and Words
Computer words (as opposed to English words) are built from bytes, which contain 8 bits,
so one 32-bit word is made of 4 bytes. Storage is usually counted in bytes, e.g., 2 GB
of RAM is approximately 2 billion bytes of memory (actually, it is 231 bytes, which is
2,147,483,648 bytes). Bytes are the unit of measurement for size mainly for historical
reasons.

0.8.4 Representing Letters
So far we’ve dealt with numbers. What about letters (characters): how are characters stored
in a computer? Not surprisingly, everything is still stored in binary, which means that it is
still a number. Early developers created ways to map characters to numbers.

First, what is a character? Characters are what we see on a printed page and are
mostly made from letters (a, b, c, . . .), digits (0, 1, 2, . . .), and punctuation (period,
comma, semicolon, . . .). However, there are also characters that are not printable, such
as “carriage return” or “tab” as well as characters that existed at the dawn of computing
to control printers such as “form feed.” The first standardized set of computer characters
was the ASCII (American Standard Code for Information Interchange) set developed in
1963. ASCII served the English-speaking world but could not handle other alphabets. As
computing became more universal, the restrictions of the 128 ASCII characters became a
problem. How could we handle the tens of thousands of Chinese characters? To address this
problem, a universal encoding named Unicode was first defined in 1991 and can handle over
1 million different characters. One implementation of Unicode is UTF-8, which is popular
because it is backward compatible to the ASCII encoding that dominated the first 30 years
of computing. Currently over half the pages on the World Wide Web use UTF-8. It is the
default character representation for Python 3. For those reasons this text will use UTF-8.

Table 0.3 has part of the UTF-8 encoding showing some English characters, some
symbols, and some control characters. The table shows a mapping between numbers and

Char Dec Char Dec Char Dec Char Dec
NUL 0 SP 32 @ 64 ` 96
SOH 1 ! 33 A 65 a 97
STX 2 " 34 B 66 b 98
ETX 3 # 35 C 67 c 99
EOT 4 $ 36 D 68 d 100
ENQ 5 % 37 E 69 e 101
ACK 6 & 38 F 70 f 102
BEL 7 ' 39 G 71 g 103
BS 8 (40 H 72 h 104

TABLE 0.3 Table of UTF-8 characters (first few rows).

30 C H A P T E R 0 • T H E S T U D Y O F C O M P U T E R S C I E N C E

characters. Each character has an associated number, that is “A” is 65 while “a” is 97.
Knowing this relationship, we can interpret a set of numbers as characters and then ma-
nipulate those characters just as we would numbers. We’ll talk more about this topic in
Chapter 4.

0.8.5 Representing Other Data
You must get the idea by now: what computers can represent is numbers. If you want to
represent other data, you must find a way to encode those data as numbers.

Images
How does one store an image? If the image is discrete—that is, built of many individual
parts—we can represent those individual parts as numbers. Take a close look at your monitor
or TV screen (with a magnifying glass, if you can). The image is made up of thousands of
very small dots. These dots, called pixels (short for picture elements), are used to create an
image. Each pixel has an associated color. If you put a lot of these pixels together in a small
area, they start to look like an image (Figure 0.14).

FIGURE 0.14 A computer display picture with a close-up of the individual pixels. [Juliengrondin/
Shutterstock]

Each pixel can be represented as a location (in a two-dimensional grid) and as a color.
The location is two numbers (which row and which column the pixel occupies), and the
color is also represented as a number. Although there are a variety of ways to represent color,
a common way is to break each color into its contribution from the three basic colors: red,
green, and blue. The color number represents how much of each basic color is contributed
to the final color. An 8-bit color scheme means that each color can contribute 8 bits, or
28 = 256 possible shades of that color. Thus, a 24-bit color system can represent 224 different
colors, or 16,777,216.

The quantity of pixels is important. Standard analog television (extinct as of the writing
of this book) used 525 lines of pixels, with each line containing 480 pixels, a total of

0 . 8 • R E P R E S E N T I N G D A T A 31

252,000 pixels. High-definition television has 1920 × 1080 pixels for a total of 2,073,600,
a much higher resolution and a much better image.

Music
How to represent music as numbers? There are two types of musical sound that we might
want to capture: recorded sound and generated sound. First, let’s look at recording sound.
A sound “wave” is a complex wave of air pressure that we detect with our ears. If we look at
the shape of this sound wave (say, with an oscilloscope), we can see how complex the wave
can be. However, if we record the height of that wave at a very high rate—say, at a rate of
44,100 times/second (or 44 kHz, the sampling rate on most MP3s)—then we can record
that height as a number for that time in the sound wave. Therefore, we record two numbers:
the height of the recorded sound and the time when that height was recorded. When we play
sound back, we can reproduce the sound wave’s shape by creating a new sound wave that
has the same height at the selected times as the recorded sound at each point in time. The
more often we “sample” the sound wave, the better our ability to reproduce it accurately.
See Figure 0.15 for an example.

FIGURE 0.15 A sound wave and the samples of that sound wave (blue bar height) over time.

To generate our own new sound, we can write computer programs that generate the
same data, a wave height at some point in time, and then that data can be played just like
recorded sound.

0.8.6 What Does a Number Represent?
We’ve shown that all the data we record for use by a computer is represented as a number,
whether the data are numeric, text, image, audio, or any other kind of data. So how can

32 C H A P T E R 0 • T H E S T U D Y O F C O M P U T E R S C I E N C E

you tell what a particular recorded data value represents? You cannot by simply looking at
the bits. Any particular data value can be interpreted as an integer, a character, a sound
sample, and so on. It depends on the use for which that data value was recorded. That is,
it depends on the type of the data. We will talk more of types in Chapter 1, but the type
of the data indicates for what use the data values are to be used. If the type is characters,
then the numbers represent UTF-8 values. If the type is floating point, then the numbers
represent the mantissa and exponent of a value. If the type is an image, then the number
would represent the color of a particular pixel. Knowing the type of the data lets you know
what the data values represent.

0.8.7 How to Talk About Quantities of Data
How much data can a computer hold, and what constitutes “a lot” of data? The answer
to that question varies, mostly depending on when you ask it. Very much like Moore’s
law and processing speed, the amount of data that a commercial disk can hold has grown
dramatically over the years.

Again, there are some terms in common usage in the commercial world. In the context
of data amounts, we talk about values like “kilobytes” (abbreviated KB) or “megabytes”
(abbreviate MB) or “gigabytes” (abbreviated GB), but the meaning is a bit odd. “Kilo”
typically refers to 103, or 1000 of something; 106, or 1 million of something; and “giga”
usually to 109, or 1 billion of something, but its meaning here is a little off. This is because
103, or 1000, is pretty close to 210, or 1024.

So in discussing powers of 2 and powers of 10, most people use the following rule
of thumb. Any time you talk about multiplying by 210, that’s pretty close to multiply-
ing by 103, so we will just use the power of 10 prefixes we are used to. Another way
to say it is that every 3 powers of 10 is “roughly equivalent” to 10 powers of 2. Thus a
kilobyte is not really 1000 (103) bytes, but 1024 (210) bytes. A megabyte is not 1 mil-
lion bytes (106), but 1,048,576 (220) bytes. A gigabyte is not 1 billion bytes (109), but
1,073,741,824 bytes (230).

0.8.8 Quantities of Data
At the writing of this book, the largest standard size commercial disk is 1 terabyte, 1 trillion
bytes (1012). On the horizon is the possibility of a 1 petabyte, 1 quadrillion (1015) bytes.
Again, the growth in disk sizes is dramatic. The first disk was introduced by IBM in 1956
and held only 4 megabytes. It took 35 years before a 1-gigabyte disk was made, but only
14 more years until we had 500-gigabyte disks, and only 2 more years until a 1-terabyte
(1,000-gigabyte) disk was available. A petabyte disk (1,000,000 gigabytes) may happen
soon.

0 . 8 • R E P R E S E N T I N G D A T A 33

So, how big is a petabyte? Let’s try to put it into terms you can relate to:

� A book is roughly a megabyte of data. If you read one book a day every day of your life,
say 80 years, that will be less than 30 gigabytes of data. Because a petabyte is 1 million
gigabytes, you will still have 999,970 gigabytes left over.

� How many pictures can a person look at in a lifetime? If we assume 4 megabytes per
picture and 100 images a day, after 80 years that collection of pictures would add up to
30 terabytes. So your petabyte disk will have 970,000 gigabytes left after a lifetime of
photos and books.

� What about music? MP3 audio files run about a megabyte a minute. At that rate, a
lifetime of listening—all day and all night for 80 years—would consume 42 terabytes of
space. So with a lifetime of music, pictures, and books, you will have 928,000 gigabytes
free on your disk. That is, almost 93% of your disk is still empty.

� The one kind of content that might overflow a petabyte disk is video. For DVDs the
data rate is about 2 gigabytes per hour. Therefore, the petabyte disk will hold about
500,000 hours worth of video. If you want to record 24 hours a day, 7 days a week, the
video will fill up your petabyte drive after about 57 years.

Of course, why stop there? More prefixes have been defined:

� exa is 260 = 1,152,921,504,606,846,976
� zetta is 270 = 1,180,591,620,717,411,303,424
� yotta is 280 = 1,208,925,819,614,629,174,706,176

Does anything get measured in exabytes or even zetabytes? By 2006, the total Internet
traffic in the U.S. was estimated to be roughly 8.4 exabytes for the year. However, video
is increasing Internet traffic dramatically. By the end of 2007, YouTube was estimated to
be generating 600 petabytes per year all by itself. If YouTube were in high definition, it
would have generated 12 exabytes by itself that year. Amateur video is estimated to cap-
ture 10 exabytes of video per year, but much of that does not show up on the Internet.
Netflix began by distributing DVDs through the U.S. mail. They currently distribute
part of their inventory over the Internet. If they could stream their entire catalog, that
would consume 5.8 exabytes of Internet bandwidth per year. If the movies were high
definition, they would consume 100 exabytes per year. Video conferencing and Internet
gaming are also increasing dramatically. Taken together, these applications have the po-
tential to create what has been termed the “exaflood” of the Internet. The most extreme
estimates put the demand on the Internet of potentially 1000 exabytes in 2015—that is, a
zetabyte!

Even larger estimates come from estimating the total data created and stored across
the world. The storage company EMC has sponsored the IDC Digital Universe study to
estimate the amount of data in use. Figure 0.16 shows a decade of estimates that reach 8
zettabytes by 2015, and their study estimates that to grow to 35 zettabytes by 2020. As
fanciful as those numbers seem, they illustrate a practical use of the term zettabyte.

34 C H A P T E R 0 • T H E S T U D Y O F C O M P U T E R S C I E N C E

0

1000

2000

3000

4000

5000

6000

7000

8000

2005 2010 2015

Exabytes (EB)

130 EB

1227 EB = 1.2 Zettabytes

7910 EB = 7.9 Zettabytes

FIGURE 0.16 Estimates of data created and stored. (IDC Digital Universe)

0.9 O V E R V I E W O F C O M I N G C H A P T E R S
This text is divided into five parts. The first gets you started on Python, computing, and
problem solving. With that in hand, we get down into details in the next part, where we
develop both the Python language and problem-solving skills sufficient to solve interesting
problems. The third part provides more tools in the form of Python built-in data structures,
algorithm and problem-solving development, and functions. Part 4 shows you how to build
classes—your own data structures. The final part includes more on Python.

Summary
In this chapter, we considered ways that data can be represented and manipulated—at
the hardware level. In subsequent chapters, we will introduce ways in which you, as a
programmer, can control the representation and manipulation of data.

•2P A R T

Starting to Program

Chapter 1 Beginnings

Chapter 2 Control

Chapter 3 Algorithms and Program Development

Chapter 4 Working with Strings

Chapter 5 Files and Exceptions I

This page intentionally left blank

•1C H A P T E R

Beginnings

A good workman is known by his tools.

proverb

OUR FIRST STEPS IN PROGRAMMING ARE TO LEARN THE DETAILS, SYNTAX, AND

semantics of the Python programming language. This necessarily involves getting into some
of the language details, focusing on level 1 (language) issues as opposed to level 2 (problem-
solving) issues. Don’t worry: we haven’t forgotten that the goal is to do effective problem
solving, but we have to worry about both aspects, moving between levels as required. A
little proficiency with Python will allow us to write effective problem-solving programs.

Here are our first two RULES of programming:

Rule 1: Think before you program!
Rule 2: A program is a human-readable essay on problem solving that also
happens to execute on a computer.

1.1 P R A C T I C E , P R A C T I C E , P R A C T I C E
Let’s start experimenting with Python. Before we get too far along, we want to emphasize
something important. One of the best reasons to start learning programming using Python
is that you can easily experiment with Python. That is, Python makes it easy to try something
out and see the result. Anytime you have a question, simply try it out.

Learning to experiment with a programming language is a very important skill, and
one that seems hard for introductory students to pick up. So let’s add a new RULE.

Rule 3: The best way to improve your programming and problem skills is to
practice!

37

38 C H A P T E R 1 • B E G I N N I N G S

Problem solving—and problem solving using programming to record your solution—
requires practice. The title of this section is the answer to the age-old joke:

Student: How do you get to Carnegie Hall?
Teacher: Practice, practice, practice!

Learning to program for the first time is not all that different from learning to kick
a soccer ball or play a musical instrument. It is important to learn about fundamentals by
reading and talking about them, but the best way to really learn them is to practice. We will
encourage you throughout the book to type something in and see what happens. If what
you type in the first time doesn’t work, who cares? Try again; see if you can fix it. If you
don’t get it right the first time, you will eventually. Experimenting is an important skill in
problem solving, and this is one place where you can develop it!

We begin with our first QUICKSTART. A QUICKSTART shows the development of a
working program followed by a more detailed explanation of the details of that program. A
QUICKSTART gets us started, using the principle of “doing” before “explaining.” Note that
we ask you to try some things in the Python shell as we go along. Do it! Remember RULE 3.
(To get Python, see Appendix A.)

1.2 Q U I C K S T A R T , T H E C I R C U M F E R E N C E
P R O G R A M

Let’s start with a simple task. We want to calculate the circumference and area of a circle
given its radius. The relevant mathematical formulas are:

� circumference = 2 ∗ π ∗ r adius
� area = π ∗ r adius 2

To create the program, we need to do a couple of things:

1. We need to prompt the user for a radius.
2. We need to apply the mathematical formulas listed previously using the acquired radius

to find the circumference and area.
3. We need to print out our results.

Here is Code Listing 1.1. Let’s name it circumference.py. The “.py” is a file suffix.

P R O G R A M M I N G T I P

Most computer systems add a suffix to the end of a file to indicate what “kind” of file it is—
what kind of information it might store: music (“.mp3”), pictures (“.jpg”), text (“.txt”), etc.
Python does the same and expects a Python file to have a “.py” suffix. IDLE, Python’s default
editor (see Appendix A), is fairly picky about this. If you save your program without the “.py”
suffix, you will know it right away, as all the colors in the editor window disappear. Add the
suffix, resave, and the colors come back. Those colors are useful in that each color indicates a
type of thing (yellow for strings, blue for keywords) in the program, making it more readable.

1 . 2 • Q U I C K S T A R T , T H E C I R C U M F E R E N C E P R O G R A M 39

Code Listing 1.1

1 # Calculate the area and circumference o f a c i r c l e from i t s radius .
2 # Step 1 : Prompt f o r a radius .
3 # Step 2 : Apply the area formula .
4 # Step 3 : Print out the r e s u l t s .
5

6 import math
7

8 radius str = input("Enter the radius of your circle: ")
9 radius int = int(radius str)

10

11 circumference = 2 * math.pi * radius int
12 area = math.pi * (radius int ** 2)
13

14 print ("The cirumference is:",circumference, \
15 ", and the area is:",area)

Important: The line numbers shown in the program are not part of the program. We list
them here only for the reader’s convenience.

Before we examine the code, let’s illustrate how the program runs with two different
input radii to confirm that it works properly.

The easiest way to run a program is to open that program in the IDLE editor, then select
Run → Run Module (F5). This imports the file into the shell and runs it. Note that every
time you run the program, the Python shell prints the "====== RESTART ======"
line, indicating that the shell is restarting and running your program.

You can choose some “obvious” values to see if you get expected results. For example,
a radius value of 1 results in the area having the recognizable value of π = 3.14159. . . .
Although not a complete test of the code, it does allow us to identify any gross errors quickly.
The other case has a radius of 2 that can be easily checked with a calculator:

IDLE 3.2
>>> ================================ RESTART ================================
>>>
Enter the radius of your circle: 1
The cirumference is: 6.283185307179586 , and the area is: 3.141592653589793
>>> ================================ RESTART ================================
>>>
Enter the radius of your circle: 2
The cirumference is: 12.566370614359172 , and the area is: 12.566370614359172
>>>

40 C H A P T E R 1 • B E G I N N I N G S

1.2.1 Examining the Code
Let’s examine Code Listing 1.1 code line by line. In this first example, there are many topics
that we will touch on briefly, but they will be explained in more detail in subsequent chapters.
Note that we number only every fifth line in the code listing. Here is a walk-through of this
code.

Lines 1–4: Anything that follows a pound sign (#) is a comment for the human reader.
The Python interpreter ignores it. However, it does provide us as readers some more
information on the intent of the program (more on this later). Remember RULE 2.
Comments help make your document easier to understand for humans.

Line 6: This line imports special Python code from the math module. A module is a Python
file containing programs to solve particular problems; in this case, the math module
provides support for solving common math problems. Modules are described in more
detail in Section 1.4.1. Python has many such modules to make common tasks easier.
In this case we are interested in the value π provided by the math module, which we
indicate in the program using the code math.pi. This is a naming convention we will
explore in more detail in Section 1.8, but essentially the code math.pi means within
the module named math there is a value named pi, with a “.” separating the module
and value name.

Line 8: This line really has two parts: the Python code to the right of the = sign and the
Python code on the left:
� On the right, input is a small Python program called a function. Functions (see

Chapter 8) are often-used, small program utilities that do a particular task. The
input function prints the characters in quotes “Enter the radius of your circle:” to
the Python shell and waits for the user to type a response. Whatever the user types
in the shell before pressing the Enter key at the end is returned, that is, provided as
input to program.

� On the left side of the = is a variable. For now, consider a variable to be a name that is
associated with a value. In this case, the value returned from input will be associated
with the name radius str (programmers traditionally shorten “string” to “str”).

Think of the = as a kind of glue, linking the values on the right side with the
variable on the left. A line with = is called an assignment statement; we will have more
to say about assignment in Section 1.5.1.

Line 9: The user’s response returned by input is stored as a sequence of characters, referred
to in computer science as a string (see Chapter 4). Python differentiates a sequence of
characters, such as those that constitute this sentence, from numbers on which we can
perform operations such as addition, subtraction, and so on. Strings are differentiated
from numbers by using quotes, and either single or double quotes are acceptable (“hi
mom” or ‘monty’). For this program we want to work with numbers, not characters,
so we must convert the user’s response from a string of characters to numbers. The
int function takes the value associated with the variable radius str and returns the

1 . 2 • Q U I C K S T A R T , T H E C I R C U M F E R E N C E P R O G R A M 41

integer value of radius str. In other words, it converts the string to an integer. As
in the previous line, the value returned by int is associated with a variable using the
assignment statement. For example, ifradius strholds the string of characters"27",
the int function will convert those characters to the integer 27 and then associate that
value the new variable name radius int.

The difference between the characters "27" and the number 27 will likely seem
strange at first. It is our first example of value types. Types will be described in more
detail in Section 1.6, but for now, let’s say that a type indicates the kinds of things we
can do to a value and the results we obtain.

Line 11: Here we calculate the circumference using the following formula:

circumference = 2 * pi * radius

While +, -, and / mean what you expect for math operations (addition, subtraction,
and division), we use the * symbol to represent multiplication as opposed to · or ×.
This convention avoids any confusion between “x” and × or “.” and ·. The integer
2, the value associated with the variable math.pi, and the value associated with
the radius int are multiplied together, and then the result is associated with the
variable named circumference. As you will later see, the ordering is important: the
mathematical expression on the right-hand side of the equal sign is evaluated first, and
then the result is associated with the variable on the left-hand side of the equal sign.

Line 12: Similarly, we calculate the area using the formula listed previously. There isn’t a
way to type in an exponent (superscript) from a keyboard, but Python has an exponen-
tiation operator ** by which the value on the left is raised to the power on the right.
Thus radius int ** 2 is the same as radius int squared or radius int2.
Note that we use parentheses to group the operation. As in normal math, expressions in
parentheses are evaluated first, so the expression math.pi * (radius int ** 2)
means square the value of radius int, then take that result and multiply it
by pi .

Lines 14 and 15: We print the results using the Python print statement. Like the input
statement, print is a function that performs a much-used operation—printing values
to the Python shell. The print statement can print strings bracketed by quotes (either
single or double quotes) and a value associated with a variable. Printable elements are
placed in the parentheses after the print statement. If the element being printed is
quoted, it is printed exactly as it appears in the quotes; if the element is a variable,
then the value associated with the variable is printed. Each object (string, variable, value,
etc.) that is to be printed is separated from other objects by commas. In this case,
the print statement outputs a string, a variable value, another string, and finally a
variable value. The backslash character (\) indicates that the statement continues onto
the next line—in this case, the two-line print statement behaves as if it were one long
line. Stretching a statement across two lines can enhance readability—particularly on a
narrow screen or page. See Section 1.4.3.

42 C H A P T E R 1 • B E G I N N I N G S

1.3 A N I N T E R A C T I V E S E S S I O N
An important feature of Python, particularly when learning the language, is that it is an
interpreted language. By interpreted we mean that there is a program within Python called
the interpreter that takes each line of Python code, one line at a time, and executes that code.
This feature means that we can try out lines of code one at a time by typing into the Python
shell. The ability to experiment with pieces of code in the Python shell is something that really
helps while you’re learning the language—you can easily try something out and see what
happens. That is what is so great about Python—you can easily explore and learn as you go.

Consider our circumference program. The following code shows a session in a Python
shell in which a user types each line of the program we listed previously, to see what happens.
We also show a few other features, just to experiment. Open up a Python shell and follow
along by trying it yourself. The comments (text after #, the pound sign) are there to help walk
you through the process. There is no need to type them into the Python shell.

>>> import math
>>> radius str = input("Enter the radius of your circle: ")
Enter the radius of your circle: 20
>>> radius str # what i s the value a s s o c i a t e d with radiu s s t r
'20'
>>> radius int = int(radius str) # convert the s t r i n g to an in t e g e r
>>> radius int # check the value o f the in t e g e r
20 # look , no quote s because i t i s a number
>>> int(radius str) # what does int () return without assignment (=)
20
>>> radius str # int () does not modify radiu s s t r ! !
'20'
>>> math.pi # l e t ' s s e e what value i s a s s o c i a t e d with math . pi
3.141592653589793
>>> circumference = 2 * math.pi * radius int # t r y our formula
>>> circumference
125.66370614359172
>>> area = math.pi * radius int ** 2 # area using exponentiat ion
>>> area
1256.6370614359173
>>> math.pi * radius int ** 2 # area ca l cu la t i on without assignment
1256.6370614359173

>>> print("Circumference: ", circumference, ", area: ", area)
Circumererence: 125.66370614359172 , area: 1256.6370614359173
>>>

Within the Python shell, you can find out the value associated with any variable name
by typing its name followed by the Enter key. For example, when we type radius str in
the shell as shown in the example, '20' is output. The quotes indicate that it is a string of
characters, '20', rather than the integer 20.

1 . 4 • P A R T S O F A P R O G R A M 43

Interestingly, Python treats single quotes "20" the same as double quotes "20". You
can choose to designate strings with single or double quotes. It’s your choice!

We can see that after the conversion of the string to an integer using the int function,
simply typing radius int results in the integer 20 being printed (no quotes).

We can also try the expression int(radius str) without assigning the result to
radius int. Note that radius str is unchanged; it is provided as a value for the int
function to use in its calculations. We then check the value of pi in the mathmodule named
math.pi. Next we try out the circumference and area formulas. The area calculation is
next, using the exponentiation operator (**), raising radius int to the second power.
Finally, we try the print statement. Remember RULE 3.

An advantage of Python over other languages such as C, C++, and Java is the Python
shell. Take advantage of this feature, because it can greatly enhance learning what the Python
language can do. If you wonder about how something might or might not work, try it in
the Python shell!

1.4 P A R T S O F A P R O G R A M
RULE 2 describes a program as an essay on problem solving that is also executable. A program
consists of a set of instructions that are executed sequentially, one after the other in the order
in which they were typed. We save the instructions together in a module for storage on
our file system. Later, the module can be imported into the Python interpreter, which runs
programs by executing the instructions contained in the module.

1.4.1 Modules
� A module contains a set of Python commands.
� A module can be stored as a file and imported into the Python shell.
� Usage:
import module # load the module

Hundreds of modules come with the standard Python distribution—the math module and
many more can be found and imported. You can even write your own modules and use
them as tools in your own programming work!

1.4.2 Statements and Expressions
Python differentiates code into one of two categories: expressions or statements. The concept
of an expression is consistent with the mathematical definition, so it may be familiar to you.

Expression: a combination of values and operations that creates a new value that we call
a return value—i.e., the value returned by the operation(s). If you enter an expression into

44 C H A P T E R 1 • B E G I N N I N G S

the Python shell, a value will be returned and displayed; that is, the expression x + 5 will
display 7 if the value of x is 2. Note that the value associated with x is not changed as a
result of this operation!
Statement: does not return a value, but does perform some task. Some statements may
control the flow of the program, and others might ask for resources; statements perform a
wide variety of tasks. As a result of their operation, a statement may have a side effect. A side
effect is some change that results from executing the statement. Take the example of the
assignment statement my int = 5 (shown in the following example). This statement does
not have a return value, but it does set the value associated with the variable my int to 5,
a side effect. When we type such an assignment into the Python shell, no value is returned,
as you can see here:

>>> my int = 5 # statement , no return value but my int now has value 5
>>> my int
5
>>> my int + 5 # expre s s i on , value a s s o c i a t e d with my int added to 5
10
>>> my int # no s id e e f f e c t o f expre s s i on , my int i s unchanged
5
>>>

However, after we type the assignment statement, if we type the variable my int, we
see that it does indeed now have the value of 5 (see the example session). A statement never
returns a value, but some statements (not all) may have a side effect. You will see more of
this behavior as we explore the many Python statements.

P R O G R A M M I N G T I P

Knowing that an expression has a value, but a statement does not, is useful. For example,
you can print the value generated by an expression: print(x + 5) (as long as x has a
value). However, if you try to print a statement, Python generates an error. If no value is
returned from a statement, then what will the print output? Python avoids this by not
allowing a statement to be printed. That is, it is not allowable syntax.

>>> print(x + 5) # print ing an exp r e s s i on
7
>>> print(y = x + 5) # t r y ing to print a s tatement
SyntaxError: invalid syntax

There are a number of instances of entering expressions and statements into the Python
shell in the previous examples. Whenever an expression was entered, its return value was
printed on the following line of the console. Whenever a statement was entered, nothing was
printed: if we wanted to see what a statement changed (side effect), we, the programmers,
would have had to inquire about the change.

1 . 4 • P A R T S O F A P R O G R A M 45

1.4.3 Whitespace
When we type, we usually separate words with what is typically called whitespace. Python
counts as whitespace the following characters: space, tab, return, linefeed, formfeed, and
vertical tab. Python has the following rules about how whitespace is used in a program:

� Whitespace is ignored within both expressions and statements.
For example, Y=X+5 has exactly the same meaning as Y = X + 5.

� Leading whitespace, whitespace at the beginning of a line, defines indentation. Inden-
tation plays a special role in Python (see the following section).

� Blank lines are also considered to be whitespace, and the rule for blank lines is trivial:
blank lines are allowed anywhere and are ignored.

Indentation
Indentation is used by all programmers to make code more readable. Programmers often
indent code to indicate that the indented code is grouped together, meaning those statements
have some common purpose. However, indentation is treated uniquely in Python. Python
requires it for grouping. When a set of statements or expressions needs to be grouped together,
Python does so by a consistent indentation. Grouping of statements will be important when
we get to control statements in Chapter 2.

Python requires consistency in whitespace indentation. If previous statements use an
indentation of four spaces to group elements, then that must be done consistently throughout
the program.

The benefit of indentation is readability. While other programming languages encourage
indentation, Python’s whitespace indentation forces readability. The disadvantage is that
maintaining consistency with the number of spaces versus tabs can be frustrating, especially
when cutting and pasting. Fortunately, Python-aware editors such as IDLE automatically
indent and can repair indentation.

P R O G R A M M I N G T I P

IDLE provides commands under the Format menu to help change indentation. If you are
having problems with indentation, or if Python is complaining about irregular indentation,
use these commands to repair the problem.

Continuation
Long lines of code, those wider than the width of a reasonably sized editing window, can
make reading code difficult. Because readability is very important (remember RULE 2),
Python provides ways to make long lines more readable by splitting them. Such splitting
is called a continuation. If a single statement runs long, that statement can be continued
onto another line (or lines) to help with readability. That is, a continued line is still a

46 C H A P T E R 1 • B E G I N N I N G S

single line, it just shows up over multiple lines in the editor. You indicate a continuation
by placing a backslash character (\) at the end of a line. Multiple-line expressions can be
continued similarly. In this way, a long line that may be difficult to read can be split in
some meaningful and readable way across multiple lines. The first program in this chapter,
circumference.py, used such a backslash character in the print statement.

1.4.4 Comments
Let us change our traditional attitude to the construction of programs: Instead
of imagining that our main task is to instruct a computer what to do, let us
concentrate rather on explaining to human beings what we want a computer
to do.

Donald Knuth1

We will say many times, in different ways, that a program is more than “just some code
that does something.” A program is a document that describes the thought process of its
writer. Messy code implies messy thinking and is both difficult to work with and understand.
Code also happens to be something that can run, but just because it can run does not make
it a good program. Good programs can be read, just like any other essay. Comments are one
important way to improve readability. Comments contribute nothing to the running of the
program, because Python ignores them. In Python, anything following a pound character
(#) is ignored on that line. However, comments are critical to the readability of the program.

There are no universally agreed-upon rules for the right style and number of comments,
but there is near-universal agreement that they can enhance readability. Here are some useful
guidelines:

� The why philosophy: “Good comments don’t repeat the code or explain it. They clarify
its intent. Comments should explain, at a higher level of abstraction than the code,
what you’re trying to do.” (Code Complete by McConnell)

� The how philosophy: If your code contains a novel or noteworthy solution, add com-
ments to explain the methodology.

1.4.5 Special Python Elements: Tokens
As when learning any language, there are some details that are good to know before you
can fully understand how they are used. Here we show you the special keywords, symbols,
and characters that can be used in a Python program. These language elements are known
generically as tokens. We don’t explain in detail what each one does, but it is important to
note that Python has special uses for all of them. You will become more familiar with them
as we proceed through the book. More important than what they do is the fact that Python

1 “Literate Programming,” Computer Journal 27(2), 1984

1 . 4 • P A R T S O F A P R O G R A M 47

reserves them for its own use. You can’t redefine them to do something else. Be aware they
exist so that you don’t accidentally try to use one (as a variable, function, or the like).

Keywords
Keywords are special words in Python that cannot be used by you to name things. They
indicate commands to the Python interpreter. The complete list is in Table 1.1. We will
introduce commands throughout the text, but for now, know that you cannot use these
words as names (of variables, of functions, of classes, etc.) in your programs. Python has
already taken them for other uses.

and del from not while
as elif global or with

assert else if pass yield
break except import print class
exec in raise continue finally
is return def for lambda
try True False None

TABLE 1.1 Python Keywords

Operators
Operators are special tokens (sequences of characters) that have meaning to the Python
interpreter. Using them implies some operation, such as addition, subtraction, or something
similar. We will introduce operators throughout the text. The complete list is in Table 1.2.
You can probably guess many of them, but some of them will not be familiar.

+ - * ** / // %
<< >> & | ˆ ˜

< > <= >= == != <>

+= -= *= /= //= %=
&= |= ˆ= >>= <<= **=

TABLE 1.2 Python Operators

Punctuators and Delimiters
Punctuators, a.k.a. delimiters, separate different elements in Python statements and expres-
sions. Some you will recognize from mathematics; others you will recognize from English.
We will introduce them throughout the text. The complete list is in Table 1.3.

() [] { }
, : . ` = ;
' " # \ @

TABLE 1.3 Python Punctuators

48 C H A P T E R 1 • B E G I N N I N G S

Literals
In computer science, a literal is a notation for representing a fixed value—a value that cannot
be changed in the program. Almost all programming languages have notations for atomic
values, such as integers, floating-point numbers, strings, and Booleans. For example, 123
is a literal; it has a fixed value and cannot be modified. In contrast to literals, variables are
symbols that can be assigned a value, and that value can be modified during the execution
of the code.

1.4.6 Naming Objects
The practitioner of . . . programming can be regarded as an essayist, whose
main concern is with exposition and excellence of style. Such an author, with
thesaurus in hand, chooses the names of variables carefully and explains what
each variable means. He or she strives for a program that is comprehensible
because its concepts have been introduced in an order that is best for human
understanding, using a mixture of formal and informal methods that reinforce
each other.

Donald Knuth2

If writing a program is like writing an essay, then you might guess that the names you
use in the program, such as the names of your variables, would help greatly in making
the program more readable. Therefore, it is important to choose names well. Later we will
provide you with some procedures to choose readable names, but here we can talk about
the rules that Python imposes on name selection.

1. Every name must begin with a letter or the underscore character ():
� A numeral is not allowed as the first character.3
� Multiple-word names can be linked together using the underscore character ()—

e.g.monty python,holy grail. A name starting with an underscore is often used
by Python and Python programmers to denote a variable with special characteristics.
You will see these as we go along, but for now it is best to not start variable names
with an underscore until you understand what that implies.

2. After the first letter, the name may contain any combination of letters, numbers, and
underscores:
� The name cannot be a keyword as listed in Table 1.1.
� You cannot have any delimiters, punctuation, or operators (as listed in Tables 1.2 and

1.3) in a name.

2 ibid
3 This is so that Python can easily distinguish variable names from numbers.

1 . 5 • V A R I A B L E S 49

3. A name can be of any length.
4. UPPERCASE is different from lowercase:

� my name is different than my Name or My Name or My name.

1.4.7 Recommendations on Naming
Because naming is such an important part of programming, conventions are often developed
that describe how to create names. Such conventions provide programmers with a common
methodology to make clear what the program is doing to anyone who reads it. These
conventions describe how to name various elements of a program based on their function,
in particular when to use various techniques to name elements (capitalize, uppercase, leading
underscore, etc.). It is a bit beyond us at this point to fully discuss these standards, as we
are not yet familiar with the different kinds of elements in a Python program, but we will
describe the rules as we go along. However, for those who are interested, we will be using the
standard that Google uses for its Python programmers, the Google Style Guide for Python,
which is similar to Python’s PEP 8, the Style Guide for Python Code. While we follow those
guidelines, it is wise to not follow them to the point where readability is impinged. In that
spirit we pull our next rule straight from PEP 8:

Rule 4: A foolish consistency is the hobgoblin of little minds.

That rule is actually a quote from Ralph Waldo Emerson: “A foolish consistency is the
hobgoblin of little minds, adored by little statesmen and philosophers and divines. With
consistency a great soul has simply nothing to do.” As Emerson says, our rules are useful to
follow, but sometimes not.

1.5 V A R I A B L E S
A variable is a name you create in your program to represent “something” in your program.
That “something” can be one of many types of entities: a value, another program to run,
a set of data, a file. For starters, we will talk about a variable as something that represents
a value: an integer, a string, a floating-point number, and so on. We create variables with
meaningful names, because the purpose of a good variable name is to make your code more
readable. The variable name pi is a name most would recognize, and it is easier to both read
and write than 3.1415926536. Once a variable is created, you can store, retrieve, or modify
the data associated with that variable. Every time you use your variable in a program, its
value is retrieved by Python and used in that variable’s place. Thus, a variable is really a way
to make it easier to read the program you are writing.

4 http://google-styleguide.googlecode.com/svn/trunk/pyguide.html.

http://google-styleguide.googlecode.com/svn/trunk/pyguide.html

50 C H A P T E R 1 • B E G I N N I N G S

P R O G R A M M I N G T I P

It is often useful to describe your variable using a multiword phrase. The recommended way
to do this, according to the Google Style Guide, is called “lower with under”. That is, use
lowercase to write your variable names and connect the words together using an underline.
Again, it is useful to avoid using a leading underline with your variable names for reasons
that will become clear later. It is also useful to avoid capital letters, as the style guide will have
something to say about when to use those later. Thus “radius int” or “circumference str”
are good variable names.

How does Python associate the value of the variable with its name? In essence, Python
makes a list of names (variables, but other names as well) that are being used right now in
the Python interpreter. The interpreter maintains a special structure called a namespace to
keep this list of names and their associated values (see Figure 1.1). Each name in that list is
associated with a value, and the Python interpreter updates both names and values during the
course of its operation. The name associated with a value is an alias for the value, i.e., another
name for it. Whenever a new variable is created, its name is placed in the list along with an
association to a value. If a variable name already exists in the table, its association is updated.

1.5.1 Variable Creation and Assignment
How is a name created? In Python, when a name is first used (assigned a value, defined as a
function name, etc.) is when the name is created. Python updates the namespace with the
new name and its associated value.

Assignment is one way to create a name for a variable. The purpose of assignment is to
associate a name with a value. The symbol of assignment for Python is the equal sign (=).

my_int

a_float 27

3.14159

Name List Values

Namespace

FIGURE 1.1 Namespace containing variable names and associated values.

1 . 5 • V A R I A B L E S 51

A simple example follows:

my int = math.pi + 5

In this case, 5 is added to the value of variable associated with math.pi and the
result of that expression is associated with the variable my int in the Python namespace.
It is important to note that the value math.pi is not modified by this operation. In fact,
assignment does not change any values on the right-hand side. Only a new association is
created by assignment—the association with the name on the left-hand side.

The general form of the assignment statement is the same as in mathematics:

left-hand side = right-hand side
LHS = RHS

Although we use the familiar equal sign (=) from mathematics, its meaning in pro-
gramming languages is different! In math, the equal (=) indicates equality: what is on the
left-hand side of the equal sign (=) has the same value as what is on the right-hand side. In
Python, the equal sign (=) represents assignment. Assignment is the operation to associate a
value with a variable. The left-hand side represents the variable name and the right-hand side
represents the value. If the variable does not yet exist, then the variable is created and placed
in the namespace otherwise, the variable’s value is updated to the value on the right-hand
side. This notation can lead to some odd expressions that would not make much sense
mathematically but make good sense from Python’s point of view, such as:

my var = my var + 1

We interpret the previous statement as follows: get the value referred to by my var, add
1 to it, and then associate the resulting sum with the variable my var. That is, if my var’s
value was 4, then after assignment, its value will be updated to be 5. More generally, the
process is to evaluate everything in the expression on the right-hand side first, get the value
of that expression, and associate that value with the name on the left-hand side.

Evaluation of an assignment statement is a two-step process:

1. Evaluate the expression on the right-hand side.
2. Take the resulting value from the right-hand expression and associate it with the variable

on the left-hand side (create the variable if it doesn’t exist; otherwise update it).

For example:
my var = 2 + 3 * 5

First evaluate the expression on the right-hand side, resulting in the value 17 (re-
member, multiplication before addition), then associate 17 with my var, that is, update
the namespace so that my var is an alias for 17 in the namespace. Notice how Python uses
the standard mathematical rules for the order of operations: multiplication and division
before addition or subtraction.

In the earlier assignment statement

my var = my var + 1

52 C H A P T E R 1 • B E G I N N I N G S

notice that my var has two roles. On the right-hand side, it represents a value: “get this
value.” On the left-hand side, it represents a name that we will associate with a value: “a name
we will associate with the value.”

With that in mind, we can examine some assignment statements that do not make
sense and are thus not allowed in Python:

� 7 = my var + 1 is illegal because 7, like any other integer, is a literal, not a legal
variable name, and cannot be changed (you wouldn’t want the value 7 to somehow
become 125).

� my var + 7 = 14 is illegal becausemy var + 7 is an expression, not a legal variable
name in the namespace.

� Assignment cannot be used in a statement or expression where a value is expected.
This is because assignment is a statement; it does not return a value. The statement
print(my var = 7) is illegal, because print requires a value to print, but the
assignment statement does not return a value.

Check Yourself: Variables and Assignment

1. Which of the following are acceptable variable names for Python?
(a) xyzzy
(b) 2ndVar
(c) rich&bill
(d) long name
(e) good2go

2. Which of the following statements best describes a Python namespace?
(a) A list of acceptable names to use with Python
(b) A place where objects are stored in Python
(c) A list of Python names and the values with which they are associated
(d) All of the above
(e) None of the above

3. Give the values printed by the following program for each of the labeled lines.

int_a = 27
int_b = 5
int_a = 6

print(int_a) # Line 1
print(int_b + 5) # Line 2
print(int_b) # Line 3

(a) What is printed by Line 1?
(b) What is printed by Line 2?
(c) What is printed by Line 3?

1 . 6 • O B J E C T S A N D T Y P E S 53

1.6 O B J E C T S A N D T Y P E S
In assignment, we associate a value with a variable. What exactly is that value? What
information is important and useful to know about that value?

In Python, every “thing” in the system is considered to be an object. In Python, though,
the word object has a very particular meaning. An object in Python has:

� An identity
� Some attributes
� Zero or more names

Whenever an object is created by Python, it receives an identification number. If you
are ever interested in the number of any object, you can use the id function to discover its
ID number. In general, the ID number isn’t very interesting to us, but that number is used
by Python to distinguish one object from another. We will take a brief look at the ID here
because it helps explain how Python manages objects.

Notice that in addition to the ID number, an object can also have a name, or even
multiple names. This name is not part of the object’s ID but is used by us, the programmers,
to make the code more readable. Python uses the namespace to associate a name (such as
a variable name) with an object. Interestingly, multiple namespaces may associate different
names with the same object!

Finally, every object has a set of attributes associated with it. Attributes are essentially
information about the object. We will offer more insight into object attributes later, but the
one that we are most interested in right now is an object’s type.

In Python, and in many other languages, each object is considered an example of a
type. For example, 1, 27, and 365 are objects, each of the same type, called int (integer).
Also, 3.1415926, 6.022141 × 1023, and 6.67428 × 10−11 are all objects that are examples
of the type called floating-point numbers (real numbers), which is the type called float in
Python. Finally, "spam", 'ham', and '"fred"' are objects of the type named strings, called
str in Python (more in Chapter 4).

Knowing the type of an object informs Python (and us, the programmers) of two things:

� Attributes of the object tell us something about its ‘‘content.’’ For example, there are no decimal
points in an integer object, and there are no letters in either an integer object or a float object.

� Operations we can perform on the object and the results they return. For example, we
can divide two integer objects or two float objects, but the division operation makes no
sense on a string object.

If you are unsure of the type of an object in Python, you can ask Python to tell you its
type. The function type returns the type of any object. The following session shows some
interaction with Python and its objects:

>>> a int = 7
>>> id(a int)
16790848
>>> type(a int) # a int contains a type int

54 C H A P T E R 1 • B E G I N N I N G S

<class 'int'>
>>> b float = 2.5
>>> id(b float) # note the two d i f f e r e n t ID ' s
17397652
>>> type(b float) # b f loat contains a type f l o a t
<class 'float'>
>>> a int = b float # a s s o c i a t e a int with value o f b f loat
>>> type(a int)
<class 'float'> # a int contains a type f l o a t
>>> id(a int) # a int has the same ID as b f loat
17397652

Notice a few interesting things in the example session:

� When we ask for the ID (using id), we get a system-dependent ID number. That
number will be different from session to session or machine to machine. To us, the ID
number is hard to remember (though not for Python). That is the point! We create
variable names so that we can remember an object we have created so we don’t have to
remember weird ID numbers. We show the ID here to help explain Figure 1.2.

� The information returned by a call to the type function indicates the type of
the value. An integer returns <class 'int'>, a floating-point object returns
<class 'float'>, etc.

� Most important, the type of an object has nothing to do with the variable name;
instead it specifies only the object with which it is associated. In the previous Python
session, an int object (a int = 7) and a floating-point object (b float = 2.5)
associated (respectively) with a int and b float. We then assign the floating-point
object to the variable named a int using a int = b float. The type of object
associated with a int is now float. The name of the variable has nothing to do with
the type of object with which it is associated. However, it can be useful if the name
does say something about the associated object for those who must read the code. In
any case, Python does not enforce this naming convention. We, as good programmers,
must enforce it. Note that the ID of the object associated with a int is now the
same as the ID of the variable b float. Both names are now associated with the
same object.

Figure 1.2 shows the namespace with two assignments on the left side and a third
assignment on the right.

Python (and therefore we) must pay particular attention to an object’s type, because
that type determines what is “reasonable” or “permissible” to do to that object, and if the
operation can be done, what results. As you progress in Python, you will learn more about
predefined types in Python, as well as how we can define our own types (or, said in a different
way, our own class—see Chapter 11).

The following sections describe a few of the basic types in Python.

1 . 6 • O B J E C T S A N D T Y P E S 55

a_int
7

2.5

Name list Values

2.5

a_int
7

2.5

Name list Values

2.5

a_int = 7 a_int = b_float

FIGURE 1.2 Namespace before and after the final assignment.

1.6.1 Numbers
Python provides several numeric types. We will work a lot with these types during these
early chapters, because they relate to numeric concepts that we are familiar with. You will
add more types as we move through the book.

Integers
The integer type is designated in Python as type int. The integer type corresponds to our
mathematical notion of integer. The operations we can perform are those that we would
expect: + (addition), - (subtraction), * (multiplication), and / (division, though there are
some complications about division—see Section 1.7), as well as a few others. In Python,
integers can grow to be as large as needed to store a value, and that value will be exact, but
really big integers can be slower to operate on.

How big an integer can you make? Give it a try.
Integers can be written in normal base 10 form or in other base formats, in particular

base 8 (called octal) and base 16 (called hexadecimal). We note this because of an oddity
you might run into with integers: leading zeros are not allowed. Python assumes that, if you
precede a number with a 0 (zero), you mean to encode it in a base other than 10. A letter
following the 0 indicates the base. If it is “o,” base 8 (octal) is specified. An “x” specifies
base 16 (hexadecimal) and a “b” specifies base 2 (binary). We illustrate this in a session. The
value printed in the shell is the decimal equivalent.

>>> 012 # leading zero without l e t t e r i s inval id
SyntaxError: invalid token

56 C H A P T E R 1 • B E G I N N I N G S

>>> 0o12 # "o" ind i c a t e s oc ta l , base 8
10
>>> 0x12 # "x" ind i c a t e s hexadecimal , base 16
18
>>> 0b101 # "b" ind i c a t e s binary , base 2
5

Floating-Point Numbers
Floating-point or real numbers are designated in Python as type float. The floating-point
type refers to noninteger numbers—numbers with decimal points. Floats are created either
by typing the value, such as 25.678, or by using exponential notation, with the exponent
represented by an “e.” Thus, 2.99 × 108 is written as 2.99e8 and 9.109 × 10−31 can be
written as 9.109e-31. The operators are, like integers, +, −, *, and / (see Section 1.7 for
more detail). Floats represent Real numbers, but only approximately. For example, what is
the exact decimal representation of the operation 2.0/3.0? As you know, there is no exact
decimal equivalent as the result is an infinite series: 2.0/3.0 = 0.666 Because a computer
has a finite amount of memory, real numbers must be represented with approximations of
their actual value. Look at the following session.

>>> 2.0 / 3.0
0.6666666666666666
>>> 1.1 + 2.2
3.3000000000000003
>>> 0.1 + 0.1 + 0.1 - 0.3
5.551115123125783e-17
>>>

If you were to do the calculations yourself on paper, you would find that 1.1+2.2 is equal
to 3.3. However, the session shows it is 3.3000000000000003. Same for the last addition.
The result should be zero but Python returns a very small value instead. Approximations like
this, if carried through multiple evaluations, can lead to significant differences than what is
expected. Python does provide a module called the decimal module that provides more
predictable, and controllable, results for floating-point numbers.

It is important to remember that floating-point values are approximate values, not
exact, and that operations using floating-point values yield approximate values. Integers are
exact, and operations on integers yield exact values.

Finally, unlike integers in Python, a leading 0 on a floating-point number carries no
significance: 012. (notice the decimal point) is equivalent to 12.0.

Fractions
Python also provides the type Fraction for rational numbers. A fraction consists of the
obvious two parts: the numerator and the denominator. Fractions do not suffer from the

1 . 6 • O B J E C T S A N D T Y P E S 57

conversion of a rational to a real number, as discussed previously, and can be operated on
without loss of precision using addition, subtraction, multiplication, and division. See the
fractions module for more information.

1.6.2 Other Built-In Types
Python has more types that we will introduce in the coming chapters. We mention them
briefly here as a preview.

Boolean
A Boolean value has a Python type bool. The Boolean type refers to the values True or
False (note the capitalization). If an object is of type Boolean, it can be only one of those
two values. In fact, the two Boolean objects are represented as integers: 0 is False and 1 is
True. There are a number of Boolean operators, which we will examine in Chapter 2.

String
A string in Python has the type str. A string is our first collection type. A collection type
contains multiple objects organized as a single object type. The string type is a sequence. It
consists of a collection of characters in a sequence (order matters), delimited by single quotes
(' ') or double quotes (" "). For example, "This is a string!" or ‘here is another string’
or even a very short string as "x". Some languages, such as C and its derivatives, consider
single characters and strings as different types, but Python only has strings. Operations on
strings are described in Chapter 4.

List
A list in Python is of type list. A list is also a sequence type, like a string, though it can have
elements other than characters in the sequence. Because sequences are collections, a list is
also a collection. Lists are indicated with square brackets ([and]), and their contents are
separated by commas. Lists will be covered in Chapter 7. Here is a list:

[4, 3.57, 'abc']

Dictionary
A dictionary in Python is of type dict. A dictionary is a map type, a collection though not
a sequence. A map type consists of a set of element pairs. The first element in the pair is
the key and the second is the value. The key can be used to search for a value, much like
a dictionary or phone book. If you want to look up the phone number (the value) or a
person (the key), you can efficiently search for the name and find the number. Curly braces,
({ and }) indicate dictionaries; a colon separates the key and value pair. Dictionaries will be
covered in Chapter 9. Here is a dictionary:

{'Jones':3471124, 'Larson':3472289, 'Smith':3471288}

58 C H A P T E R 1 • B E G I N N I N G S

Set
A set in Python is of type set. A set is a collection of unique elements—similar to a set in
mathematics. Sets, like dictionaries, use curly braces, but unlike dictionaries there are no
colons. A set supports mathematical set operations such as union and intersection. Sets will
be covered in Chapter 9. Here is a set:

{1,3,5}

1.6.3 Object Types: Not Variable Types
As noted earlier, every object has a type in Python. Variables can freely change their object
association during a program. A Python variable can refer to any object, and that object,
and potentially its type, can change over time. For example, a variable could be associated
with a string one moment and be reassigned to an integer later on. Consider this Python
session:

>>> my var
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name 'my var' is not defined
>>> my var = 7 # c r ea t e my var
>>> my var
7
>>> my var = 7.77 # a s s o c i a t e my var with a f l o a t
>>> my var
7.77
>>> my var = True # now type i s bool (Boolean)
>>> my var
True
>>> my var = "7.77" # now type i s s t r (s t r i n g)
>>> my var
'7.77'
>>> my var = float(my var) # convert s t r i n g to f l o a t
>>> my var
7.77
>>>

Initially, my var is undefined, as it has never had a value assigned to it (has no
association with a value yet), so the Python interpreter complains when you ask for its
associated object. Remember that to create a variable name in the namespace, we must
assign (or otherwise define) the variable. Subsequently in the example, we assign an integer
value (type int) to my var, the integer 7. Next, we assign a floating point value, 7.77, to
my var, so it is now associated with an object of type float. Next we assign a Boolean

1 . 6 • O B J E C T S A N D T Y P E S 59

value to my var, so it becomes associated with a type bool (Boolean) value. Finally, we
assign a string to my var (type str). For illustration purposes, the characters we chose for
the string are the same ones used for the floating-point example. However, note the quotes!
Because we put the characters in quotes, the Python interpreter considers the characters to
be a string (a sequence of printable characters) rather than a number. To further illustrate
that point, we then used the float function to convert the string value in my var to a
floating-point object and then assigned that floating-point object value back to my var.
Python’s float could create the new floating-point object from the string object, because
the string consisted of only numbers and a decimal point. If we had tried to convert a string
of letters, float would have generated an error: float("fred") is an error.

Because the computer has separate hardware for integers and floating-point arithmetic,
the Python interpreter keeps careful track of types for use in expressions. Also, operators
may perform different operations depending on the type of the operands. For example, with
the plus (+) operator, if the operands are of type int or float, addition will be performed,
but if the operands are of type str (that is, a string), concatenation will be performed. Here
is an example showing the two interpretations of plus (+):

>>> my var = 2
>>> my var + my var
4
>>> my var = "Ni"
>>> my var + my var
'NiNi'

P R O G R A M M I N G T I P

Because the type information is not part of the variable, it is often helpful to help keep
track of types by affixing the type name to their variables, such as my int,b float,
phone book dict. This style of naming is sometimes called “Hungarian notation.”
Invented by Charles Simonyi, a programmer who worked at Xerox PARC, Hungarian
notation puts the type of the value associated with the variable in front of the name (much
as Hungarian puts the family name before the surname). We use a variation that places the
type as a suffix.

1.6.4 Constructing New Values
We noted earlier that every object has a type and that the type determines both what is
stored in the object and the kinds of operations that can be performed on that object.

There are also some operations associated with the type itself. One of the most useful of
those operations is the constructor. A constructor is a special operation that is used to make a
particular object of that type. For example, the operation int will create a new object that
is of type integer.

60 C H A P T E R 1 • B E G I N N I N G S

Each type has an associated constructor: the constructor’s name is the name of the type
(int, float, str, . . .). If no value is provided within the parentheses, then a default
value of that type is provided (for int it is 0; for float it is 0.0, for str it is ''). If a value
is provided in the parentheses, then the constructor will convert that value to a new object
of the specified type if it can. Thus, constructors can be used to convert one object to a new
object of a different type. You have already seen conversion in examples:

� int(my var) returns an integer representation of the object associated with my var.
– Note my var itself is unaffected. The object associated with my var is provided to

the function int, a new object is created, the my var object is converted to an int,
and that new, converted object is returned.

– If the object associated with my var cannot be converted to an integer (say, the
value " "), then an error will occur.

� float(my var) returns a floating-point representation of the object associated with
my var. As with int, if the object cannot be converted to a floating-point number,
then an error will occur.

� str(my var) returns a string representation of the object associated with my var.

It is again important to note that 1 and "1" are very different.

� 1 is the integer 1.
� "1" is the character digit that gets typed on a keyboard.

Next is an example of a Python session that illustrates using constructors for conversion.
The comments explain what is happening:

>>> int("1") # convert s t r to int
1
>>> int(1.7) # convert f l o a t to int ; truncation !
1
>>> int(True) # convert bool to int
1
>>> int('1.1') # f l o a t as a s t r to int , too far !
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: invalid literal for int() with base 10: '1.1'
>>> float("3.33") # convert s t r to f l o a t
3.33
>>> float(42) # conver t int to f l o a t ; note the .0
42.0
>>> str(9.99) # convert f l o a t to s t r ; note the quote s
'9.99'
>>> my var = "2" # c r ea t e a s t r
>>> my var
'2'
>>> int(my var) # conver s ion does not change my var

1 . 7 • O P E R A T O R S 61

2
>>> my var
'2'
>>> my var = int(my var) # assignment changes my var
>>> my var
2
>>>

Note what happens when you convert a floating-point value like 1.7 into an integer.
No error occurs: the decimal portion is simply removed and the integer portion is used as
the value. When an integer is converted to a float, a decimal portion is added (that is, .0 is
appended).

1.7 O P E R A T O R S
As we noted in Section 1.6, for every type there is a set of operations that can be performed
on that type. Given the limited number of symbols available, some symbols are used
for different purposes for different types. This is called operator overloading, a term that
indicates that a symbol might have multiple meanings depending on the types of the values.
For example, we saw earlier that the plus sign (+) performs different operations depending
on whether the operands are integers or strings.

1.7.1 Integer Operators
Most of the operators for integers work exactly as you learned in elementary arithmetic class.
The plus sign (+) is used for addition, the minus (−) is for subtraction, and the asterisk (*)
is for multiplication.

Division works as you would expect as well, but it is a little different from the other
operators. In particular, the integers are not closed with respect to division. By closure, we
mean that if you add two integers, the sum is an integer. The same is true for subtraction
and multiplication. However, if you divide two integers, the result is not necessarily an
integer. It could be an integer (say, 4/2) or it could be a float (4/3). Mathematically it is a
rational number (a.k.a. fraction), but Python represents it as a float. For consistency’s sake,
then, whenever you do division, regardless of the types of the operands, the type yielded is
a float. The next session shows this behavior.

>>> a int=4
>>> b int=2
>>> a int + b int
6
>>> a int * b int
8
>>> a int - b int

62 C H A P T E R 1 • B E G I N N I N G S

2
>>> a int / b int # 2 .0 not 2 Re su l t i s always f l o a t .
2.0
>>> result = a int / b int
>>> type(result) # checking the type , y e s i t ' s a f l o a t
<class 'float'>
>>> a int / 3
1.3333333333333333
>>>

However, perhaps you indeed only want an integer result. Python provides an operator
that, when used with integers, provides only the integer part of a division, the quotient
(what type is an interesting question, but keep reading). That operator is the // operator.
Let us see how it works.

Consider how you did division in elementary school. For example, consider 5 divided
by 3, as shown in Figure 1.3.

5
1 R 2

3
3
2

FIGURE 1.3 Long division example.

The quotient is 1 and the remainder is 2. Observe that both the quotient and remainder are
integers, so the integers are closed under the quotient and remainder operations. Therefore,
in Python (and many other programming languages), there are separate operators for
quotient, //, and remainder, %.5 We can see these two operators in action by showing
the same 5 divided by 3 equation from Figure 1.3 expressed with the two expressions for
quotient and remainder:

>>> 5 // 3 # in t e g e r quotient
1
>>> 5 % 3 # in t e g e r remainder
2
>>> 5.0 // 3.0 # in t e g e r quotient , but as a f l o a t
1.0
>> 5.0 % 3.0 # in t e g e r remainder , but as a f l o a t
2.0
>> 5.0 / 3.0 # regu lar d iv i s i on
1.6666666666666667
>> 5 // 3.0 # when t yp e s are mixed , r e s u l t i s a f l o a t
1.0

5 The remainder operation is known in mathematics as the modulo operation.

1 . 7 • O P E R A T O R S 63

It is interesting to note the type of the results, though not the value, depends on the
types of the operands. If the operation has integer operands, e.g., 5 //3, the quotient
is 1, an int. If the operation has floating-point operands, e.g., 5.0 //3.0, the result
is 1.0. This is the correct quotient, but its type is a float. When the types are mixed,
e.g., 5 // 3.0, the type is also a float. See Section 1.7.3 for more details as to why.

In that session it appears that the // operation works the same for both integers and
floats, but there is a subtle difference. If the floating-point values have no fractional part,
e.g., 2.0, the operation is the same. However, fractional parts indicate that the floating-point
operation is actually floating-point division followed by truncation.

Therefore, the full set of operators for integers is:

+ addition
- subtraction
* multiplication
/ division

// quotient
% remainder
** exponentiation

1.7.2 Floating-Point Operators
Floating-point operators work as expected. Note that you may use both the quotient and
remainder operators as well on floating-point numbers.

+ addition
- subtraction
* multiplication
/ division

// quotient
% remainder
** exponentiation

As with integers, addition, subtraction, multiplication, and division perform as ex-
pected. As shown in the previous session, quotient and remainder work as well, giving the
proper value but as a type float space then.

VideoNote 1.1
Simple Arithmetic

1.7.3 Mixed Operations
What is the difference between the numbers 42 and 42.0?6 The answer is that they are
different types. Same value, but different types! Therefore, when you perform operations
with them, you might get different answers.

6 The answer to Life, the Universe, and Everything is 42, according to Douglas Adams’s The Hitchhiker’s Guide to the Galaxy.

64 C H A P T E R 1 • B E G I N N I N G S

What happens when you mix types? For example, how does the computer handle
dividing an integer by a floating-point number? The answer is, “it depends.” In general,
operations provided by each type dictate the rules of what can and cannot be mixed.
For numbers, a computer has separate hardware for integer and floating-point arithmetic.
Because of that hardware, the operation is best done in one type or the other, so the numbers
must be of the same type. Those that are not of the same type must be converted. Given
that, what is the correct conversion to perform: integer-to-float or float-to-integer?

Clearly no information is lost when converting an integer to a float, but conversion
of a float to an integer would lose the fractional information in the float. Therefore, most
programming languages, including Python, when presented with mixed types will “promote”
an integer to be a floating point so that both operands are floats and the operation can be
performed as floats:

>>> var int = 42
>>> var float = 42.0
>>> var int * 5 # mult ip l i cat ion , int t imes int y i e l d s int
210
>>> var int * 5.0 # mult ip l i cat ion , int t imes f l o a t y i e l d s f l o a t
210.0
>>> var float + 5 # addition , f l o a t p lu s int y i e l d s f l o a t
47.0
>>> var int / 7 # divi s ion , int divide int y i e l d s f l o a t
6.0 # div i s i on always y i e l d s a f l o a t !
>>>

P R O G R A M M I N G T I P

Normal division in Python always yields a float, even when working with only integer
operands.

1.7.4 Order of Operations and Parentheses
The order of arithmetic operations in Python and most common programming languages
is the same as the one you learned in arithmetic: multiplication and division before addition
or subtraction. The term used to describe the ordering is precedence. In this case, we say that
multiplication and division have greater precedence than addition or subtraction, so they
are done first. Further, exponents have greater precedence than multiplication and division,
also as in arithmetic. If operations have the same precedence—that is, multiplication and
division—they are done left to right. Finally, as in arithmetic, parentheses can be used to
override the precedence order and force some operations to be done before others, regardless
of precedence. The precedence of arithmetic operations is shown in Table 1.4; the order in
the table is from highest precedence (performed first) to lowest.

1 . 7 • O P E R A T O R S 65

Operator Description
() parentheses (grouping)
** exponentiation

+x, -x positive, negative
*,/,%,// multiplication, division, remainder, quotient

+,- addition, subtraction

TABLE 1.4 Precedence (order) of arithmetic operations: highest to lowest.

Here is a session to illustrate precedence and parentheses:

>>> 2 + 3 - 4 # same precedence : l e f t to r i gh t
1
>>> 4 / 2 * 5 # same precedence : l e f t to r i gh t
10
>>> 2 + 3 * 5 # mul t ip l i ca t ion be fo r e addition
17
>>> (2 + 3) * 5 # paren the s e s f o r c e addition be fo r e mul t ip l i ca t ion
25
>>> 2 + 3 * 5**2 # exponents be f o r e mul t ip l i ca t ion be fo r e addition
77
>>> 2 + 3 * 5**2 - 1
76
>>> -4 + 2 # negation be fo r e addition and subtrac t ion
-2

In Chapter 2 you will learn about Boolean operators and their precedence with respect to
the arithmetic operators. The full table of all Python operator precedence is in Appendix E.

1.7.5 Augmented Assignment Operators: A Shortcut!
Operations—especially groups of operations—that are used repeatedly are often provided
with a shortcut, a simpler way of typing. Python, like other languages, has such shortcuts.
They are not required, but they do make typing easier and, at some point, make the code
shorter and easier to read.

Our first shortcut is the combination of an integer operation and the assignment sign (=).
Though you might not have noticed, they were listed in Table 1.2. They are a combination
of one of the arithmetic operators, such as +, -, *, /, with the assignment sign = .
Some examples would be +=, -=, /=, *=. Note that the operation comes before the
assignment sign, not after!

What does += mean? Let’s look at an example: my int += 2. The augmented opera-
tor, in general, means “Perform the augmented operation (plus here) using the two operands,
the value 2 (value on the right side) and my int (variable on the left side), and reassign
the result to my int (variable on the left side)”. That is, the following two expressions are
exactly equivalent: my int += 2 and my int = my int + 2. The first is a shortcut,

66 C H A P T E R 1 • B E G I N N I N G S

Shortcut Equivalence
my int += 2 my int = my int + 2
my int -= 2 my int = my int - 2
my int /= 2 my int = my int / 2
my int *= 2 my int = my int * 2

TABLE 1.5 Augmented Assignment

the second the “long” way. Table 1.5 lists the most commonly used shortcuts. However,
incrementing my int += 1 is by far the most commonly used shortcut.

Check Yourself: Types and Operators

1. Give the values printed by the following program for each of the labeled lines, and
answer the associated questions.

a_float = 2.5
a_int = 7
b_int = 6

print(a_int / b_int) # Line 1
print(a_int // a_float) # Line 2
print(a_int % b_int) # Line 3
print(int(a_float)) # Line 4
print(float(a_int)) # Line 5

(a) Line 1: What is printed? What is its type?
(b) Line 2: What is printed? What is its type?
(c) Line 3: What is printed? What is its type?
(d) Line 4: What is printed? What is its type?
(e) Line 5: What is printed? What is its type?

2. Give the values printed by the following program for each of the labeled lines.

a_int = 10
b_int = 3
c_int = 2

print(a_int + b_int * c_int) # Line 1
print((a_int + b_int) * c_int) # Line 2
print(b_int ** c_int) # Line 3
print(0o10 + c_int) # Line 4

(a) What is printed by Line 1?
(b) What is printed by Line 2?
(c) What is printed by Line 3?
(d) What is printed by Line 4?

1 . 8 • Y O U R F I R S T M O D U L E , M A T H 67

P R O G R A M M I N G T I P

If you are going to use an augmented assignment, it is important to note that the variable
be defined already, meaning that at some point you have assigned it a value. That is, you
cannot add 2 to my int if my int doesn’t already have a value. Otherwise, you will get
an error that my int is undefined.

1.8 Y O U R F I R S T M O D U L E , M A T H
Python has many strengths, but one of its best is the availability of the many modules for various
tasks. If you take a look at the Python Package Index (http://pypi.python.org/pypi)
you will see that there are hundreds7 of packages provided as modules for you to use in
Python—all for free! The Python community, part of the open source community, created
those modules for everyone to use. As we described earlier, a module is a collection of
instructions saved together as a whole. Those instructions can be loaded into our program
using the import command. We did just that—we used the import command to import
the math module in the program to determine the circumference of a circle in Section 1.2.1.
Let’s take a deeper look at the math module.

When we import that math module, all the code contained in the math module is
made available to our program. The contents of the math module can be found in a couple
of ways. The best way is to look online in the Python documentation. Go to the Python
docs and take a look: http://docs.python.org/library/math.html. You could
also import the math module in IDLE, and do the following:

� Type import math
� Type math.<TAB>

When you type the tab character after “math.”, a list will be created of all the code that was
brought in during the import. Alternatively, you could type help(math).

What is typically brought in is either a function (a piece of code we can call to
perform some operation) or a variable. Either way, the name of the imported code is always
preceded with math.a name, meaning “in the math module, the item a name.” Thus, in
Section 1.2.1, we used the variable math.pi. The math. indicates the module name and
the name after the “.” is one of its elements, in this case the variable pi. more simply as “pi
in the math module.” All the code imported from the math module is referenced in this
way. Although there are other ways to import a module, this is the preferred way.

Functions will be properly introduced in Chapter 8. A function has two parts: the name
of the function, which hopefully indicates what operation it performs, and an argument list,
which is a parenthetical list of values to be sent into the function as part of its operation.

7 There are 16,000 for Python 2.7, so we can expect many more.

http://pypi.python.org/pypi
http://docs.python.org/library/math.html

68 C H A P T E R 1 • B E G I N N I N G S

When the function completes its operation, a return value is returned from the function.
A typical function is the math.sin(a float) function. The name of the function is
math.sin and the argument list follows: a parenthetical list of one value, which must be
a floating-point number. When math.sin(a float) completes, the sine of a float
(which would also be a float) is returned. The returned value can be captured with an
assignment, printed, or otherwise used elsewhere in the program.

Some useful functions in the math module include:

math.sin Takes one numeric argument and returns the sine of that argument as a float.
math.cos Takes one numeric argument and returns the cosine of that argument as a

float.
math.pow Takes two numeric arguments, x and y , and returns x y (x raised to the

power y) as a float.
math.sqrt Takes one numeric argument and returns the square root of that argument

as a float.
math.hypot Takes two numeric arguments, x and y , and returns

√
x 2 + y 2, the

Euclidean distance.
math.fabs Takes one numeric argument and returns the absolute value of the argument.

At any time, you can type “help(object)” and Python will provide help on that object. For
example:

>>> import math
>>> help(math.pow)

Help on built-in function pow in module math:

pow(...)
pow(x,y)

Return x**y (x to the power of y).
(END)

1.9 D E V E L O P I N G A N A L G O R I T H M
You know a lot more than when we started this chapter about how to write programs,
especially with numbers. Let’s take a look at solving a simple problem to see how well you
can do. Here’s a question:

How many gallons of water fall on an acre of land given the number of inches
of rain that fell? For example, how many gallons for 1 inch, 2 inches, etc.?

1 . 9 • D E V E L O P I N G A N A L G O R I T H M 69

This problem really has to do with the weather and how it is reported. When the
weather person on television tells you that “1 inch of rain” has fallen, what does that really
mean? In case you didn’t know, “1 inch of rain” means pretty much what it says. Rain has
accumulated to a depth of 1 inch over a certain area.

How do we attack this problem? Our goal is to develop an algorithm from which we
can derive our program. What is an algorithm? It is one of those common words that
can be hard to define precisely. One definition that works for what we need to do in this
book is:

algorithm: A method—a sequence of steps—that describes how to solve a
problem or class of problems.

When we describe an algorithm, we are describing what we—as human problem
solvers—need to do to solve a problem. We can provide a description in a variety of ways:
English language, diagrams, flow charts, whatever works for us. Having worked out a
solution to a problem in our own best way, we can translate that algorithm into Python
code that realizes that algorithm.

For our rainfall problem, how can we develop our algorithm? First, we observe that the
problem statement is a combination of linear measurement (inches) and square measurement
(acres), but the desired result is in volume (gallons). We must find some intermediate unit
for the conversion process. Representing volume in cubic feet is one way; metric units would
work as well.

Our algorithm starts with these steps:

1. Prompt the user for the number of inches that have fallen.
2. Find the volume (in cubic feet) of water (where volume = depth * area).
3. Convert the volume (in cubic feet) to gallons.

The Internet can provide the conversion formulas:

1 acre = 43,560 square feet
1 cubic foot = 7.48051945 gallons

With this information, we can start on our algorithm. Let’s begin parts 2 and 3 assuming
just 1 inch of rain on an acre:

1. Find the volume in cubic feet of water of 1 inch over 1 acre.
1 inch is equivalent to 1/12 foot
volume = depth * area = (1/12)*43,560 cubic feet

2. Convert the volume in cubic feet to gallons.
gallons = volume * 7.48051945

70 C H A P T E R 1 • B E G I N N I N G S

Now let’s try this in Python. We can begin in the Python shell and try out the volume
formula:

>>> volume = (1/12) * 43560
>>> volume
3630.0

Note that the type of volume is floating point even though the arguments are integers.
This is how division works in Python; it always yields a float.

Now let’s include the conversion to gallons:

>>> volume = (1/12) * 43560
>>> volume
3630.0
>>> gallons = volume * 7.48051945
>>> gallons
27154.2856035

That looks reasonable. Now we should include part one and prompt the user for the
number of inches that have fallen. To do this we need the input function, so let’s add that
to the previous program. We prompt the user for a value inches and divide that by 12 to
obtain our volume. Let’s take a look:

>>> inches = input("How many inches of rain have fallen:")
How many inches of rain have fallen:1
>>> volume = (inches/12) * 43560
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: unsupported operand type(s) for /: 'str' and 'int'
>>>

Hmm, an error. What is the problem? If we look at the error, it gives us a hint:
“unsupported operand type(s) for /: ‘str’ and ‘int’. How did a str get in there?

Yes, that’s right. If we do the input in isolation, we can see the problem:

>>> inches = input("How many inches of rain have fallen:")
How many inches of rain have fallen:1
>>> inches
'1'
>>>

The input function returns what the user provides as a string (note the quotes around
the 1). We need to convert it to a number to get the result we want. Let’s take the value from
the input function and convert it using the int function. Let’s be smarter about naming
our inches variable as well, so we can tell one type from another:

1 . 9 • D E V E L O P I N G A N A L G O R I T H M 71

>>> inches str = input("How many inches of rain have fallen:")
How many inches of rain have fallen:1
>>> inches int = int(inches str)
>>> volume = (inches int/12) * 43560
>>> volume
3630.0
>>> gallons = volume * 7.48051945
>>> gallons
27154.2856035

That looks reasonable. Now let’s put it together in a program (in IDLE) and call it
rain.py. We ran the program by selecting “Run ⇒ Run Module” (or F5). See Code
Listing 1.2 and the associated execution of the code.

Code Listing 1.2

Calculate r a i n f a l l in ga l l on s f o r some number o f inche s on 1 acre .
inches str = input("How many inches of rain have fallen: ")
inches int = int(inches str)
volume = (inches int/12)*43560
gallons = volume * 7.48051945
print(inches int," in. rain on 1 acre is", gallons, "gallons")

>>> ================================ RESTART ================================
>>>
How many inches of rain have fallen: 1
1 in. rain on 1 acre is 27154.2856035 gallons
>>> ================================ RESTART ================================
>>>
How many inches of rain have fallen: 2
2 in. rain on 1 acre is 54308.571207 gallons
>>> ================================ RESTART ================================
>>>
How many inches of rain have fallen: 0.5
Traceback (most recent call last):
File "/Users/enbody/Documents/book/tpocup/ch01/programs/program1-3.py",

line 3, in <module>
inches int = int(inches str)

ValueError: invalid literal for int() with base 10: '0.5'

For 1 and 2 inches it worked great, but for a value of 1/2 inch, 0.5, we got an error.
Why? Again, the error message describes the problem: “invalid literal for int() with base
10: ‘0.5’. We entered a floating-point value in response to the inches prompt, and Python
cannot convert the string '0.5' to an integer.

72 C H A P T E R 1 • B E G I N N I N G S

How can we fix this? If we are to allow floating-point input, and it seems reasonable to
do so, then we should convert the user-provided value to a float, not an int, to avoid
this problem.

Therefore, we change the conversion to be the float function, and to help readability
we change the name of inches int to inches float. Then we test it again:

Code Listing 1.3

Calculate r a i n f a l l in ga l l on s f o r some number o f inche s on 1 acre .
inches str = input("How many inches of rain have fallen: ")
inches float = float(inches str)
volume = (inches float/12)*43560
gallons = volume * 7.48051945
print(inches float," in. rain on 1 acre is", gallons, "gallons")

>>> ================================ RESTART ================================
>>>
How many inches of rain have fallen: 1
1.0 in. rain on 1 acre is 27154.2856035 gallons
>>> ================================ RESTART ================================
>>>
How many inches of rain have fallen: 2
2.0 in. rain on 1 acre is 54308.571207 gallons
>>> ================================ RESTART ================================
>>>
How many inches of rain have fallen: 0.5
0.5 in. rain on 1 acre is 13577.14280175 gallons

The result is fine, but the output isn’t very pretty. Take a look ahead at Section 4.4 for
ways to make the output prettier.

VideoNote 1.2
Solving Your First
Problem

1.9.1 New Rule, Testing
One of the things you should learn from the development of the previous algorithm is the
importance of testing. You need to test your approach at every point, in as many ways as
you can imagine, to make sure your program does what it is supposed to do. This is such
an important point that we are going to add a new programming rule:

Rule 5: Test your code, often and thoroughly!

Testing is so important that a number of recent programming paradigms have appeared
that emphasize the development of tests first, even before the code is written. Look up the
concepts of “test-driven development” and “extreme programming” on the Internet to get
a feel for these approaches.

1 . 1 0 • V I S U A L V I G N E T T E : T U R T L E G R A P H I C S 73

Remember, only in testing your code—all of it—can you be assured that it does what
you intended it to do.

V I S U A L V I G N E T T E

1.10 TURTLE GRAPHICS
Python version 2.6 introduced a simple drawing tool known as Turtle Graphics. Appendix B
provides an introduction and describes a few of the many commands that are available. The
concept is that there is a turtle that you command to move forward, right, and left combined
with the ability to have the turtle’s pen move up or down.

Let’s draw a simple five-pointed star. We begin by importing the turtle module. By
default, the turtle begins in the middle of the window, pointing right with the pen down.
We then have the turtle repeatedly turn and draw a line. See Code Listing 1.4.

Code Listing 1.4

Draw a 5−pointed s t a r .
import turtle

turtle.forward(100)
turtle.right(144)
turtle.forward(100)
turtle.right(144)
turtle.forward(100)
turtle.right(144)
turtle.forward(100)
turtle.right(144)
turtle.forward(100)

[Screenshot by Python. Copyright © 2001 – 2010 by Python Software Foundation. All
Rights Reserved. Reprinted with permission.]

74 C H A P T E R 1 • B E G I N N I N G S

As with any problem, the hard part is the thinking that goes into figuring out the
details. In this case, what are the angles that we need on each turn? Notice that the center
of the star is a regular pentagon. A quick Internet check reveals that each internal angle is
108◦. One can view the star as five (isosceles) triangles attached to the pentagon. Because a
side of the pentagon extends into a side of a triangle, supplementary angles are formed so
the base angle of each triangle is 72◦ (supplementary angles: 180◦ − 108◦). The two base
angles of an isosceles triangle are equal and combine to be 144◦, so the third angle must be
36◦ (a triangle has 180◦: 180◦ − 144◦). To make the sharp turn, at each point of the star
we need to make a 144◦ turn (180◦ − 36◦). That is why we have turtle.right(144)
for each point.

Summary
In this chapter, we introduced a simple but complete program followed by a description
of expressions vs. assignments, whitespace and indentation, and finally operators. Most
important, we showed how to use the Python shell to practice programming.

Elements
� Keywords: Table 1.1 on page 47

� Operators: Table 1.2 on page 47

� Names

– begin with a letter; otherwise letters, digits, and underscore
– beginning with an underscore has special meaning left for later

� Namespace
Association between a name and an object

� Expression
Expression is similar to a mathematical expression: it returns a value

� Statement
Statement performs a task (side effect); does not return a value

� Assignment LHS = RHS
Steps

– evaluate expression on RHS; return value
– associate value from RHS with the name on the LHS

� Modules
Code that can be imported

E x e r c i s e s 75

Built-In Types
� int

– integers, of any length
– operations: +, -, *, /, //, %

note: // is quotient; % is remainder (mod)

� float

– floating-point, a.k.a. decimals
– operations: +, -, *, /, //, %

� Others

– Booleans: Chapter 2
– Strings: Chapter 4
– Lists: Chapter 7
– Dictionaries and sets: Chapter 9

Rules
� RULE 1: Think before you program!

� RULE 2: A program is a human-readable essay on problem solving that also happens
to execute on a computer.

� RULE 3: The best way to improve your programming and problem skills is to practice!

� RULE 4: A foolish consistency is the hobgoblin of little minds.

� RULE 5: Test your code, often and thoroughly!

Exercises
1. What is a program?

2. Python is an interpreted language. What does interpreted mean in this context?

3. What is a Python comment? How do you indicate a comment? What purpose does it
serve?

4. What is a namespace in Python?

5. Whitespace:

(a) What is whitespace in Python?
(b) When does whitespace matter?
(c) When does whitespace not matter?

76 C H A P T E R 1 • B E G I N N I N G S

6. Explain the difference between a statement and an expression. Give an example of both,
and explain what is meant by a statement having a side effect.

7. Mixed operations:

(a) What type results when you divide an integer by a float? A float by an integer?
(b) Explain why that resulting type makes sense (as opposed to some other type).

8. Consider integer values of a, b, and c and the expression (a + b) * c. In mathematics,
we can substitute square brackets, [], or curly braces, { }, for parentheses, (). Is that
same substitution valid in Python? Try it.

9. Write a Python program that prompts for a number. Take that number, add 2, multiply
by 3, subtract 6, and divide by 3. You should get the number you started with.

10. A nursery rhyme: As I was going to St. Ives, I met a man with seven wives. Every wife had
seven sacks, and every sack had seven cats, and every cat had seven kittens. Kittens, cats,
sacks, and wives, how many were going to St. Ives? There are interesting aspects to this
puzzle, such as who is actually going to St. Ives. For our purposes, assume that everyone
and everything is headed to St. Ives. Write a program to calculate that total.

11. Assignment:
my int = 5
my int = my int + 3
print(my int)

(a) If you execute the three lines of code, what will be printed? Explain your answer
using the rules of assignment.

(b) Rewrite my int = my int + 3 using the += symbol.

12. Assignment:
my var1 = 7.0
my var2 = 5
print(my var1 % my var2)

If you execute these three lines of code, what will be printed?

13. Try to predict what will be printed by the following:
x = 4
y = 5
print(x//y)

14. Given the expression 30 - 3 ** 2 + 8 // 3 ** 2 * 10,

(a) What is the output of the expression? (You can check your answer in the Python
shell.)

(b) Based on precedence and associativity of the operators in Python, correctly paren-
thesize the expression such that you get the same output as above.

E x e r c i s e s 77

15. (Order of operations) One example expression was 2 + 3 * 5, the value of which was
17. Using the same expression, include parentheses to arrive at a different value for the
expression.

16. Predict the output (check your answer in the Python shell):

(a) 2**2**3
(b) 2**(2**3)
(c) (2**2)**3
Why do two of the expressions have the same output?
Rewrite expression (c) with one exponention operator (**) and one multiplication
operator (*).

17. Prompt for input and then print the input as a string, an integer, and a float-point
value. What values can you input and print without errors being generated?

18. (Illegal expressions) In a Python shell, try some of the illegal expressions mentioned
in the chapter and observe the error messages. For example, try assigning a value to a
keyword, such as and = 4. Each error message begins with the name of the error, and
that name is useful in checking for errors. Generate at least five different error messages.

19. Table 1.2 lists Python operators, some of which may have been unfamiliar to you. Open
up the Python shell and experiment with unfamiliar operators and see how many you
can define.

20. We know from mathematics that parentheses can change the order of operations. For
example, consider a + b * c , (a + b) * c , and a + (b * c). In general, two of those
expressions will be the same and one will be different. Through trial and error, find one
set of integer values for a , b, and c so that all three expressions have the same value and
a != b != c.

21. Consider the expression (a + b) * c , but with string values for a, b, and c. Enter that
into the Python shell. What happens? Why?

22. (Integer operators) One way to determine whether an integer is even is to divide the
number by 2 and check the remainder. Write a three-line program that prompts for a
number, converts the input to an integer, and prints a 0 if the number is even and a 1
if the number is odd.

23. Write a program to calculate the volume of water in liters when 1 centimeter of water
falls on 1 hectare.

24. Using Turtle Graphics, draw a six-pointed star.

25. A day has 86,400 secs (24*60*60). Given a number in the range 1 to 86,400, output
the current time as hours, minutes, and seconds with a 24-hour clock. For example:
70,000 sec is 19 hours, 26 minutes, and 40 seconds.

78 C H A P T E R 1 • B E G I N N I N G S

26. A telephone directory has N lines on each page and each page has exactly C columns.
An entry in any column has a name with the corresponding telephone number. On
which page, column, and line is the X th entry (name and number) present? (Assume
that page, line, column numbers, and X all start from 1.)

27. If the lengths of the two parallel sides of a trapezoid are X meters and Y meters,
respectively, and the height is H meters, what is the area of the trapezoid? Write Python
code to output the area.

28. Simple interest is calculated by the product of the principal, number of years, and
interest, all divided by 100. Write code to calculate the simple interest on a principal
amount of $10,000 for a duration of 5 years with the rate of interest equal to 12.5%.

29. Consider a triangle with sides of length 3, 7, and 9. The law of cosines states that
given three sides of a triangle (a , b, and c) and the angle C between sides a and b:
c 2 = a2 + b2 − 2*a*b*c o s (C). Write Python code to calculate the three angles in the
triangle.

30. Checking the user input for errors is a vital part of programming. The simple program
below attempts to take a string input and convert it into an integer. What will happen
if the user enters "Hello World" at the prompt rather than a number? Can you think
of a way that the program can be altered to handle this input? (Hint: Think about
adjusting how the program handles different types of input.)

Raw1 = input ('Please enter a number:')
Int1 = int (Raw1)

31. The radius and mass of the Earth are r = 6378×103 meters and m1 = 5.9742×1024 kg,
respectively. Mr. Jones has a mass of X kg. Prompt the user to input X and then calculate
the gravitational force (F) and acceleration due to gravity (g) caused by the gravitational
force exerted on him by the Earth. Remember, F = G(m1)(m2)/(r 2) and F = mg .
Let the universal gravitational constant G = 6.67300 × 10−11 (in units of m3kg−1s −2

assuming the MKS [meter-kilogram-second] system). Check that the resulting value of
g is close to 9.8 m/s2.

32. (Using modules) Python comes with hundreds of modules. Here is a challenge for you:
find a module that you can import that will generate today’s date so you can print it.
Use your favorite search engine for help in finding which module you need and how
to use it. In the end, your task is to do the following:

>>> print("Today’s date is:", X)
Today’s date is: 2009-05-22

33. In football, there is a statistic for quarterbacks called the passer rating. To calculate the
passer rating, you need five inputs: pass completions, pass attempts, total passing yards,

P r o g r a m m i n g P r o j e c t s 79

touchdowns, and interceptions. There are five steps in the algorithm. Write a program
that asks for the five inputs and then prints the pass rating:

(a) C is the “completions per attempt” times 100 minus 30, all divided by 20.
(b) Y is the “yards per attempt” minus 3, all divided by 4.
(c) T is the “touchdowns per attempt” times 20.
(d) I is 2.375 minus (“interceptions per attempts” times 35).
(e) The pass rating is the sum of C, Y, T, and I, all divided by 6 and then multiplied

by 100.

34. Body mass index (BMI) is a number calculated from a person’s weight and height.
According to the Centers for Disease Control and Prevention, the BMI is a fairly
reliable indicator of body fatness for most people. BMI does not measure body fat
directly, but research has shown that BMI correlates to direct measures of body fat,
such as underwater weighing and dual-energy X-ray absorptiometry. The formula for
BMI is

we ig ht/he ig ht2

where weight is in kilograms and height is in meters.

(a) Write a program that prompts for metric weight and height and outputs the BMI.
(b) Write a program that prompts for weight in pounds and height in inches, converts

the values to metric, and then calculates the BMI.

Programming Projects
1. The Great Lakes are how big?

The Great Lakes in the United States contain roughly 22% of the world’s fresh surface
water (22,810 km3). It is hard to conceive how much water that is. Write a program to
calculate how deep it would be if all the water in the Great Lakes were spread evenly
across the 48 contiguous U.S. states. You will need to do some Internet research to
determine the area of that region.

2. Where is Voyager 1?
The Voyager 1 spacecraft, launched September 15, 1977, is the farthest-traveling Earth-
made object. It is presently on the outer edges of our solar system. The NASA up-
date page on September 25, 2009, reported it as being a distance of approximately
16,637,000,000 miles from the sun, traveling away from the sun at 38,241 miles/hour.

Write a program that will prompt the user for an integer number that indicates the
number of days after 9/25/09. You will calculate the distance of Voyager from the sun
using the numbers from 9/25/09 (assume that velocity is constant) plus the entered
number of days, and report:
� Distance in miles
� Distance in kilometers (1.609344 kilometers/mile)

80 C H A P T E R 1 • B E G I N N I N G S

� Distance in astronomical units (AU, 92,955,887.6 miles/AU)
� Round-trip time for radio communication in hours. Radio waves travel at the speed

of light, listed at 299,792,458 meters/second.

3. Oil conversions and calculations
Write a program that will prompt the user for a floating-point number that stands
for gallons of gasoline. You will reprint that value along with other information about
gasoline and gasoline usage:
� Number of liters
� Number of barrels of oil required to make this amount of gasoline
� Number of pounds of CO2 produced
� Equivalent energy amount of ethanol gallons
� Price in U.S. dollars
Here are some approximate conversion values:
� 1 barrel of oil produces 19.5 gallons of gasoline.
� 1 gallon of gasoline produces 20 pounds of CO2 gas when burned.
� 1 gallon of gasoline contains 115,000 BTU (British thermal units) of energy.
� 1 gallon of ethanol contains 75,700 BTU of energy.
� 1 gallon of gasoline costs $3.00/gallon.
Look on the Internet for some interesting values for input, such as the average number of
gallons consumed per person per year, consumed by the country per day, or consumed
per year.

4. Population estimation
The U.S. Census provides information on its web page (http://www.census.gov)
about the current U.S. population as well as approximate rates of change.

Three rates of change are provided:
� There is a birth every 7 seconds.
� There is a death every 13 seconds.
� There is a new immigrant every 35 seconds.

These are obviously approximations of birth, death, and immigration rates, but they
can assist in providing population estimates in the near term.

Write a program that takes years as input (as an integer) and prints out an estimated
population (as an integer). Assume that the current population is 307,357,870, and
assume that there are exactly 365 days in a year.

Hint: Note that the rate units are in seconds.

http://www.census.gov

•2C H A P T E R

Control

If you come to a fork in the road, take it.

Yogi Berra

THE ABILITY TO MAKE BILLIONS OF DECISIONS PER SECOND AND MAKE THEM

repeatedly is the source of a computer’s power. In this chapter, we introduce control in
the form of selection (making decisions) and repetition (performing an operation over and
over). These two kinds of control form the basis of all computer programming.

Our plan is to begin this chapter with a quick introduction to selection and repetition
along with a couple of examples so that you can get a feel for the power of control constructs.
The second half of the chapter will cover control in detail.

Up to this point, all we have been able to do is write Python code that is executed
sequentially—that is, one statement after another, as shown in Figure 2.1. We have not yet
shown a way to incorporate either decisions or repetition into our programs. So let’s get
into that now.

2.1 T H E S E L E C T I O N S T A T E M E N T
F O R D E C I S I O N S :IF

The simplest decision presents a choice of doing one of two things: of doing one thing or the
other. In programming, selection is the process of applying a decision to control: the choice
of executing one part of a program or another. Representing the results of such a decision, do
one thing or another, lends itself to a straightforward representation in computer hardware.
That is, a binary decision is either (False) or (True), in hardware either zero (0) or one
(1). It is important to note once you have learned about binary decisions that you have
the ability to create more complex kinds of decisions by simply assembling multiple binary
decisions in the appropriate fashion.

81

82 C H A P T E R 2 • C O N T R O L

Python statement

Python statement

Python statement

Python statement

FIGURE 2.1 Sequential program flow.

Consider executing instructions one after another until a selection is reached. It is like
a fork in the road: you must choose to go one way or the other. Associated with statements
like a selection or repetition is a Boolean expression (an expression that is true or false) or,
more succinctly, a condition. After evaluating the selection’s Boolean expression (True or
False), a Boolean result is returned to be used in selection. If the condition result is True,
we take one fork and execute one set of statements; if it is False, we take the other fork
and execute a different set of statements. Either way, after having finished with the selection,
we continue on with the rest of the program, executing statements again in sequence. This
selection control flow is shown in Figure 2.2.

Decision

True False

if Boolean_expression:

Python statement

Python statement

Python statement

Python statement

Python statement

Python statement

Python statement

Python statement

Python statement

FIGURE 2.2 Decision making flow of control.

2 . 1 • T H E S E L E C T I O N S T A T E M E N T F O R D E C I S I O N S : IF 83

2.1.1 Booleans for Decisions
The choices in the Yogi Berra quote above are binary: go one way or the other. Python
provides a type that represents binary decision values known as a Boolean. A Boolean type
can take on only one of two values: True or False. A Boolean can be used as a condition
as discussed. In a selection statement, if a condition expression evaluates to True, then
selection will evaluate one part of the program; if the expression is False, selection will
execute a different part of the program. Both selection and repetition require a condition
expression that evaluates to True or False as part of their control.

An expression such as “x is greater than 5” is a Boolean expression. The expression
evaluates whether the value associated with x is greater than 5. The result of that evaluation
is a Boolean; it is either True or False, hence it is a Boolean expression. In Python we write
that expression in a familiar way: x > 5. If we want to express “x is greater than or equal
to 5,” we use a pair of characters (>=), x >= 5, because there is no single “greater-than-
or-equal-to” key on our keyboards. Expressing equality in a Boolean expression is a bit of a
challenge. We are used to using the = sign for equality in mathematics, but as you have seen,
the = represents assignment, not equality, in Python. To deal with this problem, Python
uses a pair of equal signs, ==, to represent equality. For example, x == 5 is a measure of
equality: is the value represented by x equal to 5? Based on the previous information, it is
fairly easy to guess the remaining Boolean operators, but Table 2.1 lists them for you.

< less than
> greater than
<= less than or equal to
>= greater than or equal to
== equal to
!= not equal to

TABLE 2.1 Boolean Operators.

2.1.2 The if Statement
The if statement expresses selective execution in Python. It is our first control statement,
and, simple as it is, it is quite powerful. Selective execution is one of the primary control
mechanisms in general programming. It is a critical part of enabling computers to perform
complex tasks.

The Basic if Statement
We begin with a basic if statement. It has a Boolean expression (or condition) that is
evaluated, and the result of that Boolean expression dictates what happens next.

if boolean expression:
if suite

84 C H A P T E R 2 • C O N T R O L

The basic if statement allows you to do the following:

1. Evaluate boolean expression, yielding either True or False.
2. If boolean expression yields True,

(a) Execute the Python suite of code indented under the if, the if suite.
(b) Once the indented code is executed, continue with any Python code after the

indented code (that is, any code following the if at the same indentation as the if
itself).

3. If boolean expression yields False,
(a) Ignore any code indented under the if, (that is, do not execute it).
(b) Continue with any Python code after the indented code (that is, any code following

the if at the same indentation as the if itself).

Indentation and a Suite of Python Code
As mentioned earlier (Section 1.4.3), indentation in Python matters. Indentation is Python’s
method for associating or grouping statements. Indentation gets used in many Python
statements, including the if statement. For if, the indentation indicates that the indented
statements following the if are associated with that if. This group is called a compound
statement, where the if keyword is part of the header and the set of indented statements
is called the suite (see Figure 2.3). A compound statement is considered to be one logical
statement.

A suite of statements is a set of statements that has the same indentation and these state-
ments are executed as a group. Other languages use explicit characters to mark compound
statements, but because indentation makes compound statements easier to read, Python
settles for the indentation alone. Therefore, indentation has a dual purpose: to indicate
compound statements and to make compound statements easier to read. As we will soon
see, one can have compound statements within compound statements, and the indentation
indicates how they relate to each other.

Indentation under
the keyword

key expression :
 statement
 statement
 statement

Optional expression

Ends all
headers

"Suite" of
statements

Keyword

FIGURE 2.3 Control expression.

2 . 1 • T H E S E L E C T I O N S T A T E M E N T F O R D E C I S I O N S : IF 85

P R O G R A M M I N G T I P

Pay attention to indenting in Python, because the indentation indicates the structure of the
code. Be consistent with indentation: four spaces is common. More important, do not mix
tabs and spaces! Use spaces. That is the Python way.

Let’s take a look at a short example. In the if statement that follows, check to see
whether a number is negative, and if so, it changes the number to 0:

>>> my int = -5
>>> if my int < 0:

my int = 0

>>> print(my int)
0
>>>

In this example, the initial value of the variable my int is -5. We begin by evaluat-
ing the Boolean expression my int < 0. The “less-than” operator works on these two
integer values just like in mathematics, comparing the two values and returning a value, a
Boolean. In this case, the Boolean expression evaluates to True. As a result, the if suite
my int = 0 is executed. Note the indentation on the second line of the if statement
(done automatically after typing the colon (:) in IDLE). Once execution finishes with the
compound if statement, the next statement after the if (the print statement, in this
case) is executed, and we see that the value of my int has indeed been changed to 0.

The if-else Statement
A variation on the basic if statement adds the ability to execute one suite of statements
if the decision Boolean is True or to execute a different suite of statements if the Boolean
expression is False. Note that there are two statements and two suites here: the suite
associated with the if and the suite associated with the else. Also note that the if and
else are at the same indentation; the else is not part of the if suite, but together they
create an if-else compound statement.

if boolean expression:
if suite

else:
el se suite

The if-else statement operation is as follows:

1. Evaluate boolean expression to yield True or False.
2. If boolean expression yields True,

86 C H A P T E R 2 • C O N T R O L

(a) Execute the if suite, indented under the if.
(b) Continue with the rest of the Python program.

3. If boolean expression yields False,
(a) Execute the else suite, indented under the else.
(b) Continue with the rest of the Python program.

Let’s see a short example. In this example, if the first int variable is greater than
the second int variable, the program prints “The first int is bigger!”; if not, the program
prints “The second int is bigger!”

>>> first int = 10
>>> second int = 20
>>> if first int > second int:

print("The first int is bigger!")
else:

print("The second int is bigger!")

The second int is bigger!
>>>

In this example, the Boolean expression first int > second int evaluates to
False, so the program skips to the else suite and executes the print("The second
int is bigger!") statement. That output is shown at the bottom of the example.

2.1.3 Example: What Lead Is Safe in Basketball?
With our simple if-else construct, we can solve a very interesting problem. Basketball
is a high-scoring game in which a lead can evaporate quickly. As a spectator, it would be
nice to be able to figure out when a lead is insurmountable near the end of a game. Fans
of the leading team would like to know when they can relax and be comfortable in the
knowledge that victory is almost certain. Sports writer Bill James of the online magazine
www.slate.com has pondered that problem and developed an algorithm for determining
when a lead in basketball is insurmountable.1

James’s algorithm, developed after many years of watching basketball, determines
whether a lead is insurmountable: “safe” in his terminology. Of course, this algorithm
does not guarantee that a lead is safe—anything can happen, but as a sports analyst this is
when he feels a game is safe. Here is his algorithm, exactly as he wrote it:

1. Take the number of points one team is ahead.
2. Subtract 3.
3. Add a half-point if the team that is ahead has the ball, and subtract a half-point if the

other team has the ball. (Numbers less than zero become zero.)

1 Bill James, “The Lead Is Safe,” March 17, 2008, http://www.slate.com/id/2185975/.

http://www.slate.com/id/2185975/
www.slate.com

2 . 1 • T H E S E L E C T I O N S T A T E M E N T F O R D E C I S I O N S : IF 87

4. Square that result.
5. If the result is greater than the number of seconds left in the game, the lead is safe.

It took years of observation to come up with the algorithm, but with the algorithm in
hand, we can easily convert it to a Python program. You will learn that coming up with the
algorithm is the hardest part of programming.

Let’s take these steps one at a time.

1. Take the number of points one team is ahead.
We can ask a user to input the number of points using the input command. We remind
ourselves that input yields a string that we can assign to an appropriate variable name.
We then convert the input to a float so we may do arithmetic on the value. See Code
Listing 2.1.

Code Listing 2.1

1 . Take the number o f po in t s one team i s ahead .
points str = input("Enter the lead in points: ")
points ahead int = int(points str)

Why convert the input string to an int? Basketball scores are integers.

2. Subtract 3.
That’s simple arithmetic—we can do that. Remember that we use an assignment
statement to capture the result of the arithmetic in a variable. See Code Listing 2.2.

We create a new variable, lead calculation float, to store our calculations as we go
along. Why create that variable as float? Why not an int? Looking ahead a bit, we have
to manipulate the variable by adding or subtracting 0.5. That means at some point we have
to do floating point arithmetic. Good to get ready for it now.

Code Listing 2.2

2 . Subtract thr e e .
lead calculation float = float(points ahead int - 3)

3. Add a half-point if the team that is ahead has the ball, and subtract a half-point if the
other team has the ball. (Numbers less than zero become zero.)

Here it gets interesting. Notice the two if s that we highlighted. That English statement
needs to be converted to a Python if-else statement. However, first we need to know
whether the leading team “has the ball” so we have to ask the user using input. In

88 C H A P T E R 2 • C O N T R O L

Code Listing 2.3, note the use of the double-equal sign in the Boolean expression to
check for equality: ==. Further, note that if the user enters “No,” the Boolean expression
result will be False, resulting in the else suite (lead calculation float =
lead calculation float - 0.5) being executed. For the user response, notice
that we are are comparing strings. That is, we are comparing whether two sequences
of characters, the string “Yes” and the user response, are the same (more of that in
Chapter 4).

Code Listing 2.3

3 . Add a half−point i f the team that i s ahead has the bal l ,
and sub t rac t a half−point i f the other team has the ba l l .

has ball str = input("Does the lead team have the ball (Yes or No): ")

if has ball str == "Yes":
lead calculation float = lead calculation float + 0.5

else:
lead calculation float = lead calculation float - 0.5

We overlooked the statement in parentheses: numbers less than zero become zero. If
lead calculation float is less than zero, we assign it a value of zero. The code
follows:

Code Listing 2.4

3 . Add a half−point i f the team that i s ahead has the bal l ,
and sub t rac t a half−point i f the other team has the ba l l .

has ball str = input("Does the lead team have the ball (Yes or No): ")

if has ball str == 'Yes':
lead calculation float = lead calculation float + 0.5

else:
lead calculation float = lead calculation float - 0.5

(Numbers l e s s than zero become zero)
if lead calculation float < 0:

lead calculation float = 0

2 . 1 • T H E S E L E C T I O N S T A T E M E N T F O R D E C I S I O N S : IF 89

4. Square that.
Simple arithmetic—remember the exponentiation operator (**) (Section 1.2.1) and
assignment (Code Listing 2.5):

Code Listing 2.5

4. Square that .
lead calculation float = lead calculation float ** 2

5. If the result is greater than the number of seconds left in the game, the lead is safe.
Here we have anotherif statement, nicely phrased by James. We’ll expand his algorithm
to also inform the user when the lead is not safe. That expansion requires an else clause.
We also need to ask the user to input the number of seconds remaining and convert
the input to an integer. Notice that we used the input as an argument to the int
function. As discussed earlier (Section 1.7.4), we execute code inside the parentheses
first, the input, and then that result is used by int. Combining these two lines of
code may make it more readable (Code Listing 2.6).

Code Listing 2.6

5 . I f the r e s u l t i s g r ea t e r than the number o f s e conds l e f t in the game ,
the lead i s s a f e .
seconds remaining int = int(input("Enter the number of seconds remaining: "))

if lead calculation float > seconds remaining int:
print("Lead is safe.")

else:
print("Lead is not safe.")

Let’s take a look at the whole program (Code Listing 2.7). Notice how we used
comments to include James’s original algorithm. The next time you watch a basketball
game, try it out and see how well James did with his algorithm.

Code Listing 2.7

Bi l l James ' Safe Lead Calculator
From http : / /www. s l a t e . com/ id /2185975 /

http://www.slate.com/id/2185975/

90 C H A P T E R 2 • C O N T R O L

1 . Take the number o f po in t s one team i s ahead .
points str = input("Enter the lead in points: ")
points remaining int = int(points str)

2 . Subtract thr e e .
lead calculation float= float(points remaining int - 3)

3 . Add a half−point i f the team that i s ahead has the bal l ,
and sub t rac t a half−point i f the other team has the ba l l .
has ball str = input("Does the lead team have the ball (Yes or No): ")

if has ball str == 'Yes':
lead calculation float= lead calculation float + 0.5

else:
lead calculation float= lead calculation float - 0.5

(Numbers l e s s than zero become zero)
if lead calculation float< 0:

lead calculation float= 0

4. Square that .
lead calculation float= lead calculation float** 2

5 . I f the r e s u l t i s g r ea t e r than the number o f s e conds l e f t in the game ,
the lead i s s a f e .
seconds remaining int = int(input("Enter the number of seconds remaining: "))

if lead calculation float> seconds remaining int:
print("Lead is safe.")

else:
print("Lead is not safe.")

With a working program in hand, it is useful to look back over it for refinements.
For example, what if the user answers "YES" or "yes" instead of exactly "Yes" to the
question of whether the leading team has the ball? It would be reasonable to accept
all three. How can we do that? It will take some work on your part to manipulate the
strings, something you will see more of in Chapter 4 .

VideoNote 2.1
Simple Control

2.1.4 Repetition
The if statement provided selection as a way to make decisions. Next we consider ways to
repeat statements. The ability to execute instructions—especially decisions—over and over
is the source of considerable power in computing. That is, repeatedly making billions of

2 . 1 • T H E S E L E C T I O N S T A T E M E N T F O R D E C I S I O N S : IF 91

simple (True/False) decisions per second allows the computer to make complex decisions to
complete complex tasks.

Python offers two different styles of repetition: while and for. Here, we introduce
the while loop and the for iterator, to be described in more detail in Section 2.2.

The while statement introduces the concept of repetition. The while statement allows
us to repeat a suite of Python code as long as some condition (Boolean expression) is True.
When the condition becomes False, repetition ends and control moves on to the code
following the repetition. The for statement implements iteration. Iteration is the process of
examining all elements of a collection, one at a time, allowing us to perform some operations
on each element. One characteristic of Python is that it provides powerful iterators, so one
frequently uses for in Python programs.

Finally, programmers often refer to any repeating construct as a “loop,” because a
diagram of the construct looks like a loop.

Basic while
We want to execute a set of instructions repeatedly and, most important, to control the
condition that allows us to keep repeating those instructions. A while statement is struc-
turally similar to an if. It consists of a header (which has the loop condition) and a suite of
statements. We can repeatedly execute the while suite as long as the associated condition
is True. The condition is, as was true with selection, a Boolean expression. We evaluate the
condition and, if the condition is True, we evaluate all of the while suite code. At the
end of that suite, we again evaluate the condition. If it is again True, we execute the entire
suite again. The process repeats until the condition evaluates to False.

The while loop contains a Boolean decision that can be expressed in English as:

“While the Boolean expression is True, keep looping—executing the suite.”

Figure 2.4 is a diagram that shows the control flow of a while loop.
The Python syntax is:

while boolean expression:
while suite

A while loop works as follows:

1. The program enters the while construct and evaluates the Boolean expression
(condition).

2. If the Boolean expression is True, then the associated while suite is executed.
3. At the end of the suite, control flows back to the top of the while, where the Boolean

expression is reevaluated.
4. If the Boolean expression yields True, the loop executes again. If the Boolean yields

False, then the while suite is skipped and the code following the while loop is
executed.

92 C H A P T E R 2 • C O N T R O L

Decision

while Boolean expression

S
ui

te

FalseTrue

Python statement

Python statement

Python statement

Python statement

Python statement

Python statement

FIGURE 2.4 while loop.

Let’s take a look at a simple example that prints out the numbers 0 through 9. See Code
Listing 2.8.

Code Listing 2.8

1 # simple while
2

3 x int = 0 # i n i t i a l i z e loop−c on t ro l var iab l e
4

5 # t e s t loop−c on t ro l var iab l e at beginning o f loop
6 while x int < 10:
7 print(x int, end=' ') # print the value o f x int each time through the

while loop
8 x int = x int + 1 # change loop−c on t ro l var iab l e
9

10 print()
11 print("Final value of x int: ", x int) # bigger than value printed in loop !

2 . 1 • T H E S E L E C T I O N S T A T E M E N T F O R D E C I S I O N S : IF 93

>>>
0 1 2 3 4 5 6 7 8 9
Final value of x int: 10

Let’s take a look at Code Listing 2.8 line by line:

Line 3: Before the loop begins, we initialize the variable x int = 0. We call this our
loop-control variable as its value will determine whether we continue to loop or not.

Line 6: Test the loop-control variable in the Boolean decision expression: while x int <
10:. Because we initialized x int to be zero, this Boolean expression will be True for
x int values of 0–9 but will be False for larger integer values.

Line 7: The print (x int, end=' ') prints the value of the variable. The end=' '
in the print statement indicates that the print ends with an empty string rather than
the default new line. This means that the output from multiple calls to print will
occur on the same output line.

Line 8: In the final instruction of the suite, we change the value associated with the
loop-control variable. In this case, we increase its present value by 1 and reassign it
(re-associate it) with the variable. Over the course of running the while loop, x int
will take on the integer values of 0–10 (but note that 10 is not printed in the loop).

Line 10: After the while suite, the code prints the value of x int. This shows the
conditions under which the while loop ended. The value printed is 10, meaning
that when the loop ended, x int == 10. This made the Boolean expression False,
which is why the while loop ended.

Some things to note about how a while statement works. The condition is evaluated
before the suite is executed. This means that if the condition starts out False, the loop
will never run. Further, if the condition always remained True, the loop will never end.
Imagine that we did not add 1 each time to x int above. The condition would always be
True (x int started with a value of 0, which is less than 10, and never changes through
each loop iteration) and the program loops “forever”.

Iteration: The Basic for Statement
An iterator is an object associated with all the collection types in Python. As we briefly
mentioned (Section 1.6.2), a collection in Python is a single object that contains multiple
elements that are associated with the collection object. For example, a string is such a
collection. It is a single object that has a group of individual characters, each associated with
the string. In fact, a string is a particular kind of collection, called a sequence. A sequence
is a collection where there is an order associated with the elements. A string is a sequence
because the order of the characters is important. A set is a collection that is not a sequence,
as membership, not order, is important for a set. However, for both a string and a set—in
fact, for any Python collection—an iterator allows us to examine each individual element
in that collection, one at a time. Such a collection is called an iterable, a collection that can
be examined by a for loop. For a sequence, the iterable’s access is ordered, so that when we

94 C H A P T E R 2 • C O N T R O L

iterate through a sequence, we iterate through each element in the sequence in order, from
first to last. The for loop uses the collection’s associated iterator to give us programmatic
access to the individual elements of a collection.

The generic pattern of the for loop is shown in Code Listing 2.11. The variable
an element is a variable associated with the for loop that is assigned the value of an
element in the collection. The variable an element is assigned a different element during
each pass of the for loop. Eventually, an elementwill have been assigned to each element
in the collection. The variable collection is a collection that has an associated iterator
that acts as the source of elements. The keyword in precedes the collection. Like the if
and while statement, the for statement has a header and an associated suite.

for element in collection:
for suite

A simple example of a for loop and its output is shown here:

>>> for the char in 'hi mom':
... print(the char)
...
h
i

m
o
m
>>>

Because the collection in this case is a string, the variable the char is assigned, one
at a time, to each character in the string. Since a string is also a sequence (i.e., an ordered
collection) the variable the char is assigned in order from the first character, “h”, to the
last, “m”. We will talk much more about strings in Section 4. As with a while loop,
the entire for suite is evaluated during each pass of the loop. One can therefore perform
operations on each element of a collection in a very straightforward way. In this particular
case, we print only the value of the char each time the for loop iterates. The for loop
completes when the last of the elements has been assigned to the char. The result in this
case will be a printout with six lines, each line printing out one character (including the
blank space at the third position).

In general, a for statement operates as shown in Figure 2.5.

2.1.5 Example: Finding Perfect Numbers
Numbers and number theory are an area of study that dates back to antiquity. Our ancestors
were interested in what numbers were and how they behaved, to the extent that some ancient
philosophers, such as Pythagoras, attributed mystical properties to numbers.

2 . 1 • T H E S E L E C T I O N S T A T E M E N T F O R D E C I S I O N S : IF 95

For element in collection:

DoneNext element

Python statement

Python statement

Python statement

Python statement

Python statement

Python statement

FIGURE 2.5 Operation of a for loop.

One class of integers created by the ancients is the perfect number. It dates back at least
to Euclid and his Elements from around 300 BC. A perfect number is an integer whose sum
of integer divisors (excluding the number itself) add up to the number. Following are the
first four perfect numbers:

6 = 1 + 2 + 3

28 = 1 + 2 + 4 + 7 + 14

496 = 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248

8128 = 1 + 2 + 4 + 8 + 16 + 32 + 64 + 127 + 254 + 508 + 1016 + 2032 + 4064

Numbers whose sum of divisors is larger than the number are called abundant numbers.
Those whose sum is less than the number are called deficient numbers. Perfect numbers have
other interesting properties,2 but for now we are interested only in writing a program that
sorts integers into one of three categories: perfect, abundant, or deficient.

2 See http://en.wikipedia.org/wiki/Perfect number

http://en.wikipedia.org/wiki/Perfect_number

96 C H A P T E R 2 • C O N T R O L

Program to Evaluate Whether a Number Is Perfect
Now that you understand what perfect, deficient, and abundant numbers are, how can you
write a program that takes in a single number and properly classifies it?

A useful strategy is to develop our solution a little at a time. In this case, let’s begin with
an approach that sums up the integer divisors of a number. Furthermore, let’s express our
ideas in English first—not Python code yet.

1. Get the number we are going to evaluate. Let us call it number int.
2. Find all the integer divisors of number int.
3. For each of those integer divisors, add that divisor to a sum of divisors int value.

The sum of divisors int should start at 0 (0 is the additive identity: 0 + x = x).
4. Based on the values associated with sum of divisors int and the number itself

(number int), we need to decide whether the number is perfect (we can classify it as
deficient or abundant later).

Having broken our problem down into simpler pieces, let us attack each one individu-
ally. It’s always good to do the easy ones first, so let’s start with steps 1 and 4.

Step 1, Get a Number: We need an initial number to check. We can use Python function
input as we have before to prompt the user for an integer to evaluate. Remember:
the returned result is a string (a sequence of characters), not an integer, so we have to
convert it. How about:

Code Listing 2.9

number str = input("Please enter a number to check:")
number int = int(number str)

Step 4, Check Perfection: We need to see whether sum of divisors int is equal to
number int. How about:

Code Listing 2.10

if number int == sum of divisors int:
print(number int,"is perfect")

else:
print(number int,"is not perfect")

Finally, we can attack steps 2 and 3.

Step 2, Find the Divisors: What is a divisor? For a number N, a divisor is a number that
divides into N evenly. What does “divide evenly” mean? It means that the remainder is 0.

2 . 1 • T H E S E L E C T I O N S T A T E M E N T F O R D E C I S I O N S : IF 97

That is, for a potential divisor div, we need to determine whether the remainder of
the integer division N/div is 0. Expressed as Python, we need to determine if N %
divisor int == 0. If so, then div is a divisor of N.

Let’s construct a trial piece of code to print the divisors of some number N. We’ll
have our potential divisors start at 1 (why is it bad in this case to start with 0?) and try
each one (up to N). Because we listed the divisors of 28 earlier, we have those values
to check against, so let’s use N = 28:

>>> N int = 28
>>> divisor int = 1
>>> while divisor int < N int:

if N int % divisor int == 0: # found a d iv i s o r
print(divisor int,end=' ')

divisor int = divisor int + 1 # ge t next d i v i s o r candidate

1 2 4 7 14

A Note on Naming
At this point, you might feel a bit irritated with our naming convention that includes the
type at the end of the name. In certain situations, it does become tedious to include the
type information, when the type being used is clear from the context or the type of all
the variables is really the same. Such is the case with this code. All of our numbers will be
integers in this case, so it becomes redundant to add the type information to the end of each
variable name. It would probably suffice to provide a comment at the top of such a program
that indicates that, unless stated otherwise, the type of variables without type information
is an int (or float or whatever is appropriate).

When readability suffers, it is important to do “what’s right” to make the code more
readable. Thus we invoke RULE 4, our “violate the rules” rule, and drop the int at the end
of all the numbers in this example.

Step 3, Sum the Divisors Now that we have a loop that generates divisors, we need to
find the sum of those divisors. We can initialize sum of divisors to zero, and
then every time we find a new divisor (we printed divisors earlier), we can add it to
sum of divisors. Here is our code:

Code Listing 2.11

divisor = 1
sum of divisors = 0
while divisor < number:

if number % divisor == 0: # d iv i s o r evenly d iv ide s theNum
sum of divisors = sum of divisors + divisor

divisor = divisor + 1

98 C H A P T E R 2 • C O N T R O L

Note a few things about this piece of code:

� We initialize divisor = 1 and sum of divisors = 0 before the loop
begins.

� The decision condition of the loop is the Boolean expression: divisor < number.
� We increment divisor each time through the loop, making the condition False at

some point and ending the loop.

Putting It All Together
We have all the pieces now; we just need to put it all together. There are still issues in doing
the assembly, we can still get it wrong, but we have solved some of the subproblems. We
just need to assemble them in a reasonable way. Remember what the parts were:

1. Prompt for the number to check.
2. Find all the divisors of that number, from 1 up to but not including the number.
3. Sum all those divisors.
4. Classify the number based on that sum.

Code Listing 2.12 assembles all the pieces together.

Code Listing 2.12

p e r f e c t number checker
un l e s s o therwi s e s ta t ed , va r iab l e s are assumed to be o f t ype int . Rule 4

ge t a number to check
number str = input("Please enter a number to check:")
number = int(number str)

find and sum up the d i v i s o r s
divisor = 1
sum of divisors = 0
while divisor < number:

if number % divisor == 0:
sum of divisors = sum of divisors + divisor

divisor = divisor + 1

c l a s s i f y the r e s u l t
if number == sum of divisors:

print(number,"is perfect")
else:

print(number,"is not perfect")

2 . 1 • T H E S E L E C T I O N S T A T E M E N T F O R D E C I S I O N S : IF 99

If we run that code, we get the following results:

>>>
Please enter a number to check:100
100 is not perfect
>>> ================================ RESTART ================================
>>>
Please enter a number to check:128
128 is not perfect
>>> ================================ RESTART ================================
>>>
Please enter a number to check:496
496 is perfect

2.1.6 Example: Classifying Numbers
We can now take a particular number and classify it as to whether it is perfect or not.
However, it would be more satisfying if we could check a whole range of numbers and
decide what each number is: abundant, deficient, or perfect. Then we could look for more
perfect numbers!

The Process of Changing a Program
As we have said before, a program is an object to be read and understood as well as an object
that performs some function. This is especially true when we want to extend a program—
add functionality that was not there previously. Our last version does much of what we
want, but not all. If we were to describe what we would like to do now, it would be:

1. Check each number in a range of numbers as to their classification: abundant, deficient,
or perfect. Previously, we checked only one number.

2. For each number, determine the sum of its divisors. This task is largely complete.
3. Classify the number based on the sum of the divisors. We only checked for perfect

numbers in the previous version.

Therefore, we do have to change the first part and the last part of the previous program,
but the main part, the summation of divisors, remains roughly the same. Because we wrote
the program in a readable, understandable way, it is much easier to see what was done and
what must be changed to extend the program.

Looking at a Range of Numbers
How can we check a whole range of numbers? A loop is a likely candidate. Instead of
prompting for each number individually, it would be helpful to the user if they were only
required to enter the final number in a range of numbers. Our assumption would be that
we would check all the numbers from 2 up to that final number. Thus, we will ask the user
to enter the highest number in a range of integers, and our program will then check every

100 C H A P T E R 2 • C O N T R O L

number up to that number for its classification. We start with the number 2, because by
definition, the number 1 cannot be perfect. Code Listing 2.13 reflects this.

Code Listing 2.13

c l a s s i f y a range o f numbers with r e s p e c t to p e r f e c t , adundant or d e f i c i e n t
un l e s s o therwi s e s ta t ed , va r iab l e s are assumed to be o f t ype int . Rule 4

top num str = input("What is the upper number for the range:")
top num = int(top num str)
number=2
while number <= top num:

sum the d i v i s o r s o f number
c l a s s i f y the number based on i t s d i v i s o r sum
number += 1

Notice that we use the increment shortcut to add 1 to number. Remember that
statement is equivalent to number = number + 1.

We prompt for the upper range number, convert it to an int, then count from 2 to
that number. For each number in the range, we must get the sum of divisors for the number
and classify that number. Note that those last two parts are left unspecified in the code
provided, but we used comments as markers—places where we must provide the code to
do the job the comments indicate. We often call such a piece of incomplete code a skeleton
of a program. We indicate what must be done, but not necessarily at the level of Python
code. We add “meat” to the skeleton, the details of the code, as we go along, but we clearly
indicate what must be added. Thus, the organization of our solution is clear, even though
it will not run as a program—at least not yet!

Summing Divisors
Good news here. We can just take the entire section of code for divisor summing derived
previously and stick it in at the comment of our skeleton code. Code Listing 2.14 shows
the next version.

Code Listing 2.14

c l a s s i f y a range o f numbers with r e s p e c t to p e r f e c t , adundant or d e f i c i e n t
un l e s s o therwi s e s ta t ed , va r iab l e s are assumed to be o f t ype int . Rule 4

top num str = input("What is the upper number for the range:")
top num = int(top num str)
number = 2

2 . 1 • T H E S E L E C T I O N S T A T E M E N T F O R D E C I S I O N S : IF 101

while number < top num:
sum up the d i v i s o r s
divisor = 1
sum of divisors = 0
while divisor < number:

if number % divisor == 0:
sum of divisors = sum of divisors + divisor

divisor = divisor + 1
c l a s s i f y the number based on i t s d i v i s o r sum
number += 1

We must be careful with the indentation. The entire section of code that does the
divisor summing is now within a while suite, as indicated by the indentation.

Classify the Numbers
We have three categories to check. If sum of divisors is greater than number, number
is abundant. If sum of divisors is less than number, number is deficient. Otherwise,
it must be perfect. We can extend the previous code to account for the three conditions,
as shown in Code Listing 2.15. Note that the last thing the loop does is increase the value
associated with number by 1. Failure to do so will mean we have an infinite loop—a loop
that will end only when we manually stop it.

Code Listing 2.15

c l a s s i f y a range o f numbers with r e s p e c t to p e r f e c t , adundant or d e f i c i e n t
un l e s s o therwi s e s ta t ed , va r iab l e s are assumed to be o f t ype int . Rule 4

top num str = input("What is the upper number for the range:")
top num = int(top num str)
number=2
while number <= top num:

sum up the d i v i s o r s
divisor = 1
sum of divisors = 0
while divisor < number:

if number % divisor == 0:
sum of divisors = sum of divisors + divisor

divisor = divisor + 1

102 C H A P T E R 2 • C O N T R O L

c l a s s i f y the number based on i t s d i v i s o r sum
if number == sum of divisors:

print(number,"is perfect")
if number < sum of divisors:

print(number,"is abundant")
if number > sum of divisors:

print(number,"is deficient")
number += 1

The following is a session that shows the operation of the final program.

>>>
What is the upper number for the range:29
2 is deficient
3 is deficient
4 is deficient
5 is deficient
6 is perfect
7 is deficient
8 is deficient
9 is deficient
10 is deficient
11 is deficient
12 is abundant
13 is deficient
14 is deficient
15 is deficient
16 is deficient
17 is deficient
18 is abundant
19 is deficient
20 is abundant
21 is deficient
22 is deficient
23 is deficient
24 is abundant
25 is deficient
26 is deficient
27 is deficient
28 is perfect
29 is deficient

2 . 2 • I N - D E P T H C O N T R O L 103

Check Yourself: Basic Control Check

1. What output occurs for the following program on the given input?

user_str = input("Enter a positive integer:") # Line 1
my_int = int(user_str)
count = 0

while my_int > 0:
if my_int % 2 == 1:

my_int = my_int//2
else:

my_int = my_int - 1
count = count + 1 # Line 2

print(count) # Line 3
print(my_int) # Line 4

(a) Given user input of 11, what value is output by Line 3 of the program?
(b) Given user input of 12, what value is output by Line 4 of the program
(c) What type is referenced by (associated with) user val in Line 1 of the

program?
(d) What is the purpose of the = (equal sign) on Line 2 of the program?
(e) What is the purpose of the : (colon) at the end of the while statement?

2.2 I N - D E P T H C O N T R O L
As mentioned earlier, the intelligence that computers appear to have comes from their ability
to make billions of tiny decisions every second. Each of those decisions is based on a choice
between the truth or falsity of expressions. In this section, we begin with a closer look into
the variables that can hold the logical values of True and False. Then we examine how
to use them for control.

To consider truth and falsity we begin with a nineteenth-century school teacher: George
Boole.

2.2.1 True and False: Booleans
George Boole was a mid-nineteenth-century school teacher who wrote a few articles that
established an important branch of mathematics upon which the logic of computers is
based. The title of one of his articles tells of his topic’s importance: “An Investigation of
the Laws of Thought, on Which Are Founded the Mathematical Theories of Logic and

104 C H A P T E R 2 • C O N T R O L

Probabilities.”3 The importance of his work was not realized until a century later (1940)
when Claude Shannon learned of Boole’s work in a philosophy class and demonstrated that
electrical circuits could perform Boolean algebra to do arithmetic. Shannon’s master’s thesis4

is considered a seminal work for computing.

2.2.2 Boolean Variables
Python and most other computing languages explicitly represent the values of True and
False and call that type a Boolean. In Python, the values of True and False are capitalized
and the type is bool.

The type Boolean has a value of True or False (note capitalization).

Because computer hardware can store only 1s and 0s, the Boolean value True is stored
as 1 and False as 0. More generally, an object with value 0 is considered to be the equivalent
of a FalseBoolean value and any nonzero value is considered to be the equivalent of a True
Boolean value. In addition, any empty object, such as an empty string (' '), is considered to
be False.

P R O G R A M M I N G T I P

An empty object (0 for int, 0.0 for float, ” for string) is considered to be False; all
non-empty objects are considered to be True.

2.2.3 Relational Operators
As you saw earlier, Boolean expressions are composed of relational operators that yield results
that are evaluated as True or False. The relational operators are well known: less than,
equal to, etc. Remember the unusual “equal to” sign: it has a pair of equal signs so that it
can be differentiated from an assignment operator.

These operators are common across many currently popular programming languages.
Remember Table 2.1, which lists the relational operators.

We will next explain these in detail with some examples.

>>> 3 > 2
True
>>> 5+3 < 3-2 # e x p r e s s i o n s evaluated f i r s t then comparison
False
>>> 5 == 6 # equa l i t y t e s t
False
>>> '1' < 2 # weird mixture o f s t r i n g and int : i l l e g a l !

3 Boole, George. An Investigation of the Laws of Thought, on Which are Founded the Mathematical Theories of Logic and Probabilities.
London: Walton and Maberly, and Cambridge: Macmillan, and Co, 1854.

4 C. E. Shannon, “A Symbolic Analysis of Relay and Switching Circuits,” Massachusetts Institute of Technology, Department of Electrical
Engineering, 1940

2 . 2 • I N - D E P T H C O N T R O L 105

Traceback (most recent call last):
File "<pyshell#0>", line 1, in <module>
'1'<2

TypeError: unorderable types: str() < int()

P R O G R A M M I N G T I P

What happens when you forget to use “==” and use “=” instead? For example, what
happens when you try to compare two numbers and accidentally use the “=” sign
print('0 equals 0.0 is:', 0 = 0.0) Python generates an error. Do you remem-
ber why? The “=” is the assignment statement and it has a side effect (assign the right-hand-
side to the left-hand-side), but it doesn’t return a value. Python helps you avoid such an error.

Explanation:

� 3 > 2: is 3 greater than 2? True
� 5 + 3 < 3 - 2

- Boolean operators have low precedence. That is, other operations are completed first
before the Boolean operators are applied.

- Here, we complete the addition and subtraction before we apply the Boolean rela-
tion '<'
5 + 3 < 3 - 2
8 < 1
False

� '1' < 2 # Il legal !
- Error
- Comparison between numeric and non-numeric types, a string and an int in this

case, is illegal in Python. It isn’t clear what the comparison criteria should be across
types, so rather than guess, Python simply throws an error.

- Be careful to compare the appropriate type of values. Did you mean to convert the
string to a number?
int('1') < 2
True

- Did you mean to convert the number to a string?
'1' < str(2)
True

What Does It Mean to Be Equal?
Equality presents a special problem on a computer, especially in Python. There are really
two different kinds of equality:

� Two different names are associated with objects that have the same value.
� Two different names are associated with the same object (i.e., objects with the same ID).

106 C H A P T E R 2 • C O N T R O L

a_float

b_float

2.5

2.5

Namespace Objects

c_float

a_float = 2.5
b_float = 2.5
c_float = b_float

id() = 9933140

id() = 9933092

FIGURE 2.6 What is equality?

Do you remember our diagram on namespace in Section 1.5? Figure 1.1 showed the
relationship between names and their associated objects. Consider the three lines of code
and the namespace of Figure 2.6.

Both names b float and c float have been associated with the same object
(because of the c float = b float assignment) so they also are both equal in value.
The a float name is associated with a different object whose value happens to be the
same as the other two objects. Python provides a way to check each kind of equality:

== to check whether two names refer to objects that have the same value
is to check whether two names refer to the same object (have the same ID)

Here is the example of Figure 2.6 in the Python shell:

>>> a float = 2.5 # a f loat and b f loat are a s s o c i a t e d with d i f f e r e n t o b j e c t s
>>> b float = 2.5
>>> c float = b float # c f l oa t and b f loat are a s s o c i a t ed with the same ob j e c t
>>> a float == b float # value s are the same
True
>>> c float == b float

2 . 2 • I N - D E P T H C O N T R O L 107

True
>>> a float is b float # o b j e c t s are d i f f e r e n t
False
>>> c float is b float # o b j e c t s are the same (so va lue s are , too)
True
>>> id(a float) # look at id to understand " i s "
9933140
>>> id(b float)
9933092
>>> id(c float)
9933092

When you assign the same object to different variables using separate assignments, you
create separate objects that happen to have the same value. Therefore, the equality check
(==) returns True, but the sharing check (is) returns False.5 However, when you assign
two variables to the same object, then both == and is return True.

While we are on the subject of equality, let’s discuss equality of floating-point values.
Remember that floating points are approximations of real numbers because of the problem of
representing infinitely divisible real values in a finite number of bits in computer memory. If
one executes a series of computations, especially with floating-point values, some round-off
error is likely to occur. For example, in mathematics, the associative property of addition says
that(u + v) + w is the same as u + (v + w). However, with a computer, rounding-off
may give you a different result. Using the two previous expressions and the values u =
11111113, v = -11111111, and w = 7.51111111, one would expect both to yield
the same value. It’s close, but not exactly the same:

>>> u = 11111113
>>> v = -11111111
>>> w = 7.51111111
>>> (u + v) + w
9.51111111
>>> u + (v + w)
9.511111110448837
>>> (u + v) + w == u + (v + w)
False

How can we handle the rounding-off of floating-point calculations? You can check to
see if the difference is very small—you decide what “small” is. For example, let’s take the
previous example one step further.

>>> u = 11111113
>>> v = -11111111
>>> w = 7.51111111

5 For efficiency, small integers work in an implementation-dependent way. That is, they work differently on different systems. There is
little value in applying “is” to system-defined objects such as integers.

108 C H A P T E R 2 • C O N T R O L

>>> x = (u + v) + w
>>> y = u + (v + w)
>>> x == y
False
>>> abs(x - y) < 0.0000001 # abs i s ab so lu t e value
True

In the case of x == y, we are checking to see if x and y have identical values. In the
case of abs(x - y) < 0.0000001, we are checking to see if x and y are “close enough.”
We use absolute value (abs) because if the difference x - y happens to be negative (as it
is in this case), the expression will always be True even if the values are not close. When
comparing for floating-point equality, the latter is the correct way to do it. The former will
often result in incorrect results with floating-point values.

P R O G R A M M I N G T I P

Instead of performing a strict equality test of two floating-point numbers

if x == y :

test whether they are close. Furthermore, use the absolute value of the difference (using
abs) to get signs correct. That is, for some small delta of your choice, such as delta =
0.0000001,

if abs(x - y) < delta:

Chained Relational Operators
Chained relational expressions work just like they do in mathematics (which is not true for
many programming languages):

>>> a int = 5
>>> 0 <= a int <= 5
True
>>> 0 <= a int <= 2
False

The two expressions represent the questions:

� is a int greater than or equal to 0 and less than or equal to 5
� is a int greater than or equal to 0 and less than or equal to 2.

The first expression yields True, the second False. One should be careful with such
chaining, however, as some odd results can occur (see Section 2.2.4).

2 . 2 • I N - D E P T H C O N T R O L 109

2.2.4 Boolean Operators
The basic Boolean operators are and, or, not.6 Many students learn the Boolean operators
as part of a high school geometry course, but they are worth reviewing in the context of
Python. A common way to describe Boolean operators is to list all the possible operands
and results in a table. Traditionally, p and q are the names of the operands that represent a
Boolean expression.

� not p
- The not operator flips the value of the Boolean operand. That is, it converts True

to False and False to True.

p not p
True False
False True

� p and q
- The and operator requires both p and q to be True for the whole expression to be
True. Otherwise, the value of the expression is False. Observe that the four rows in
the p and q columns represent all the possible combination values that the Booleans p
and q can have. You should take a moment and convince yourself of that observation.

p q p and q
True True True
True False False
False True False
False False False

� p or q
- The or operator only requires one of p or q to be True for the whole expression to

be True. Therefore, the expression is False only when neither p nor q is True.

p q p or q
True True True
True False True
False True True
False False False

With Boolean operators in hand, we can revisit the chained expression mentioned
previously:

a int = 5
0 <= a int <= 5

6 There are other operators, such as exclusive or, which is also known as XOR. Students who go on to build circuits as electrical
and computer engineers will study them.

110 C H A P T E R 2 • C O N T R O L

The chained expression is converted to an equivalent Boolean expression for evaluation.
First the expression is converted into two relations (<=), which are and ’ed together. That is,
the expression 0 <= a int <= 5 means that you are evaluating the Boolean expression
0 <= a int and a int <= 5. You can then evaluate each relational expression and
combine the results referring to the and table. In the table, you can see that if p == True
and q == True, then the value of the whole expression is True.

(0 <= a int) and (a int <= 5)
(0 <= 5) and (5 <= 5)

True and True
True

We can evaluate other Boolean expressions similarly:

� Given X = 3, evaluate

(X > 2) or (X > 5)
(3>2) or (3>5)
True or False

True

� Order of operations: and before or

True and False or True and False
(True and False) or (True and False)

False or False
False

However, you should be careful. Some chained expressions that “look good” do not
provide the result you expect. Consider the following expression: 4 < 5 == True.

What result is returned? Upon first glance, it would seem the True would be returned,
but in fact False is returned. Why is that?

Remember that a chained expression is really the equivalent of two expressions that are
and’ed together. What is the equivalent and expression?

It is: (4 < 5) and (5 == True). While the first expression is True, the second is
False since 5 is not equal to True. Hence the whole expression is False. Be careful that
you know what a chained expression really means!

2.2.5 Precedence
In Chapter 1 you learned the that precedence of arithmetic Python operators was the same
as in arithmetic. In this chapter, we have introduced a number of new operators. Where
do they fit in precedence with respect to the arithmetic operators? Table 2.2 shows the
combined precedence. The full table of all Python operator precedence is in Appendix E.

2 . 2 • I N - D E P T H C O N T R O L 111

Operator Description
() Parenthesis (grouping)
** Exponentiation

+x, -x Positive, Negative
*,/,% Multiplication, Division, Remainder
+,- Addition, Subtraction

<, <=, >, >=,! =, == Comparisons
not x Boolean NOT
and Boolean AND
or Boolean OR

TABLE 2.2 Precedence of Relational and Arithmetic Operators: Highest to Lowest

2.2.6 Boolean Operators Example
Although the description of the Boolean operators might seem complicated, most of us use
these operators nearly every day. Where? Why, search engines, of course!

The interaction most users have with search engines is to provide a list of keywords.
The search engine uses those keywords to find online documents that contain those words.
However, we all know that finding the right combination of words that leads to a helpful
search result can be quite difficult. To aid in writing a better search query, most engines
provide an interface that uses Boolean operators to improve the search results. Google’s
advanced search interface is shown in Figure 2.7.

FIGURE 2.7 The Google advanced search page. [Screenshots by Google. Copyright © 2011 by
Google, Inc. Reprinted with Permission.]

112 C H A P T E R 2 • C O N T R O L

The “all these words” text field is really an and of all the words: all the words listed must
be in any document for this search. The “one or more of these words” text field is clearly an
or of the words: one or more of the words should occur. Finally, the “any of these unwanted
words” text field is a not condition: those words should not occur any document of this
search. In this way, we see the three Boolean operators (and, or, not) incorporated into
the Google advanced search.

The standard Google search assumes an and of all the words listed. However, you
can construct Boolean expressions in the Google search field. As mentioned, the default
situation for a list of words is and, to indicate or the phrase OR in all caps is required, and
not is indicated by the minus (-) sign.

Let’s do a little egosearch on Google (see Figure 2.8). The search expression for one of
the authors is:

“Punch Bill OR William”
which translates to a normal Boolean expression as:
'Punch' and ('Bill' or 'William')

This expression generates some undesired search results, in particular some nasty pages
about punching a certain Microsoft executive. We clean it up by changing the search
expression to:

FIGURE 2.8 The Google advanced search page after our egosearch. [Screenshots by Google.
Copyright © 2011 by Google, Inc. Reprinted with Permission.]

2 . 2 • I N - D E P T H C O N T R O L 113

“Punch Bill OR William -gates”
which translates to a normal Boolean expression as:
'Punch' and ('Bill' or 'William') and not 'gates'

If we do the search and then go to the advanced search page after the search is completed,
we see that the text fields were filled in as we described.

Check Yourself: Loop Control Check

1. What output occurs for the following program on the given input?

int_str = input("Please give me an integer:")
first_int = int(int_str)
int_str = input("Please give me a second integer:")
second_int = int(int_str)
tens_count = 0
loop_count = 0

while first_int > 10 and second_int < 20:
if first_int == 10 or second_int == 10:

tens_count += 1
first_int -= 5
second_int += 5
loop_count += 1

print(tens_count) # Line 1
print(loop_count) # Line 2
print(first_int) # Line 3
print(second_int) # Line 4

(a) Given user input of 20 followed by an input of 10, what value is output by:
i. Line 1 of the program?

ii. Line 2 of the program?
iii. Line 3 of the program?
iv. Line 4 of the program?

(b) Given user input of 20 followed by an input of 20, what value is output by:
i. Line 1 of the program?

ii. Line 2 of the program?
iii. Line 3 of the program?
iv. Line 4 of the program?

(c) What input will cause both first int and second int to be equal to 10
at the end of the program?

114 C H A P T E R 2 • C O N T R O L

2.2.7 Another Word on Assignments
Remember how assignment works:

LHS = RHS

Step 1: Evaluate the RHS (Right Hand Side) to get a value.
Step 2: Associate that value with the variable named on the LHS (Left Hand Side).

Multiple Assignment
In Python, we can do multiple assignments on the same line by separating corresponding
LHS and RHS by commas. That is,

a int, b int, c int = 15, 10, 17

is equivalent to

a int = 15
b int = 10
c int = 17

The multiple assignments work in a natural way. The first name on the LHS gets the
first value on the RHS, the second name on the LHS gets the second value on the RHS,
and so on.

P R O G R A M M I N G T I P

When doing multiple assignments, make sure that the number of variables on the LHS is
the same as the number of values being returned by the RHS. If there is a mismatch, you
will get errors like the following:

>>> a int, b int = 1,2 # exa c t l y two o b j e c t s on each s i d e o f "="
>>> print(a int, b int)
1 2
>>> a int, b int = 1, 2, 3 # d i f f e r e n t number o f va r iab l e s : Error

Traceback (most recent call last):
File "<pyshell#10>", line 1, in <module>
a int, b int = 1, 2, 3

ValueError: too many values to unpack

>>> a int, b int, c int = 1, 2 # d i f f e r e n t number o f o b j e c t s : Error

Traceback (most recent call last):
File "<pyshell#11>", line 1, in <module>
a int, b int, c int = 1, 2

ValueError: need more than 2 values to unpack

2 . 2 • I N - D E P T H C O N T R O L 115

Swap
Swapping the values of two variables can be confusing when done on a computer. For
example, suppose that a int = 2 and b int = 3 and that we would like to swap values
so a int = 3 and b int = 2. Consider the naı̈ve way of doing it:

>>> a int = 2
>>> b int = 3
>>> a int = b int
>>> b int = a int
>>> a int
3
>>> b int
3
>>> a int is b int
True

What happened? The problem came with the statementa int = b int. The last line
illustrates the problem: that assignment associated the names a int and b int with the
same object. A key point is that when the assignment was done, the original value of a int
was lost. Therefore, we need to keep a int’s original value somewhere, if we are to swap
correctly. We do this by introducing a third variable temp int to temporarily store a int’s
initial value, which can later be assigned to b int. Here is it again, but with temp int:

>>> a int = 2
>>> b int = 3
>>> temp int = a int # remember the o r i g ina l a int
>>> a int = b int
>>> b int = temp int
>>> a int
3
>>> b int
2

Python’s multiple assignment lets us perform a swap in one line:

>>> a int = 2
>>> b int = 3
>>> a int, b int = b int, a int
>>> a int
3
>>> b int
2

How is this done in one line in Python? Consider the way we described the assignment
process, as having two steps: get the value(s) of the RHS and then assign the value(s) to
the LHS. The “get the value(s)” on the RHS stores those values in temporary memory

116 C H A P T E R 2 • C O N T R O L

locations. This means that implicitly we are using the equivalent of a temp int—actually
two temp int’s in the case of the swap—one temporary storage for each of the two values
on the RHS of swap.

2.2.8 The Selection Statement for Decisions
We showed if and if-else statements as ways to make decisions in Section 2.1.2. Let’s
review what we said there. The simplest decision presents a choice of doing one thing or
another—of executing one suite or another. Such a simple choice fits nicely with computer
hardware, as mentioned, because the choice itself can be represented as a zero (False)
or not-zero (True). We saw this behavior implemented as the if-else statement. More
complex decisions can be built from combinations of simple ones.

2.2.9 More on Python Decision Statements
The if statement expresses selective execution in Python, but it comes in a number of
variations. We examine these in this section.

You have seen the basic if and if-else statements in Section 2.1. Let’s briefly restate
them and then move on to the variations. First the basic if:

if boolean expression:
suite executed when True

The if-else statement has two compound statements with two headers, the if and
the else. Each also has a suite for its associated binary decision: one suite under the if for
when the decision results in True and one under an else for when the decision results in
False:

if boolean expression:
suite executed when True

else:
suite executed when False

Pay particular attention to the indentation: the else and the if part of the expression
are at the same indentation (they are part of the same overall statement). The if has an
associated Boolean expression; the else does not. Take a moment and convince yourself
why else alone does not need its own Boolean expression.

The if-elif-else Statement
A third kind of header available to us is the elif header. The elif is simply shorthand
for “else if ”—a shorthand that also exists in some other languages. The elif header has an
associated condition, just like an if statement. It too has an associated suite. Again, note
the indentation: the keywords (if, elif, else) are indented the same amount as they

2 . 2 • I N - D E P T H C O N T R O L 117

are part of the overall if statement. Further, each of the if, elif, and else statements
can have an associated suite.

The basic idea of a set of if-elif-else statement is to find the first True condition
in the set of if and elif headers and execute that associated suite. If no such True
condition is found, the else is executed. The important point is that only one suite will be
executed.

if boolean expression1:
suite1

elif boolean expression2:
suite2

elif boolean expression3:
suite3

as many el i f s tatements as you like
else:

suite last

The if-elif-else statement operation is as follows

1. Evaluate boolean expression1 to yield True or False.
2. If boolean expression1 yields True,

(a) Execute suite1.
(b) Continue with the next statement after suite last.

3. If boolean expression1 yields False, then evaluate boolean expression2.
If boolean expression2 yields True,
(a) Execute suite2.
(b) Continue with the next statement after suite last.

4. If all preceding boolean expressions yield False, evaluate boolean
expression3.
If boolean expression3 yields True,
(a) Execute suite3.
(b) Continue with the next statement after suite last.

5. If all preceding boolean expressions yield False,
(a) Execute the else part and suite last.
(b) Continue with the next statement after suite last.

For each elif statement the associated suite will be executed if all preceding
boolean expressions are False and its boolean expression is True. If all if
and elif conditions are False, then the else clause is executed.

Mixing and Matching elif and else
In a selection statement, only the if header is required. Both elif and else are optional.
Which to include is up to the programmer. It is worth examining the flow of control in a
little more detail, however, using the following program and session.

118 C H A P T E R 2 • C O N T R O L

Code Listing 2.16

determine a l e t t e r grade from a percentage input
by the user

percent float = float(input("What is your percentage? "))

if 90 <= percent float < 100:
print("you received an A")

elif 80 <= percent float < 90:
print("you received a B")

elif 70 <= percent float < 80:
print("you received a C")

elif 60 <= percent float < 70:
print("you received a D")

else:
print("oops, not good")

>>>
What is your percentage? 95
you received an A
>>> ================================ RESTART ================================
>>>
What is your percentage? 55
oops, not good
>>>

When the code is evaluated with percent float set to 95, the if condition is
evaluated, returning True. Note that none of the other conditions are evaluated. When the
code is evaluated with percent float set to 55, all of the if and elif conditions are
evaluated, returning False, thus requiring the else suite to be executed.

Examine now the situation shown in the next program.

Code Listing 2.17

1 # determine a l e t t e r grade from a percentage input
2 # by the user . No e l i f v e r s i on !
3

4 percent float = float(input("What is your percentage? "))
5

6 if 90 <= percent float < 100:
7 print("you received an A")
8 if 80 <= percent float < 90:

2 . 2 • I N - D E P T H C O N T R O L 119

9 print("you received a B")
10 if 70 <= percent float < 80:
11 print("you received a C")
12 if 60 <= percent float < 70:
13 print("you received a D")
14 else:
15 print("oops, not good")

>>>
What is your percentage? 95
you received an A
oops, not good
>>> ================================ RESTART ================================
>>>
What is your percentage? 55
oops, not good
>>>

Note that all the elif headers are replaced with if headers. The suites are unchanged.
There are two control flow differences in this code. Again, consider the example of having
percent float set to 95. First, how many conditions are evaluated now? The answer is
all 5 conditions are evaluated, even though the first one returned True. This is because, in the
first program, there was only one if statement. In the second program, there are five. The
combination of if, elif, and else constitutes one logical statement in the first program.

Second, with what statement is the final else associated? An else is associated with
the most recent if statement at the same indentation level, in this case line 12. Each if can
have one else and each else must have an associated if. It is for this reason that we get
the “oops” output for the input of 95. Make sure you can follow the flow of control for this
example.

You are free to mix and match, but make sure you understand how that combination
works.

Updating Our Perfect Number Example
If we write our code so that we can read and understand what we have written, we are better
able to update that code to take advantage of new constructs, more efficient approaches,
improved algorithms, and so on. The process of taking existing code and modifying it such
that its structure is somehow improved but the functionality of the code remains the same
is called refactoring. Let’s take a look at our perfect number example from Section 2.1.5 and
see if we can improve it by refactoring.

The area of interest is the classification part of the code. Let’s take a look at that part.

120 C H A P T E R 2 • C O N T R O L

Code Listing 2.18

c l a s s i f y the number based on i t s d i v i s o r sum
if number == sum of divisors:

print(number,"is perfect")
if number < sum of divisors:

print(number,"is abundant")
if number > sum of divisors:

print(number,"is deficient")
number += 1

In this part of the solution, we observe that we checked for conditions that we know are
not going to be True. For example, if the number is indeed perfect, it cannot be abundant
or deficient, but we checked those conditions anyway. A better approach would be to rewrite
this code so that as soon as a condition is found to be True, the associated suite is run and
the statement ends. Using an if-elif-else statement seems like a good choice. We can
rewrite this part of the code, without changing its functionality for the rest of the solution,
as shown in Code Listing 2.19.

Code Listing 2.19

c l a s s i f y the number based on i t s d i v i s o r sum
if number == sum of divisors:

print(number,"is perfect")
elif number < sum of divisors:

print(number,"is abundant")
else:

print(number,"is deficient")
number += 1

Notice that the final Boolean expression number > sum of divisors is no longer
needed, because if a number is neither perfect nor abundant it must be deficient.

There are two more things to note here. First, because the solution was written in a
readable, logical way, it was relatively easy to modify. Second, the modification we made
does not affect the answers provided by the solution, but it does make better sense, and is
less wasteful, to use a more appropriate construct.

2.2.10 Repetition: The while Statement
Earlier we introduced the for iteration statement and the while repetition statement. The
for statement makes use of iterators to move through a collection, one element at a time,

2 . 2 • I N - D E P T H C O N T R O L 121

allowing us to perform an operation on each element using the suite of the for statement.
The while executes its suite of statements as long as its Boolean expression is True. It
is important to keep the function of these two statements clear. The while statement
is the most general statement for repetition, and any repetition can be code in a while
statement. However, when working with collections, which is very common in Python, the
for statement is very convenient and faster.

Basic Repetition and the while Loop
The while loop is sometimes called a “top-tested loop,” because there is a Boolean expres-
sion to be evaluated at the top of the loop. It is important to remember that the condition
is evaluated first before the associated suite is ever executed. If the condition is never True,
the loop never executes.

Loop Control and Initialization
The Boolean decision expression controls the loop, so care must be taken in designing it.
Often, especially for novice programmers, there is one variable in the expression, so we’ll
consider that case. That variable is often called the loop control variable. Our comments
generalize naturally to more complex expressions.

There are usually three issues to consider when writing a while loop:

Initialization Outside of the loop and before the loop is entered, the loop control variable
needs to be initialized. What value to initialize the variable to requires some considera-
tion. The initial value should (typically) allow the loop to begin (run through the first
iteration). This variable’s value will control when the loop ends so it is initialized with
the condition statement in mind.

Control The condition statement of the while loop needs to be written, and the Boolean
expression typically is written in terms of the loop control variable. The initial value
and this condition are related and should be considered together.

Modification Third, somewhere in the while loop suite, the loop control variable is
modified so that eventually the Boolean expression of the while becomes False so
that the loop ends. This often means that the loop control variable will have a different
value in the suite during each iteration of the loop. It is the changing of value that
allows the programmer to control when the loop will end.

Besides not solving the problem as intended, there are two undesired consequences that
could occur when writing a while loop without full consideration of these three issues:

Loop never starts: Because the first action of a while loop is to evaluate the Boolean
expression, if that expression yields False, the suite of instructions will not be executed.

Loop never stops: If the Boolean expression yields True, the loop will stop only if some
instruction within the suite of instructions changes the loop control variable so that
the Boolean expression evaluates to False at some point. If the Boolean expression is
always True, this situation is called an infinite loop.

122 C H A P T E R 2 • C O N T R O L

P R O G R A M M I N G T I P

Generic while structure:

Set an initial value for loop control variable.
while some Boolean tests the loop control variable:

Perform tasks as part of the loop.
At the loop’s end, update the loop control variable.

Check Yourself: More Control Check

1. What output occurs for the following program on the given input?

number_str = input("Enter an int:")
number = int(number_str)
count = 0

while number > 0:
if number % 2 == 0:

number = number // 2
elif number % 3 == 0:

number = number // 3
else: # Line 1

number = number - 1 # Line 2
count = count + 1

print("Count is: ",count) # Line 3
print("Number is: ",number) # Line 4

(a) Given user input of 9, what value does Line 3 of the program print?
(b) Given user input of 9, what value does Line 4 of the program print?
(c) Given user input of 7, what value does Line 3 of the program print?
(d) Given user input of 1, what value does Line 3 of the program print?
(e) If the else clause on Line 1 and Line 2 were removed, what effect would

that have on the program with the input value 1?
i. No effect; program would give the same results.

ii. The count would be larger.
iii. The count would be smaller.
iv. The while loop would not end.
v. None of the above.

2 . 2 • I N - D E P T H C O N T R O L 123

Decision

while Boolean expression

Python statement

S
ui

te

False
True

el
se

 s
ui

tePython statement

Python statement

Python statement

Python statement

Python statement

Python statement

FIGURE 2.9 while-else.

else and break
Similar to the if-else statement, you can have an else clause at the end of a while
loop. The else is strictly optional, but it does have some very nice uses.

while boolean expression:
suite1

else:
suite2

The else clause is entered after the while loop’s Boolean expression becomes False.
See Figure 2.9. This entry occurs even if the expression is initially False and the while
loop never ran (its suite was never executed). As with other header statements, the else
part of the while loop can have its own associated suite of statements. Think of the
else statement on the while loop as “cleanup” for the action performed as the loop ends
normally.

The else clause is a handy way to perform some final task when the loop ends normally.
Figure 2.9 shows how the else works.

break Statement and Non-Normal Exit
The else clause is often used in conjunction with the break statement. The break
statement can be used to immediately exit the execution of the current loop and skip past
all the remaining parts of the loop suite. It is important to note that “skip past” means to
skip the else suite (if it exists) as well. Remember, the else is only entered if the loop

124 C H A P T E R 2 • C O N T R O L

condition becomes False. The break statement is useful for stopping computation when
the “answer” has been found or when continuing the computation is otherwise useless.

We like the clarity of the while and if statements. They make it clear to the reader
how the program might enter and exit the various suites and, as we have said repeatedly,
readability is important for correctness. However, sometimes we need to take a non-normal
exit, and that is the purpose of break. We choose a non-normal exit sparingly, because it
can detract from readability, but sometimes it is the “lesser of two evils” and will provide
the best readability and, on occasion, better performance. A non-normal exit is sometimes
called an early exit.

To illustrate while-else, Code Listing 2.20 is a short program that plays a “hi-low”
number guessing game. The program starts by generating a random number hidden from
the user that is between 0 and 100. The user then attempts to guess the number, getting
hints as to which direction (bigger or smaller, higher or lower) to go on the next guess. The
game can end in one of two ways:

� The user can correctly guess the number.
� The user can quit playing by entering a number out of the range of 0–100.

Here is an algorithm for the game:

Choose a random number.
Prompt for a guess.
while guess is in range:

Check whether the guess is correct;
If it is a win, print a win message and exit.
Otherwise, provide a hint and prompt for a new guess.

Code Listing 2.20

1 # while−e l s e
2 # Simple gue s s ing game : s t a r t with a random number and
3 # gue s s with hin t s unt i l :
4 # gue s s i s c o r r e c t
5 # the gue s s i s out o f range indica t ing the user i s qui t t ing
6 # All non−typed var iab l e s are i n t e g e r s : Rule 4
7

8 import random # ge t the random number module
9 number = random.randint(0,100) # ge t a random number

10 # between 0 and 100 in c l u s i v e
11 print("Hi-Lo Number Guessing Game: between 0 and 100 inclusive.")
12 print()
13

2 . 2 • I N - D E P T H C O N T R O L 125

14 # ge t an i n i t i a l gu e s s
15 guess str = input("Guess a number: ")
16 guess = int(guess str) # convert s t r i n g to number
17

18 # while gu e s s i s range , keep asking
19 while 0 <= guess <= 100:
20 if guess > number:
21 print("Guessed Too High.")
22 elif guess < number:
23 print("Guessed Too Low.")
24 else: # c o r r e c t gue s s , e x i t with break
25 print("You guessed it. The number was:",number)
26 break
27 # keep going , g e t the next gu e s s
28 guess str = input("Guess a number: ")
29 guess = int(guess str)
30 else:
31 print("You quit early, the number was:",number)

Here is a line-by-line look at the program in Code Listing 2.20:

Lines 8–9: To get a random number we first import the random module. The random
module provides a number of useful functions, including functions to generate random
numbers. One such function is named randint (read as “random integers”); it gen-
erates and returns a random integer. The full name, random.randint, indicates that
the randint name is to be found in the random module (which we imported in the
preceding line). The function takes two arguments: an integer lower value and the upper
value. The function will then generate a random number within the range. For example,
random.randint(0,100) will generate a random number between 0 and 100 (in-
cluding both 0 and 100). See Section 17.2.3 for more information on random numbers.

Lines 15–16: You have seen input before. In this case, the string “Guess a number:”
will be printed as a prompt to the user. The variable guess str will be the string
returned that needs to be converted to a number (integer) for further processing. At
this point, we have a randomly chosen number to try to guess and a first guess. Notice
how we need to get an initial guess before we check it in the Boolean expression in the
while loop. What would happen if that were not true? Try it!

Line 19: This is the “normal” exit condition for the loop. As long as the guess is in the
range 0–100 inclusive, the loop will continue. As soon as the expression becomes
False, the loop will end and the associated else suite will be run.

Lines 20–23: If the guess is incorrect (either too high or too low), we provide a hint to the
user so that he or she might improve the next guess.

Lines 24–26: If it wasn’t high and it wasn’t low, it must be the answer. Is that true—or
could it have been a number not in the range we were looking for (0–100)? No, we

126 C H A P T E R 2 • C O N T R O L

checked that in the while Boolean expression. It must be the correct number. We
print a winner message and then use the break statement to exit the loop. Remember,
a break will skip the else suite of the while loop!

Lines 28–29: We prompt for another guess at the bottom of the while suite. Note the
pattern:

Prompt for a guess.
while guess is not correct:

Do something (e.g., provide a hint).
Prompt for a new guess.

This is a common pattern: you prompt before the while starts so the loop may begin,
and then prompt again at the end of the while suite so we may change the value
associated with guess. This is the pattern noted earlier in the “Programming Tip.”
You need to have some information for the Boolean expression before you encounter
it the first time, and then at the bottom of the suite you need to again get information
for the Boolean expression before you encounter it again.

Lines 30–31: You get to this print statement only if the while loop terminated normally
so that you know without further checking that 0 <= guess <= 100 is no longer
True and the user quits. Note that the break statement skips this suite.

A sample interaction is shown in the following session:

> python hiLoGame.py
Hi-Lo Number Guessing Game: between 0 and 100 inclusive.

Guess a number: 50
Guessed Too Low.
Guess a number: 75
Guessed Too Low.
Guess a number: 82
Guessed Too High.
Guess a number: 78
Guessed Too High.
Guess a number: 77
Guessed Too High.
Guess a number: 76
You guessed it. The number was: 76

>python hiLoGame.py
Hi-Lo Number Guessing Game: between 0 and 100 inclusive.

Guess a number: 50
Guessed Too High.
Guess a number: 25

2 . 2 • I N - D E P T H C O N T R O L 127

Guessed Too High.
Guess a number: 10
Guessed Too Low.
Guess a number: -100

More Control Inside of a while Loop

Continue
Sometimes we might want to simply skip some portion of the while suite we are executing
and have control flow back to the beginning of the while loop. That is, exit early from this
iteration of the loop (not the loop itself), and keep executing the while loop. In this way, the
continue statement is less drastic than the break. Similar to the break, it can make the
flow of control harder to follow, but there are times when it yields the more readable code.

Consider writing a program that continuously prompts a user for a series of even integers
that the program will sum together. If the user makes an error and enters a non-even (odd)
number, the program should indicate an error, ignore that input, and continue with the
process. Given this process, we need a way to end the loop. Let’s choose a special character
to stop the looping. In our case, if the special character “.” is entered, the program will print
the final sum and end.

The basic algorithm will be:

1. Prompt the user for a number.
2. Convert the input string to an int.
3. If the input is even, add it to the running sum.
4. If the input is not even (odd), print an error message—don’t add it into the sum, just

continue on.
5. If the input is the special character “.”, end and print the final sum.

Checking User Input for Errors
Remember, when we prompt the user for a value using input, we get a string back, not a
number. We must convert that string to an integer to be able to process it. Next we check
if the number is even or not, and include it in the sum only if it is even.

Code Listing 2.21 shows a solution to the problem.

Code Listing 2.21

1 # sum up a s e r i e s o f even numbers
2 # make sure user input i s only even numbers
3 # var iab le names without t y p e s are i n t e g e r s . Rule 4
4

5 print ("Allow the user to enter a series of even integers. Sum them.")
6 print ("Ignore non-even input. End input with a '.'")

128 C H A P T E R 2 • C O N T R O L

7 # i n i t i a l i z e the input number and the sum
8 number str = input("Number: ")
9 the sum = 0

10

11 # Stop i f a period (.) i s entered .
12 # remember , number str i s a s t r i n g unt i l we convert i t
13 while number str != "." :
14 number = int(number str)
15 if number % 2 == 1: # number i s not even (i t i s odd)
16 print ("Error, only even numbers please.")
17 number str = input("Number: ")
18 continue # i f the number i s not even , ignore i t
19 the sum += number
20 number str = input("Number: ")
21

22 print ("The sum is:",the sum)

Details:

Lines 8–9: Initialize the variables. number str is set to the result of a input request to
the user. Note that if the user enters a “.” here, the loop will end without running. We
append “str” to the variable name so we may keep straight that it in fact is a string, not
a number. the sum is initially set to 0. We use the name the sum because the name
sum is a built-in function name that will be explained later.

Line 13: The period (.) is our special indicator that indicates the loop should end, so we
loop until a period is input.

Line 14: Convert the input string to a number (int).
Lines 15–18: Here we check whether number is even or odd by finding the remainder

when dividing by 2 (using the % operator). If it is odd, we print the error message
and then re-prompt the user. We continue which means that we go to the top of
the while loop and evaluate its Boolean expression, skipping over the rest of the
suite.

Lines 19–20: If we get to Line 19, we know that the number is even so include it in the
sum. We then prompt the user for a new number.

Line 21: After the loop ends, print the sum of the integers accumulated in the variable
the sum.

You might have noticed a few things about the example solution. In particular, it has
two places in the loop for prompting the user. Can we do it more effectively, using only

2 . 2 • I N - D E P T H C O N T R O L 129

one? Let us try and refactor using if-else. A solution without continue is shown Code
Listing 2.22.

Code Listing 2.22

1 # sum up a s e r i e s o f even numbers
2 # make sure user input i s only even numbers
3

4 print ("Allow the user to enter a series of even integers. Sum them.")
5 print ("Ignore non-even input. End input with a '.'")
6 # i n i t i a l i z e the input number and the sum
7 number str = input("Number: ")
8 the sum = 0
9

10 # Stop i f a period (.) i s entered
11 # remember , number str i s a s t r i n g unt i l we convert i t
12 while number str != "." :
13 number = int(number str)
14 if number % 2 == 1: # odd number
15 print ("Error, only even numbers please.")
16 else: # even number
17 the sum += number
18 number str = input("Number: ")
19

20 print ("The sum is:",the sum)

The new example is improved in three ways:

1. continue is replaced with if-else. No non-normal control flow is required.
2. The number str input line appears before the loop and at the end of the loop, in

keeping with the pattern described previously.
3. Only one prompt of the user is required within the suite.

If you think you need a continue statement, consider adjusting your algorithm to
eliminate it, because you’ll often find the resulting code is more readable.

The pass Statement
The pass statement is a rather curious statement. Directly from the Python documentation,
it says:

The pass statement does nothing. It can be used when a statement is required
syntactically but the program requires no action.

130 C H A P T E R 2 • C O N T R O L

That pretty much says it all. You use pass when you have to put something in a
statement (syntactically, you cannot leave it blank or Python will complain) but what you
really want is nothing. For example:

for my int in range(10):
pass # do nothing

This for statement will iterate through the range values but do nothing with them.
Odd as it seems, pass has its uses. It can be used to test a statement (say, opening a file

or iterating through a collection) just to see if it works. You don’t want to do anything as a
result, just see if the statement is correct. More interestingly, you can use pass as a place
holder. You need to do something at this point, but you don’t know what yet. You place a
pass at that point and come back later to fill in the details.

2.2.11 Sentinel Loop
A sentinel loop is a loop that is controlled by a sentinel—a guard. A guard or sentinel is a
particular value used to terminate the loop. The Boolean expression will be in the form:
while not sentinel value:.

value = some value
while value != sentinel value:

proces s value
get another value

An example of a sentinel loop is the preceding example, where we stopped if a period was
entered:

while number != ".":

2.2.12 Summary of Repetition
We can put all the variations of while into one generic pattern:

while boolean expression1:
statement suite1

if boolean expression2:
break # Exit loop now; skip else.

if boolean expression3:
continue # Go to top of loop now.

else:
statement suite2

2 . 2 • I N - D E P T H C O N T R O L 131

2.2.13 More on the for Statement

Code Listing 2.23

simple f o r
find the sum of the numbers from 1 to 100

the sum = 0

for number in range(1,101):
the sum = the sum + number

print("Sum is:", the sum)

The for statement was introduced in an earlier section. Just like the while statement,
the for statement can support a terminal else suite, as well as the control modifiers
continue and break. Their roles are as previously described, that is:

1. The else suite is executed after the for loop exits normally.
2. The break statement provides an immediate exit of the for loop, skipping the else clause.
3. The continue statement immediately halts the present iteration of the loop, contin-

uing with the rest of the iterations.

Its more general form is shown here:

for target in object:
statement suite1
if boolean expression1:

break # Exit loop now; skip el se .
if boolean expression2:

continue # Go to top of loop now.

else:
statement suite2

Using range to Generate a Number Sequence
As we have mentioned, Python provides a number of collection data types that can be
examined by iterating through the collection’s elements using a for loop. However, it turns
out that we can easily generate a sequence of numbers using a special function provided by
Python: the range function.

Let’s look at range. Its operation generates a sequence of integers, in which the size and
values in the range are dictated by its arguments. It takes up to three arguments: the start
value, the end value, and the step or separation between each value. The range function
generates what is termed a half open range. Such a range does not include the end value in
the sequence generated.

132 C H A P T E R 2 • C O N T R O L

The start value is the first value included in the sequence and, if not provided, defaults
to 0. The stop value is used to determine the final value of the sequence. Again, the stop
value itself is never included in the sequence. The stop value is a required argument. The
step value is the difference between each element generated in the sequence and, if not
provided, defaults to 1. If only one argument is provided, it is used as the stop value. In the
case of one argument, constituting the stop value, the start value is assumed to be 0 and
the step value assumed to be 1. If two arguments are provided, the first is the start and the
second is the stop. There is a step argument only if three arguments are used.

A range sequence can be iterated through using a for loop. Here are some examples
using range. Try some examples yourself in the Python shell to gain an understanding of
how range works.

>>> for i in range(5):
print(i,end=' ')

0 1 2 3 4
>>> for i in range(3,10):

print(i,end=' ')

3 4 5 6 7 8 9
>>> for i in range(1,20,4):

print(i,end=' ')

1 5 9 13 17
>>> for i in range(1,20,2): # print odd i n t e g e r s

print(i,end=' ')

1 3 5 7 9 11 13 15 17 19

Code Listing 2.24 is a simple example of range in practice. This famous example is
reputed to have been solved by noted mathematician Gauss in primary school: the problem
is to find the sum of the first 100 whole numbers. The teacher assigned it to keep the
students busy, but Gauss solved it immediately.

Code Listing 2.24

1 # simple f o r
2 # find the sum of the numbers from 1 to 100
3

4 the sum = 0
5

6 for number in range(1,101):
7 the sum = the sum + number
8

9 print("Sum is:", the sum)

2 . 2 • I N - D E P T H C O N T R O L 133

The details are as follows:

Line 4: Initialize variable the sum to 0 to provide a starting point for the addition in the
for loop.

Line 6: The expression range(1,101) generates a sequence of numbers from 1 to 100.
It is used by the for loop to associate the variable number with each value of the
sequence, one value at a time.

Line 7: This is the suite of the for loop. It adds the present value associated with number
to the value associated with the sum, then assigns the sum back to the sum.

Line 9: After the loop ends, print the value associated with the sum.

The code shown prints the value 5050. Gauss is noted for taking a shortcut and figuring
out the formula: n(n + 1)/2.

The range Function and Iterables
What happens if you just type a call to the range function into the Python interpreter?
What is returned? Look at the following session.

>>> range(1,10)
range(1, 10)
>>> my range=range(1,10)
>>> type(my range)
<class 'range'>
>>> len(my range)
9
>>> for i in my range:

print(i, end=' ')

1 2 3 4 5 6 7 8 9
>>>

What is printed is not the actual set of numbers but something that represents those
numbers. Thus you can create a range of as many numbers as you like, and they are
represented by this single value. What type is it? It is a range type. Of what use is it? Well,
we have seen the answer to that. We can iterate through a range and operate on each value
in the range, one at a time, using a for loop. It is for this reason that the range type is also
called an iterable. As we said before, an iterable represents a set of values that can be iterated
over—say, by a for loop.

This is a rather convenient way to represent things. We can generate a very large range
of numbers, but we don’t have to create all the numbers at once (which could take a lot of
memory and time). Rather, we can represent the range as a special type and generate the
individual values in the range when needed. We will see other iterable types, types we can
iterate through, as we move along with our Python experience.

134 C H A P T E R 2 • C O N T R O L

P R O G R A M M I N G T I P

One might be tempted to use the variable name sum in the code above. As it turns out, sum
is a function predefined by Python! In fact, the sum in Code Listing 2.25 can be done with
one Python expression: sum(range(1,101)). When you use IDLE or any other editor,
it usually colorizes the pre-defined Python variables.

Interestingly, if you assign a value to sum anyway, Python will happily comply, though
now sum will no longer operate as a function! However, the change is not permanent. If you
make such a mistake, simply restart Python and all default Python values will be returned
to their normal values.

Equivalence of while and for
It is possible to write a while loop that behaves exactly like a for loop. However, not every
while loop can be expressed as a for loop.

Consider this simple for loop using the sequence generated by range(5):

for i in range(5):
print(i)

We can write an equivalent while loop as:

i = 0
while i < 5:

print(i)
i += 1

The for loop is easier to read and understand, but it is useful only for moving through
the elements of objects with iterators. Fortunately, in Python you will find so many objects
with iterators that you will frequently use a for loop.

Pythonic Pointer: How to decide which to use, for or while? The while loop
is more general but the for loop is useful for moving through all the elements
of a collection. Fortunately, many objects can be examined using iteration.
Think for first!

VideoNote 2.2
Nested Control

2.2.14 Nesting
We have mentioned nesting and have used it multiple times in examples, but it is worth a
little more discussion. Within the suite of any control construct (if, while, for) we can
insert another control construct (if, while, for). Within the inserted control construct,
we can insert yet another one. We can nest one within another with no limit (in reality there
usually is a limit, but if you reach it, your code is unreadable and should be restructured).
Each time we insert another control construct, its suite will be indented. The indentation

2 . 2 • I N - D E P T H C O N T R O L 135

aids readability, but if the code is nested too much, the indentation will be difficult to
read. In that case, the code should be rewritten so that it can again be readable. One tool,
which we will cover in Chapter 8, is a function, which allows us to improve readability by
encapsulating some of the indentation within a function.

If you look back to the perfect-number code, you can see the following nested control
structure:

while . . .
while . . .

if . . .

Check Yourself: for and range Check

1. What output occurs for the following program with the given input?

the_max = int(input("Enter the upper limit:"))
the_sum = 0
extra = 0

for number in range(1,the_max):
if number%2 and not number%3:

the_sum = the_sum + number
else:

extra = extra + 1 # Line 1

print(the_sum) # Line 2
print(extra) # Line 3

(a) Given the input 10, what output is produced by Line 2 of the program?
(b) Given the input 11, what output is produced by Line 3 of the program?
(c) Which of the following is a reasonable replacement for Line 1 of the program?

i. extra++
ii. ++extra

iii. extra =+ 1
iv. extra += 1
v. None of the above

(d) If Line 1 were removed from the program, which of the following statements
would be true?
i. No runtime errors.

ii. Line 3 would always print 1.
iii. Error; would run past the end of the range.
iv. All of the above.
v. None of the above.

136 C H A P T E R 2 • C O N T R O L

2.2.15 Hailstone Sequence Example
The Collatz conjecture is an unsolved mathematical conjecture from 1937 that makes for
an interesting programming example. The conjecture is that given the following formula
and an initial positive integer, the generated sequence always ends in 1. Although this has
been shown to be true for large initial integers (approximately 2.7 × 1016), it has not yet
been proven true for all. It is an active research area with a new proof recently submitted for
publication but later withdrawn. The sequence is also called the hailstone sequence because
the numbers bounce up and down like hail until they converge to 1. Our task is to write a
program to generate the hailstone sequence.

The hailstone formula is as follows:

� If the number is even, divide it by 2.
� If the number is odd, multiply by 3 and add 1.
� When the number reaches 1, quit.

The sequence is formed by applying the formula to the initial number and then
repeatedly to each number generated by the formula. The result is a sequence of integers
ending at 1 (if you don’t stop at 1, what will happen?). For example, if you start with 5, you
get the following sequence: 5, 16, 8, 4, 2, 1.

We will create a program so you can try your hand at it. We will also output the length
of the sequence.

Determining whether a number is even or odd integer can be done using the remainder
operator (%). If we divide a number by 2 and the remainder is 0, the number is even.
Otherwise it is odd. In particular:

if number % 2 == 1:
print(number, "is odd")

else:
print(number, "is even")

Because 1 is considered to be True for a Boolean expression, the Boolean expression
number % 2 == 1 is often shortened to simply number % 2, as in:

if number % 2:
print(number, "is odd")

else:
print(number, "is even")

With that notation in hand, let’s apply the hailstone formula repeatedly to generate a
sequence (Code Listing 2.25).

2 . 3 • V I S U A L V I G N E T T E : P L O T T I N G D A T A W I T H P Y L A B 137

Code Listing 2.25

1 # Generate a ha i l s t one sequence
2 number str = input("Enter a positive integer:")
3 number = int(number str)
4 count = 0
5

6 print("Starting with number:",number)
7 print("Sequence is: ", end=' ')
8

9 while number > 1: # s top when the sequence r eache s 1
10

11 if number%2: # number i s odd
12 number = number*3 + 1
13 else: # number i s even
14 number = number/2
15 print(number,",", end=' ') # add number to sequence
16

17 count +=1 # add to the count
18

19 else:
20 print() # blank l in e f o r n i c e r output
21 print("Sequence is ",count," numbers long")

Copy this code and run it to try your hand at generating hailstone sequences; observe
how they all end in 1. If you find one that does not end in 1, either there is an error in your
program or you have made a fantastic discovery.

Some other interesting notes. Are there common subsequences for different initial
numbers? What is the longest common subsequence? What is the longest sequence in
some range of initial numbers? What does a plot of initial number and sequence length
look like?

V I S U A L V I G N E T T E

2.3 PLOTTING DATA WITH PYLAB

In addition to drawing explicitly using tools like the turtle module, Python provides
tools to plot data in both two and three dimensions. One of the most useful of those
tools is the module pylab, which includes the plotting package matplotlib. Matplotlib is a

138 C H A P T E R 2 • C O N T R O L

plotting library, created in the image of the Matlab plotting library, for making publication-
quality figures. Their motto is “matplotlib makes easy things easy and hard things possible.”
Matplotlib and pylab are described in more detail in Appendix C (including how to get and
install them), but we can provide a simple introductions here. More complicated examples
will be provided throughout the book.

One thing to note. As described in more detail in the appendix, matplotlib and Python’s
IDLE do not necessarily “play well together.” You may find that, if you write a piece of
code in IDLE and run it there, there are delays in the plotting window coming up. It
is especially true if you are plotting interactively. Read Appendix C for ways around this
problem.

2.3.1 First Plot and Using a List
As with many things in Python, plotting requires that you use one of the collection data
structures called the list data structure. Lists are covered in detail in Chapter 7, but we
can teach you enough about lists here to do some simple plotting.

A list is just a sequence of objects. Lists are denoted with square brackets, and individual
elements in a list are separated by commas. Thus [1,2,3,4] is a list of four integer values.
The empty list is designated by [], and a very useful method used in conjunction with
lists is the append method. A useful function is len, which returns the length of a list. A
typical use is demonstrated in Code Listing 2.26.

Code Listing 2.26

1 list of ints = []
2 for counter in range(10):
3 list of ints.append(counter*2)
4

5 print(list of ints)
6 print(len(list of ints))

>>>
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]
10

The variable list of ints starts out empty, as designated by a pair of brackets ([]),
and we append 10 integers to the list. At the end, the length of the list is 10.

To plot the list we just created, all we need to do is import pylab, and add two lines to
the program.

2 . 3 • V I S U A L V I G N E T T E : P L O T T I N G D A T A W I T H P Y L A B 139

Code Listing 2.27

import pylab
list of ints = []
for counter in range(10):

list of ints.append(counter*2)

print(list of ints)
print(len(list of ints))

now p lo t the l i s t
pylab.plot(list of ints)
pylab.show()

A new window is exposed, as shown in Figure 2.10. The values in list of ints
provide the values for the y-axis of the plot. The pylab.plot method provides the x-axis

FIGURE 2.10 First plot with matplotlib.

140 C H A P T E R 2 • C O N T R O L

values as the sequence indices of the list. The first value in the list gets x-value 0, the second
value gets x-value 1, and so on.

2.3.2 More Interesting Plot: A Sine Wave
As their motto indicates, matplotlib can do complicated things but allows you to add
complexity as necessary. There are an enormous number of options that you can use, but
here are a couple of immediately useful ones.

Plotting Elements and Their Colors
You can plot using all kinds of “markers” for each point in the graph. Each “formatting
string” consists of a two-character string:

Color: The first is a lowercase letter for the color. The mappings are fairly obvious: “r” is
red, “b” is blue, “g” is green. The only odd one is that “k” is black.

Marker: The second element is a single character indicating the type of marker. These are
rather obscure—you simply have to learn them. For example: “o” is for circles, “.” is for
dots, “x” is for an x marker, and “+” is for a plus marker. Look in Appendix C and the
plot documentation for more details.

Putting them together, the formatting string “ro” will print red circles, and “bx” will
print blue x’s.

More Detailed Call of Plot
Using that information on markers, we can pass more than just a single list to plot.
A more detailed invocation would be: pylab.plot(x values,y values,format
string). Using this form, Code Listing 2.28 below plots a sine wave from 0 to 4 ∗ π in
increments of 0.1 with red circles. We provide both the x and y values.

Code Listing 2.28

p lo t a s in e wave from 0 to 4pi

import math
import pylab

i n i t i a l i z e the two l i s t s and the counting var iab l e num. Note i s a f l o a t
y values = []
x values = []
number = 0.0

c o l l e c t both number and the s in e o f number in a l i s t

2 . 3 • V I S U A L V I G N E T T E : P L O T T I N G D A T A W I T H P Y L A B 141

while number < math.pi * 4:
y values.append(math.sin(number))
x values.append(number)
number += 0.1

#p lo t the x and y value s as red c i r c l e s
pylab.plot(x values,y values,'ro')
pylab.show()

The resulting plot is shown Figure 2.11.

FIGURE 2.11 Sine plot with matplotlib.

142 C H A P T E R 2 • C O N T R O L

2.4 C O M P U T E R S C I E N C E P E R S P E C T I V E S

2.4.1 Minimal Universal Computing
An interesting question is:

How much language power do we need to be able to write any computer program?

Rephrased:

What is the minimal set of instructions that we need to compute any result that can be
computed?

In the early days of computing, there was quite a competition to figure out the mini-
mum. It turns out that, theoretically, you do not need much. The answer is useful for us,
because it indicates how little is needed to write all programs, and it shows the importance
of control.

The results are usually presented in assembly language. Assembly language is the some-
what English-like description of the 1s and 0s of the computer’s actual machine language.
That is, assembly language is specifically matched to the CPU it runs on to generate com-
mands for that CPU. The basic instructions involve manipulating memory—either an
actual location or an “accumulator” register on the processor—and jumping to a specific
instruction in a program. (You can think of the accumulator as what stores the result of your
calculations when you use a calculator.) Accumulators were common on the first computers
when hardware was expensive.

Here is a minimal instruction set:7

LOAD A load contents at RAM address A into accumulator
STORE A store accumulator contents into address A in RAM
CLR clear accumulator
INC increment accumulator
BRZ X branch to address X in RAM if accumulator is zero

All computer programs can be written using just those five instructions. All programs,
ever! That is a very significant result! Such a program might be nearly impossible to make
sense of (i.e., not readable), but it can be done in theory.

Notice that a “branch” instruction is one of the necessary instructions. That branch
instruction is the most primitive type of control, and it is closely related to the simple
if statement introduced earlier. This branch instruction, the “BRZ” instruction, tests the
accumulator value to see whether it is all zeros, and if it is, the next instruction to execute is at
address X in memory. Otherwise, it executes the instruction that follows, i.e., the instruction

7 R. Rojas, “Conditional Branching Is Not Necessary for Universal Computation in von Neumann Computers,” Journal of Universal
Computer Science 2(11), 1996, pp. 756–767.

S U M M A R Y 143

at the address immediately following this BRZ instruction. There are more powerful and
more readable styles of control instruction, but the BRZ is the simplest.

This simple branch instruction allows us to repeatedly do the INC instruction so we can
perform addition: if you want to add 5 to something, increment it 5 times. Once you can
do addition, you can do all the other arithmetic. It will be messy to read, but it is possible.

What is the point? After all, assembly language is very different from a high-level
language such as Python. The point is that a simple combination of if, the BRZ instruction,
and the ability to repeat, in this case by branching back to the beginning of the program if
one so chooses, is enough to write any program. Selection and repetition are two core parts
of programming!

Summary
In this chapter, we have introduced two control constructs: decision and repetition. With
these in hand, you now have sufficient programming power to write powerful programs (in
fact, any program). Everything after this point makes programs easier to read and easier to
write—powerful concepts in their own right.

Selection: if-elif-else
if boolean expression1:

suite1
elif boolean expression2:

suite2
elif boolean expression3:

suite3
as many el i f s tatements as you like
else:

suite last

Repetition: while
while boolean expression1:

statement suite1

if boolean expression2:
break # Exit loop now; skip else.

if boolean expression3:
continue # Go to top of loop now.

else:
statement suite2

144 C H A P T E R 2 • C O N T R O L

Iteration: for
for target in object:

statement suite1
if boolean expression1:

break # Exit loop now; skip else.
if boolean expression2:

continue # Go to top of loop now.

else:
statement suite2

Rules
� RULE 1: Think before you program!

� RULE 2: A program is a human-readable essay on problem solving that also happens
to execute on a computer.

� RULE 3: The best way to improve your programming and problem skills is to practice!

� RULE 4: A foolish consistency is the hobgoblin of little minds.

� RULE 5: Test your code, often and thoroughly!

Exercises
1. How many three-digit numbers are divisible by 17? Write a program to print them.

2. In your own words, describe what the statements continue and break do in loops.

3. Explain the difference between “is” and “==”. Give an example (different than that used
in the chapter) that illustrates items that return False for “is” and True for “==”.

4. In an earlier set of exercises, you were asked to calculate one’s BMI. Augment that
program by printing out where that BMI fits in the CDC standard weight status
categories:

BMI Weight Status
Below 18.5 Underweight
18.5–24.9 Normal
25.0–29.9 Overweight

30.0 and above Obese

5. Control:

if my var % 2:
if my var**3 != 27:

my var = my var + 4 # Assignment 1

E X E R C I S E S 145

else:
my var /= 1.5 # Assignment 2

else:
if my var <= 10:

my var *= 2 # Assignment 3
else:

my var -= 2 # Assignment 4
print(my var)

(a) Find four values of my var so each of the four assignment statements will be
executed: each value should cause one assignment statement to be executed.

(b) Find four ranges of my var values that will cause each of the four assignment
statements to be executed.

6. Write a for loop that will print “pbil” when “alphebetical” is the input.

7. Consider the Python function range(a,b). Label these statements as True or
False.
� Value “a” is included in the range.
� Value “b” is included in the range.

8. What is an iterator? Give two examples of iterators.

9. In this exercise you will convert knuts to sickles and galleons (the currency of the Harry
Potter novels). Perform the calculation, and print only non-zero values. That is, if there
are not enough knuts for there to be one sickle, then “0 sickle” should not be printed.
(There are 29 knuts in one sickle and 17 sickles in one galleon.)

10. Write a short program that will:
� prompt the user for a number
� print out whether the number is a perfect square
� prompt the user for another number if the input was not a perfect square

11. Sum of consecutive integers

(a) Write a program that prompts for an integer—let’s call it X—and then finds the
sum of X consecutive integers starting at 1. That is, if X = 5, you will find the sum
of 1 + 2 + 3 + 4 + 5 = 15.

(b) Modify your program by enclosing your loop in another loop so that you can find
consecutive sums. For example, if 5 is entered, you will find five sums of consecutive
numbers:

1 = 1
1+2 = 3

146 C H A P T E R 2 • C O N T R O L

1+2+3 = 6
1+2+3+4 = 10
1+2+3+4+5 = 15

Print only each sum, not the arithmetic expression.
(c) Modify your program again to only print sums if the sum is divisible by the number

of operands. For example, with the sum 1 + 2 + 3 + 4 + 5 = 15, there are five
operands and the sum, 15, is divisble by 5, so that sum will be printed. (Do you
notice a pattern?)

12. (Perfect numbers) In this chapter is a program that checks for perfect numbers. If you
wanted to check many numbers (a large range of numbers) to see if any were perfect,
then the program we wrote might not be the best. What could we do to improve
it? For example, how would we output only perfect numbers but just keep count of
the deficient and abundant numbers? Do we need to check every number from 2 to
number-1?

13. Write a program that prompts for an integer and prints the integer, but if something
other than an integer is input, the program keeps asking for an integer. Here is a sample
session:

Input an integer: abc
Error: try again. Input an integer: 4a
Error: try again. Input an integer: 2.5
Error: try again. Input an integer: 123
The integer is : 123

Hint: the string isdigit method will be useful.

14. Write a program to generate the following arithmetic examples.
Hints:

(1) Divide and conquer: what simpler problem do you need to solve?
(2) Consider using strings to build numbers and then convert.
(3) The range iterator may be helpful.

1 * 8 + 1 = 9
12 * 8 + 2 = 98
123 * 8 + 3 = 987
1234 * 8 + 4 = 9876
12345 * 8 + 5 = 98765
123456 * 8 + 6 = 987654
1234567 * 8 + 7 = 9876543
12345678 * 8 + 8 = 98765432
123456789 * 8 + 9 = 987654321

E X E R C I S E S 147

1 * 9 + 2 = 11
12 * 9 + 3 = 111
123 * 9 + 4 = 1111
1234 * 9 + 5 = 11111
12345 * 9 + 6 = 111111
123456 * 9 + 7 = 1111111
1234567 * 9 + 8 = 11111111
12345678 * 9 + 9 = 111111111
123456789 * 9 + 10 = 1111111111

9 * 9 + 7 = 88
98 * 9 + 6 = 888
987 * 9 + 5 = 8888
9876 * 9 + 4 = 88888
98765 * 9 + 3 = 888888
987654 * 9 + 2 = 8888888
9876543 * 9 + 1 = 88888888
98765432 * 9 + 0 = 888888888

1 * 1 = 1
11 * 11 = 121
111 * 111 = 12321
1111 * 1111 = 1234321
11111 * 11111 = 123454321
111111 * 111111 = 12345654321
1111111 * 1111111 = 1234567654321
11111111 * 11111111 = 123456787654321
111111111 * 111111111 = 12345678987654321

15. Write a program that checks to see if a number N is prime. A simple approach checks
all numbers from 2 up to N, but after some point numbers are checked that need
not be checked. For example, numbers greater than

√
N need not be checked. Write a

program that checks for primality and avoids those unnecessary checks. Remember to
import the math module.

16. The perfect-number example in this chapter uses twowhile loops. Rewrite the program
replacing the two while loops with two for loops and range.

17. Here is an example of a while loop. There is an error; can you find the error in the
while loop? Try to figure out what could be wrong by thinking through the while
loop. Referring to the flow-chart figures in the chapter should help. Check to see if you
are right by using Python!

sentence= "that car was really fast"
i=1
while i>0:

148 C H A P T E R 2 • C O N T R O L

for character in sentence:
if character == "t":

print("found a 't' in sentence")
else:

print("maybe the next character?")

18. Fill in the following table with values True or False—one value in each empty box.

(not p) (p and q) (p or q) (p or q) and
p q or q or q and p (p and q)

True True
True False
False True
False False

19. If your while loop is controlled by “while True:”, it will loop forever. How do
you control your loop so that it will stop? Provide a brief example in Python code.

20. (Quadratic formula) The formula that calculates roots for a quadratic equation ax 2 +
bx + c is the quadratic formula x = −b ± √

b2 − 4ac/2a . Because the square root of
a negative is imaginary, one can use the expression under the square root (known as
the discriminant) to check for the type of root. If the discriminant is negative, the roots
are imaginary. If the discriminant is zero, there is only one root. If the discriminant is
positive, there are two roots.

(a) Write a program that uses the quadratic formula to generate real roots, i.e., ignores
the imaginary roots. Use the discriminant to determine whether there is one root
or two roots and then print the appropriate answer.

(b) Python uses the letter “j” to represent the mathematical imaginary number “i”
(a convention used in electrical engineering). However, the Python “j” must always
be preceeded by a number. That is, “1j” is equivalent to the mathematical “i.” Add
the ability to handle imaginary roots to your program.

21. In order to understand what a program tries to accomplish, it is essential to be able to
follow the flow of control. In the following example, what happens when x = 4?

while True:
for x in range (6):

y = 2*x+1
print(y)
if y > 9:

break

(a) The program breaks out of the while loop and stops running.
(b) The program breaks out of the for loop, but the while condition continues to

be True, resulting in an infinite loop.
(c) The program does not break but simply continues processing the for loop.

E X E R C I S E S 149

22. Create a program that prompts for a positive number greater than 2 (check this
condition) and then keeps taking the square root of this number until the square root
is less than 2. Print the value each time the square root is taken, along with the number
of times the operation has been completed. For example:

Enter an integer greater than 2: 20
1: 4.472
2: 2.115
3: 1.454

Extra: Look ahead to string formatting (Section 4.41) to print the values to only three
decimal places, as shown.

23. In the exercises for Chapter 1, an algorithm was given for calculating the pass rating for
football quarterbacks. One can use the pass rating to determine whether a quarterback
had a mediocre, good, or great year. A rating is poor if it is 85 or below, mediocre if
above 85, good if above 90, and great if above 95. Add to the pass rating program to
output “poor,” “mediocre,” “good,” or “great.”

To test your program, you can look up actual data on www.nfl.com or use the
following information from 2007:

Completions Attempts Yards Touchdowns Interceptions
Donovan McNabb 180 316 2647 18 6
Tom Brady 319 516 3529 24 12
Peyton Manning 362 557 4397 31 9

24. The NPR radio show Car Talk always offers a puzzle to solve. Occasionally, one can be
solved with a program. Try this one: My car’s odometer measures distance traveled in
whole numbers—no tenths of miles—up to 999,999. Last week I was driving along on
the freeway and noticed that the last four digits, but not the last five digits, formed a
palindrome; that is, it read the same backward as forward (e.g., 1221). After one mile
went by, though, the last five digits did form a palindrome; and, after one more mile,
the middle four digits formed a palindrome. Finally, when the third mile rolled over,
all six digits formed a palindrome. What was my mileage at the time I first noticed all
these palindromes?

25. Find the two-digit number such that when you square it, the resulting three-digit
number has its rightmost two digits the same as the original two-digit number. That is,
for a number in the form AB, AB*AB = CAB for some C.

26. A famous puzzle follows.

SEND
+MORE

MONEY

www.nfl.com

150 C H A P T E R 2 • C O N T R O L

Substitute each letter in the equation with a single integer 0-9 (no duplicates) such that
the addition is correct. Write a program to solve this puzzle. Hint: Brute force works
well—try all possibilities.

Programming Projects
1. What is the invention of chess worth?

There is a popular myth about the man who invented chess. The local ruler was so
pleased with the invention that he offered the inventor a great reward in gold. The
inventor suggested an alternative reward: he would get one grain of wheat on the first
square of the chess board, two grains on the second square, four on the third, eight on
the fourth, etc., doubling the number of grains each time. The ruler saw that this must
be a much better deal for him, and he accepted. The board has 64 squares. Write a
program to determine the following:

(a) How many total grains of wheat did the ruler have to pay the inventor?
(b) A wheat grain weighs approximately 50 mg. How much did the wheat weigh?
(c) Pick a region (state, country, etc.) and determine how deeply that region would be

covered with that quantity of wheat. Prompt for the area of the region and then
output the depth, including the units you use.

2. How thick does paper folding get?
Take one sheet out of your newspaper, and fold it in half, then fold it in half again, and
again, and again. Can you fold it 30 times? Pretending that you can (you probably can’t
fold it more than 8 times), how thick would it be after 30 times? Assume the paper is
1/200 cm. thick. Write a program to solve this puzzle. Prompt for the number of folds
and output the thickness in meters.

3. Turtle polygons
Prompt for the desired number of sides for your polygon. Given that the interior angle
of a regular polygon is (s ide s − 2)×180o)/s ide s , draw the polygon. Optional: prompt
for a color and color the interior of your polygon.

4. Weird multiplication
For this assignment, you will be implementing the so-called Russian Peasant or Ancient
Egyptian method for multiplication. It looks a little odd, but just think of it as an
algorithm, a recipe for doing multiplication in a way other than what you learned in
grade school.

The algorithm is as follows. If A and B are the two integers (only integers) to
be multiplied, we repeatedly multiply A by 2 and divide B by 2, until B cannot
be divided any further—that is, until its value becomes 0 (remember, this is integer
division). During each step, whenever B is an odd number, we add the corresponding
A value to the product we are generating. In the end, the sum of the A values that had
corresponding odd B values is the product. Get it?

P R O G R A M M I N G P R O J E C T S 151

Here is an example:
If the two integers to be multiplied are 34 and 19, the operations would be:

A B Comment
34 19 Add A to the product, B is odd
68 9 Add A to the product, B is odd

136 4 Ignore this A value, B is even
272 2 Ignore this A value, B is even
544 1 Add A to the product, B is odd

Sum up all the A values that had odd B values and you get: 34 + 68 + 544 = 646 =>

Final product.

(a) Part 1: Write a program to find the product of two integers.
(b) Part 2: Modify your program so that it repeatedly asks whether you want to find

another product.

This page intentionally left blank

•3C H A P T E R

Algorithms and Program
Development

A computer will do what you tell it to do, but that may be much different from
what you had in mind.

Joseph Weizenbaum, computer science professor

PROBLEM SOLVING USING COMPUTATIONAL METHODS IS BASED ON ALGORITHMS AND

the programs that implement them. We briefly introduced the concept of an algorithm
earlier. In this chapter, we further develop the concept of an algorithm and show its role in
creating programs to solve problems.

3.1 W H A T I S A N A L G O R I T H M ?
You will hear the word algorithm frequently in computer science (as well as in the closely
related fields of computer engineering and mathematics). What is an algorithm?

The formal definition of an algorithm from a dictionary is (Dictionary.app, Mac
OS X):

algorithm: a process or a set of rules to be followed in calculations
or other problem-solving operations.

Informally, an algorithm is sometimes described as

algorithm: a recipe for solving a problem.

The origin of the word algorithm has an interesting pedigree, which is recounted in
beautiful detail by Donald Knuth in his book The Art of Computer Programming, Volume I,
pg 1. Essentially, algorithm is a recent addition to the language (late 1950), but is derived

153

154 C H A P T E R 3 • A L G O R I T H M S A N D P R O G R A M D E V E L O P M E N T

from an older word, algorism, which Knuth describes as “doing arithmetic using Arabic
numerals.” The word algorithm is derived from the name of a famous Persian author,
Abū‘Abd Allāh Muhammad ibn Mūsā al-Khwārizmī, circa 825. He was a mathematician,
astronomer, and geographer from the House of Wisdom, a library and translation institute
in ancient Bagdhad. He was the author of a famous book that studied linear and quadratic
equations, so famous that the word algebra was derived from the title.

3.1.1 Example Algorithms
Let’s consider a couple of simple algorithms that you might find familiar. First, consider
making a chocolate cake from scratch. Algorithms for preparing food are better known as
recipes and have two components: objects (ingredients) and actions on those objects. If the
ingredients are fresh and we follow the steps correctly, the result is a cake to eat. Here is the
recipe.

Chocolate Cake Recipe
1 stick unsalted butter
1/2 tsp fine salt
4 oz semisweet baking chocolate
1/2 cup cocoa powder
2 eggs
1 tsp pure vanilla extract
2 tsp baking powder
1/2 tsp baking soda
1 1/3 cups whole milk
1/8 cup vegetable oil

1. Melt chocolate in microwave.
2. Mix in butter, sugar, eggs, chocolate, oil, and vanilla until smooth.
3. In separate bowl, mix flour, baking soda, cocoa powder, baking powder

and salt.
4. Add in separate mix along with milk.
5. Pour into greased and floured cake pans
6. Bake at 350 degrees for 30-35 mins
7. Let cool, frost, and eat!

Recipes can be used not only to make food but to make calculations as well. Con-
sider a mathematical algorithm to calculate the square root of a number: the Babylonian
square root algorithm. It is an ancient algorithm attributed to the Babylonians1 and first
described by the Greek mathematician Heron of Alexandria in the first century. It is a
surprisingly fast and accurate way to find a square root, even if just using pencil and paper.

1 Whether the Babylonians knew this algorithm is disputed; nonetheless it is known as the “Babylonian method.”

3 . 2 • A L G O R I T H M F E A T U R E S 155

The algorithm is sometimes called Newton’s Method, from Newton’s generalization of the
algorithm. It is:

Babylonian Square Root Algorithm

1. Guess the square root of the number.
2. Divide the number by the guess.
3. Average the quotient (from step 2) and the guess.
4. Make the new guess the average from step 3.
5. If the new guess is different than the previous guess, go back to step 2;

otherwise, stop.

The Babylonian square root algorithm has a characteristic in common with many
algorithms you will encounter: the devil is in the details. For example, what do we mean by
“different” in step 5? Maybe if the guesses differ by a few thousandths, we will be satisfied
with the answer (and worn out, if calculating with pencil and paper).

There exist a number of algorithms with roots in computer science that are applicable
in everyday life. For example, if there are multiple tellers or ATMs notice how people tend
to form (or are forced to form) one line. Fifty years ago there would have been multiple
lines, but now people naturally choose the optimal queuing algorithm: one line for multiple
servers (tellers). Similarly, there are a pair of algorithms named “first fit” and “best fit,” which
can be applied for parking in a mall or similar venue: should you drive around and try to find
a parking spot close to the entrance (best fit) or would you save more time by simply picking
the first available spot and walk (first fit)? Someone compared those approaches and found
that on average a first-fit algorithm will get you to the door quickest. Google was founded
based on a page-rank algorithm that provided better search results than competitors. The
founders, Page and Brin, became billionaires by starting with a better algorithm.

3.2 A L G O R I T H M F E A T U R E S
Calling an algorithm a recipe works as a first description of an algorithm, but from a
computer science point of view, it is insufficient. In particular, computer scientists are
interested in what makes a good algorithm. There are a number of characteristics that good
algorithms share. However, before we examine those characteristics, let’s try to clarify the
difference between an algorithm and a program.

3.2.1 Algorithm Versus Program
Algorithms and their associated programs are so tightly coupled that sometimes one is
confused with the other, especially when first learning how to program.

156 C H A P T E R 3 • A L G O R I T H M S A N D P R O G R A M D E V E L O P M E N T

There is a difference, and here it is. In the simplest terms:

� An algorithm is a description of how a problem can be solved.
� A program is an implementation of an algorithm in a particular language to run on a

particular kind of computer.

Consider our algorithms for chocolate cake and square roots. The cake recipe leaves out
necessary details for particular kitchens. For example, it doesn’t say where to find a bowl for
mixing. The recipe also doesn’t tell us how to set the oven temperature on a particular stove:
do we spin a dial or punch buttons? The square root algorithm will be implemented differ-
ently when using pencil and paper than using a computer or even an abacus. In all cases, the
missing details are particular to the circumstances of implementing the algorithm. To a cook
working in his or her own kitchen, the implementation details missing from the recipe are not
a problem, because the cook knows where the bowls are and knows how to operate the oven.
In a similar way, a programmer familiar with a particular programming language, operating
system, and computer will implement an algorithm as a program using those details.

Separating what we want to do from how we actually did it provides us with a couple of
advantages:

� We have the opportunity to analyze the algorithm itself, independent of how it was
implemented. This analysis is the “science” in the discipline of computer science.
Separating the algorithm from the implementation allows us to focus on the properties
of the algorithm. For example, analysis of the algorithm may suggest improvements
that improve all implementations.

� We have the opportunity to see how well a programming language allows us to realize
an implementation of the algorithm. Every language has strengths and weaknesses that
make different aspects of an algorithm easier or harder to implement. The design of
computer languages partly focuses on this idea.

� We have the opportunity to analyze the impact of a particular computer and language
on the implementation. For example, there may be cost or power constraints on a
particular problem, so development time may be important or hardware costs may be a
constraint. A programming language choice would affect the former; a processor choice
would affect the latter.

We have emphasized the difference between the algorithm and implementation, and
when first learning, it is best to think of them in that way. However, they are not always as
independent as we have implied. Often there are multiple algorithms that provide correct
solutions for a particular problem. For example, if we want to solve a problem on a particular
computer, we may want to use an algorithm that is well suited to that style of computing.
Two examples come to mind. One involves the multicore processor that can run multiple
pieces of a program at the same time. Some algorithms are more suitable for such an
environment than others. Another example is an embedded processor, such as one that
controls brakes on an automobile. That processor may have little computing power and
memory, so an algorithm with low power and memory demands may be more appropriate.

3 . 2 • A L G O R I T H M F E A T U R E S 157

3.2.2 Qualities of an Algorithm
In the sections that follow, we try to identify four features that help us understand the
qualities we would like to have in a “good” algorithm:

� Detailed
� Effective
� Specific as to its behavior
� General purpose

Detailed
An algorithm has to be detailed enough to specify all that must be done to accomplish the
goal. However, “detailed enough” is tricky to define precisely. An algorithm needs to have
sufficient detail so that by following it exactly (be it on paper or in a program), the desired
result is achieved. Consider the chocolate cake algorithm (recipe). Obviously, “mix some
ingredients and cook” would be an insufficient level of detail, but describing how to stir with
a spoon (“pick up spoon in right hand, hold bowl with left, stick spoon in mixture, . . . ”)
would be too much detail. Common sense and experience defines what “detailed enough”
is for recipes, and even with recipes, the detail varies with the audience. A recipe for an
inexperienced cook contains more detail than what might be needed by an experienced
chef. Similarly, common sense, experience, and the audience also define “detailed enough”
for computer algorithms. The practice of learning about algorithms and encoding them
in programs is necessary to develop an understanding of the level of detail needed in an
algorithm.

Effective
Every algorithm should effectively compute its result. That’s obvious, but what does that
really mean in the context of computing? By effectively computing its result, we mean:

� The algorithm should eventually finish. That is, it should stop at some point and deliver
an answer, even if the answer is wrong or if the answer is “no answer available.”

� The algorithm should not merely finish “at some point”; it should stop in a “reasonable”
amount of time.

It is interesting to note the ambiguities in those statements:

� What is “reasonable”?
� How do you measure a reasonable time without actually implementing an algorithm

as a program and running it?

Be aware that an algorithm can be impossibly slow, even if implemented efficiently
in a programming language, and even if it runs on the fastest computer available. Some
seemingly simple problems have algorithms that take an unreasonably long time to solve.
For example, there are hundreds of millions of mailing addresses in the United States: in

158 C H A P T E R 3 • A L G O R I T H M S A N D P R O G R A M D E V E L O P M E N T

what order should those individual pieces of mail be delivered such that the delivery process
uses the least amount of energy? Finding a good solution can be done in a reasonable
amount of time, but finding the best solution could literally take multiple lifetimes on the
fastest computers. Most people would agree that finding the best solution in that case would
not be a “reasonable” amount of time. In addition, the solution time is so long that the
problem itself would have changed before the best solution for the original problem was
found—many addresses would have changed!

Finally, to achieve completion in a reasonable time, the behavior of the algorithm may
not be exact. That is, it gets an answer all the time, but it may not be the “best” answer
every time. Sometimes we must be willing to accept “close answers” as a trade-off for getting
results in a reasonable time. There are many problems with this characteristic. Consider
weather prediction. Weather prediction is a particularly difficult problem that typically
requires so-called supercomputers to solve the problem. However, weather prediction is not
perfect (as we are all too often aware), because the time it takes to get “better” solutions
is presently far too long. For example, it would not be very helpful to take longer than
24 hours to predict the next 24 hours of weather!

Specific Regarding Behavior
An algorithm must specify its behavior—that is, what it is supposed to do, and even what
it cannot do. For example, an important part of the behavior of an algorithm is the input
it requires and output it produces given appropriate (perhaps even inappropriate) input. In
fact, the algorithm provides a description that relates the input to the output. That is, given
this input, the algorithm should produce this output. The algorithm should indicate what
inputs are required (including no input) and defaults that might be assumed. The algorithm
should also describe the output that should be produced, including error conditions that
might result.

The “correct behavior” of the algorithm should be made clear. For example, if the
algorithm is addition, then the input of two integers should result in the output of a single
integer that is the sum of the two input integers.

Specifying input is also critically important for security, because most security breaches
are related to incorrect input handling. Knowing what input is required and expected is
necessary for correct handling of it.

General Purpose
Most algorithms are, at least to some extent, general purpose. For example, a bread recipe
should result in bread: different ingredients will result in different-flavored breads, but the
basic recipe is the same. Similarly, a sort algorithm that orders elements according to some
comparison results should sort appropriately regardless of whether the elements being sorted
are words or numbers. The basic steps of the algorithm are the same, only the ingredients
are different.

3 . 3 • W H A T I S A P R O G R A M ? 159

Algorithms are general purpose by design, because an algorithm is an idealized compu-
tational module. The implementation details (how to compare types, how to iterate through
types) are the problems of the implementation, not the general approach. Although any
solution you might devise to solve a problem might be deemed an algorithm by you, a really
good algorithm that stands the test of time should be written in a way that can apply to any
instance of the problem.

Remember: a program is an implementation of an algorithm! You formulated an
algorithm to create the program, but the algorithm is not the program. The sharing of
algorithms with others for analysis is important for both correctness and robustness.

3.2.3 Can We Really Do All That?
Our list of features is good to have. We would like the algorithms we create to have every
one of those qualities, but that may not be possible in every case. In particular, achieving
all of them when writing one’s first algorithms is particularly difficult. However, striving for
detail, effectiveness, specification of behavior, and generality is a worthy goal.

In practice, especially at the beginning, you will find your algorithms to be very specific
to a particular problem. Your first algorithms will not be efficient. Also, if the problem is
challenging, your algorithm may not lead to an exact result. All of those characteristics are
the reality for novice algorithm writers, so they are acceptable in a first course. Nonetheless,
we encourage you to strive for good algorithms.

3.3 W H A T I S A P R O G R A M ?
If an algorithm is an idealized computational process, then a program is an actual imple-
mentation of that ideal. It exists in a particular language to be run on a specific computer.
In the sense that an algorithm is an abstraction of a solution to a problem, the program is
the actual solution. As such, it has a number of features that differ from an algorithm. We
describe in the following sections three important features of a program:

� Readability
� Robustness
� Correctness

3.3.1 Readability
Programs must be written for people to read,
and only incidentally for machines to execute.

Abelson & Sussman2

2 H. Abelson and G. Sussman, Structure and Interpretation of Computer Programs, 2nd ed. (Cambridge, MA: MIT Press, 1996).

160 C H A P T E R 3 • A L G O R I T H M S A N D P R O G R A M D E V E L O P M E N T

When students are asked, “What is the most important feature of a program?” we often
get the answer “The program should run and solve the problem.” It is true that a program
should do something, but that may not be its most important feature. To most novices’
surprise, one of the most important features of a program is that it be readable—it is a
document that describes to a reader how the writer is solving a problem. This is a reiteration
of our previous RULE 2, a program being a human-readable essay. As an implementation
of an algorithm, a program is a piece of your thoughts made concrete. That is a powerful
statement and worth emphasizing. A program is your thoughts on a problem, made concrete
so that not only can they be read but implemented and realized. This is one of the promises,
and the hopes of computer programming, and it is a lofty one at that.

As such, for anyone else to understand what you were thinking, the code should be
written clearly. Note that there are really two audiences for your document: the computer
and the reader. Good enough to “run” may not be good enough to be “understandable” to
a human.

Programs need to be read, and understood, to be useful. A successful program will
be used more than once and possibly maintained or modified by others. In fact, a poorly
written program will be incomprehensible even to the author after some time. As a test, six
months after completing this course, come back and see whether you can make sense of
all your code. Some of it will be incomprehensible, even to you. Imagine how it looks to
others!

Someone who writes difficult-to-read programs will not be able to get effective help
or advice from others. Also, such code is unlikely to be secure, and the brief history of
computing has reinforced the idea that code that is examined by many eyes is more likely
to do what it was supposed to do with fewer errors.

Consider the Obfuscated C Code Contest.3 This contests challenges programmers
to write code that accomplishes a specific goal while being as unreadable and obfuscated
(meaning made purposefully obscure) as possible. In so doing, the contest provides examples
of what you can do to make the code “just run,” ignoring and even defying readability. Take
a look at some of the examples online and see what you think.

The Simplest Thing: Good Names
There are a variety of good rules for readable programs, but the first and most common
is good naming. Good names help with readability, and good naming is easy. Basically, be
descriptive in your naming. Descriptive names can be aided by using the Google naming
rules we discussed in Section 1.5. The phrase “lower with underline” should be familiar to
you by now.

� For variables, names should reflect what their role is and, potentially, information about
what they can hold, such as a type.

� For operations, names should reflect what they do and, potentially, what they return.

3 Copyright © 2004–2009, Landon Curt Noll, Simon Cooper, Peter Seebach, and Leonid A. Broukhis, www.ioccc.org.

www.ioccc.org

3 . 3 • W H A T I S A P R O G R A M ? 161

As an example, consider Code Listing 3.1. What does this code do?

Code Listing 3.1

a = input("give a number: ")
b,c=1,0
while b<=a:

c = c + b
b = b + 1

print(a,b,c)
print("Result: ", c/b-1)

First, it is hard to tell what the program does. Part of the problem is that the variable
names are not descriptive. We will see that there is a time and a place for single-character
variables, but a readable program will have few. Second, there are no comments. What is
the program supposed to be doing? Third, there are two errors in this program, and its lack
of readability makes them difficult to find. If you run the code, the first error prevents the
code from running (what is it?). Second, if that first error is fixed, we end up with the wrong
answer.

Here is a cleaned-up and easier-to-read version of Code Listing 3.2. Is it easier to
understand? Can you find the changes that fix the errors in the previous example?

Code Listing 3.2

Calculate the average o f a sum of con s e cu t i v e i n t e g e r s in a given range .

limit str=input("Range is from 1 to your input:")

limit int = int(limit str)
count int = 1
sum int = 0
while count int <= limit int:

sum int = sum int + count int
count int = count int + 1

average float = sum int/(count int - 1)
print("Average of sum of integers from 1 to",limit int,"is", average float)

What were the errors?
� We didn’t convert the string input value in variable a to an int. Python does not allow

comparison of numbers and characters.

162 C H A P T E R 3 • A L G O R I T H M S A N D P R O G R A M D E V E L O P M E N T

� The order of operations for calculating the average used improper order of operation:
the expression (b-1) should be in parentheses.

You need to be able to read what was written to find problems like this; otherwise, the
errors (your errors!) can be very difficult to find.

Comments
Comments are essential for readability. Even though code is precise, programming languages
are not the best language for human understanding—even for experienced programmers.
The necessity of comments, even for the author of the code, is something that novice
programmers find hard to accept. It is not uncommon for experienced programmers to go
back at some time to read their own old code and find it incomprehensible. Such experience
helps them appreciate the importance of comments.

Like other aspects of readability, there are no well-defined rules for how much com-
menting is necessary. Too many comments can make the program hard to read; too few
make parts of the code difficult to understand. Finding a balance comes with experience.
However, over time, some guidelines have surfaced.

Place comments to indicate:
� The overall goal of the code. This is usually placed at the top as a summary.
� The purpose of objects that are not clear from their names.
� The purpose of other functions that are provided by the system or, as you will learn,

written by us. This includes the input required and the output expected.
� Where something “tricky” or “unusual” is going on: if it required thought on your part,

it should be commented.

The last guideline is particularly important. Your comment on some line of code should
not just reiterate the code itself. For example, is the Code Listing 3.3 version of the previous
program better for all the comments?

Code Listing 3.3

Calculate the average o f a sum of con s e cu t i v e i n t e g e r s in a given range .

input the value
limit str=input("Range is from 1 to your input:")
#convert the input s t r i n g to an input
limit int = int(limit str)
a s s i gn 1 to the counting var iab l e
count int = 1
a s s i gn 0 to the sum
sum int = 0
while loop runs while the counting var iab l e i s smal l e r than the input value

3 . 3 • W H A T I S A P R O G R A M ? 163

while count int <= limit int:
add the count and the sum, r e a s s i gn to sum
sum int = sum int + count int
add one to the count
count int = count int + 1

ca l cu l a t e the average
average float = sum int/(count int - 1)
print the r e s u l t
print("Average of sum of integers from 1 to",limit int,"is", average float)

No, it isn’t. The code is well enough written so that most of those comments are not
needed. Reiterating in comments what is clear already in the code actually makes things
harder to read. Only at places where the code itself is hard to read, or where some particularly
important aspect of the algorithm is being laid out, should comments be inserted. As a rule
of thumb, if it was hard to write, it will likely be hard to read unless it is explained via
comments.

That is important enough that we should add it as one of our rules.

Rule 6: If it was hard to write, it is probably hard to read. Add a comment.

An experience you will have: You write some code and provide a silly comment like
“good luck here” or something similar. You come back in a month after you have forgotten
what you were doing and find yourself angry at the callousness of the idiot who wrote that
comment (which, as you recall, was you)!

You are enhancing readability not only for others but also for yourself!

Indenting Code
Indenting is an important ingredient of readability. Getting indentation correct to show
what code belongs to what control statement is crucial for readability. Thankfully, you must
get this correct, because Python makes you do so. This is one of the nice aspects of Python:
enforcing readability right from the start.

3.3.2 Robustness
Programs should be as robust as possible in the face of unpredictability. Programs should be
able to recover from inputs that are unanticipated. For example, if a program does division,
and a zero divisor is provided (remember that division by zero is undefined in mathematics),
the program should not halt unexpectedly. The program should be designed to deal with
such erroneous input.

In an ideal world, all input should be predictable, but the reality is different—something
unexpected will happen if a program is sufficiently popular, especially if it’s used in situations

164 C H A P T E R 3 • A L G O R I T H M S A N D P R O G R A M D E V E L O P M E N T

not imagined by the designer. A program by design should know what input it expects but
be sufficiently robust to handle everything else—especially inputs the designer couldn’t
imagine. Most security errors in software come from mishandling of unanticipated input.
Often the unanticipated input comes from the software being used in ways not imagined
by the designers.

Achieving robustness requires two actions:

� The program designer should account for error situations in the design of a program.
In particular, the designer should know what input is expected and design in a way to
handle situations if anything else occurs.

� The designer should devise tests to determine whether the program not only satisfies
the original design but also, as it evolves, continues to deal with all cases (including
error cases), no matter how the program is changed.

We remember RULE 5 and its call to test and test often. However, it may not be very
obvious that it can be very difficult to “fully test” a program. The number of cases can
be very large—too large to test all cases in a reasonable amount of time. It may not even
be obvious how many cases there are. A very good recent example is the case of the first
Intel Pentium processor. The processor had a bug in its division unit that caused only 1 in
9 billion floating-point divides to be incorrect. The rarity of this error evaded testing but
showed up quickly after the processor was in the public’s hands. The error is even more
interesting, because it turned out that a software error in loading a table for manufacturing
was the root of the problem—a small part of the table came out as all zeros.4 Testing before
manufacturing showed the division to be correct, but testing after manufacturing didn’t find
the newly introduced error.

We talk more about more robust methods of testing later in Chapter 15. However, the
difficulty of testing does not invalidate our rule. We need to test our code to make sure it
works.

3.3.3 Correctness
Obviously, correctness is essential. It seems equally obvious that if we design an algorithm
and then implement that algorithm as a program, the program should be correct—that it
does what it was supposed to do. If the program is supposed to sum two numbers, then it
should produce correct sums. It seems so simple, doesn’t it?

In fact, determining correctness is extremely difficult. For any program of even moderate
size, it is very difficult to determine from the design of the program alone (that is, without
running it on test cases) that it is correct. Combine that fact with the knowledge that
sometimes it is not possible to test all cases, and you find that proving correctness is often
not feasible.

4 http://en.wikipedia.org/wiki/Pentium bug

http://en.wikipedia.org/wiki/Pentium_bug

3 . 4 • S T R A T E G I E S F O R P R O G R A M D E S I G N 165

Proving correctness is a vital and growing area in computer science, but designing
provably correct programs is a task for the future. For now, the best we can do is design well
and to test as best as we can. When done with care, testing early in program development
can help produce more correct programs.

3.4 S T R A T E G I E S F O R P R O G R A M D E S I G N
If you can’t solve a problem, then there is an easier problem you can solve: find it.

Pólya

There are many strategies for solving problems in general, and these strategies also work
for solving problems with a computer. Different strategies work for different problems, and
some people find that one strategy fits their style of thinking better than other strategies.
In the end, you need to look at various approaches and find the one that works for you for
the problem at hand. There isn’t a one-size-fits-all method for solving problems, but we can
provide some general guidelines.

If you want reference on problem solving, consider the classic How to Solve It by Pólya.5

It was written in the first half of the twentieth century, but it is still one of the best, and
most libraries have a copy.

3.4.1 Engage and Commit
You need to be ready to work on the problem. Problem solving is an activity that requires
a commitment of mental resources. Persistence helps, so don’t give up easily. Put some
time in, even if it seems difficult. Multitasking can be particularly distracting. For example,
Dr. Thomas Jackson of Loughborough University, England, found that it takes an average of
64 seconds to recover your train of thought after interruption by email.6 So people who
check their email every five minutes waste eight and a half hours a week figuring out what
they were doing moments before.

It is particularly important to find some uninterrupted quality time to do the work. Re-
member that time is not effort. Putting 10 hours into a program does not (necessarily) mean
that you were actually programming for 10 hours. If you are wasting time, change strategies
or take a break and come back to it. Of course, if you have left the problem to the last minute,
these last options are not available—even though they are frequently the most valuable.

To engage with the problem, set the mood—whatever that means for you. For most
people, setting the mood involves removing distractions. Music may do the trick, or possibly
the right environment. Find what works for you and use it.

5 Pólya, George, How to Solve It (Princeton, NJ: Princeton University Press, 1945).
6 Suw Charman-Anderson, “Breaking the Email Compulsion,” Guardian, August 28, 2008. Copyright Guardian News and Media Ltd.,

2008.

166 C H A P T E R 3 • A L G O R I T H M S A N D P R O G R A M D E V E L O P M E N T

3.4.2 Understand, then Visualize
Now that you are in problem-solving mode, you have to get a handle on the problem. You
cannot solve it until you understand it.

What Is the Actual Problem?
Often a problem starts as a simple statement: We want to create a “horseless carriage”—a
mode of transportation that does not require a horse to get around. Designing an automobile
(which is what a horseless carriage is) for the first time is difficult. No one has ever seen one
before! We use strategies, therefore, to address the problem. For example, is our problem
similar to other, hopefully solved, problems? That is, are there any similar problems that you
can relate this problem to? Is the process of designing a “horsed” carriage helpful? We could
use carriage wheels and perhaps a carriage body, but there are problems not yet addressed,
such as the engine and transmission.

With computational problems, ask yourself whether there any similar problems with
known solutions (in software design those are called “patterns”). In a course, you may find
example problems or earlier homework that is sufficiently similar to use as a starting point
toward understanding the problem at hand.

If the problem is something you have posed, finding a way to phrase the problem exactly
can help. With a computational problem, that means:

� What inputs are required?
� What tests on the input are needed?
� For each input, what is the expected or required output?
� What tests on the output are appropriate?
� As mentioned earlier, do you know a similar problem?

If the problem is given to you as a homework assignment, there may be many parts to
the description. Do you understand each one? Did you get all the requirements? As with
the formulation any problem, you need to consider the inputs and outputs, how they relate,
and how they are tested.

If you have a problem to solve and are expected to write a program to solve it, you have
to understand just what is required to a level of detail that you rarely do for other problems.

Making the Problem Real
Now that you have some understanding of the problem, can you make it “real” somehow?
What that means is up to you, but the result is that you can “play around” with your
understanding and see better what is entailed. For example, if the problem is to write a
program that plays a card game, now is the time to pull out a deck of cards and give it a try.

Other options for different kinds problems include the following:

� Work some simple examples using pencil and paper.
� Work some examples using objects such as playing cards or toy cars.

3 . 4 • S T R A T E G I E S F O R P R O G R A M D E S I G N 167

� Draw some graphs.
� Create diagrams of the interaction.
� Do something!

Can you visualize the problem in some way to make it more real to you? If so, it may
give you better insight into the problem. By making the problem real in some way, you can
play with the problem and get a better grasp on what you have to do to solve it. This activity
can also help you later on, if you get stuck partway through the solution.

3.4.3 Think Before You Program
We’ve seen this before. Heck, this is our RULE 1. It is easier said than done, but it is still
important that you understand the problem before you program. Often, programming
while you are simultaneously trying to solve the problem leads to a condition known as
“dung ball” programming. Remember the lowly dung beetle, a creature that slaps pieces
of dung onto a growing ball into which it places its eggs. Programming before you “get”
the problem leads to a similar approach. Pieces of program are “slapped on” to the overall
solution without much view toward the overall goal. How could this approach work, if you
don’t fully understand the problem? Sadly, the result is the same—a ball of dung.

3.4.4 Experiment
Now you know the problem and you’ve played with it a bit. What’s next?

Instead of trying to write the whole program from beginning to end, try out some
strategies. Python allows you to type code directly in the interpreter. Using Python in this
mode allows you to try some of your ideas without coding a whole program. This is really
a variant of our RULE 3. We can test out our ideas easily in the Python interpreter and see
what results.

Can you translate some of your ideas into code? Even something small can give you
something concrete to work with. If nothing comes immediately to mind, can you look
around (help, books, Internet) and get some ideas on how to write something small as a
start? That is, simplify!

It is most important to try some things to see what happens. Experiment with code.
Try something—it will be wrong at first, but as Edison famously observed, you now know
one more thing that doesn’t work. Novice programmers especially seem very reluctant to try
things. They want to just solve the problem and move on. It is better to try a few ideas out
and get rid of the bad ones before they become part of your solution.

3.4.5 Simplify
Of all the approaches, this is the best strategy! As observed by Pólya: if you cannot solve a
problem directly, perhaps an easier (more restricted, focused on some particular aspect, etc.)

168 C H A P T E R 3 • A L G O R I T H M S A N D P R O G R A M D E V E L O P M E N T

version of the problem exists that you can solve. Look for those simpler aspects of the
problem!

Think of your problem as a puzzle with multiple pieces, each its own smaller problem
to solve. The smaller problems will be more manageable and hence more easily solved by
you. In fact, you may find the whole problem totally unsolvable, yet find each piece easy to
solve. Having solved the smaller pieces, the assembly of those pieces into an overall solution
is much easier than tackling the whole problem. Another name for this strategy comes from
the military: divide and conquer.

To be successful with simplification, you must:

� Find the pieces. Can you find the subtasks in your problem?
� Solve each of the pieces.
� Put all the solved pieces back together as an overall solution.

The hardest part is the first step: find the pieces. The ability to find the smaller parts
develops with experience, but there are few computational problems that cannot be broken
down into smaller pieces. Try very hard to find the pieces.

By breaking the problem down into simpler problems, you accomplish two things.
Psychologically, you make the overall problem more tractable. Rather than staring at the
larger problem and lamenting that you don’t know how to start, you can start by solving
smaller, simpler pieces and moving on. Success breeds further success. Also, smaller pieces
usually are simpler to approach. By solving the smaller problems in isolation, you can solve
them better and more completely. Not only will you have broken down the problem into
easier pieces, but you will also have better solutions to each piece when it comes time to put
it all back together.

Persistence is important. Expect to be able to divide and conquer the problem.
Some of our longer examples illustrate the divide-and-conquer strategy. For example,

look back at the perfect number example in Section 2.1.5 and observe how we broke the
problem into smaller and simpler pieces to solve the larger problem.

The “Onion” Approach
One useful way to divide and conquer a problem is to write the larger solution as if the
solutions to the pieces already exist. For example, if you were writing a program to control
a robot to go someplace, you might start with “turn in the right direction.” You likely don’t
know how to program the robot to do exactly that, but you can simply assume that you
can figure it out later and concentrate now on the next task. When you come back to that
problem piece, you will need to consider only “turn in the right direction” rather than the
whole problem.

In this way, you will find it easier to write programs that are essentially skeletons of what
you think the final program will look like. Once the skeleton is created, you can go back
and begin to slowly fill in pieces. You imagine tasks, and, though you may not be able to
solve them immediately, you can position the task in the code, perhaps only with comments

3 . 5 • A S I M P L E E X A M P L E 169

about what the task does. Work through the problem with tasks that you imagine can be
done. In this way, you bring the program to life. With the pieces identified, you can now
tackle them in isolation.

In this way, you tackle the problem layer by layer, adding more to the onion until you
are satisfied. The example at the end of the chapter illustrates this approach.

3.4.6 Stop and Think
At some point in the middle of this process, you need to stop and look at what you have
done so far and evaluate your results. It might be that your skeleton is not coming to life
as you had hoped. You might have started down a problem-solving path that, now that you
are further along, seems like a poor approach. You need to be willing to throw something
out if it isn’t working. Avoid the dung-beetle approach to programming: rolling a bigger
ball of dung by adding more bad code onto existing bad code. Be brave and be willing to
throw the bad part away and do it right. Don’t be “stiff,” and don’t bang your head against
the wall trying force a solution you thought was correct in the beginning and isn’t working
anymore.

That is, stop and think.

VideoNote 3.1
Algorithm
Decomposition

3.4.7 Relax: Give Yourself a Break
If you work long enough at a difficult problem, you are likely to get stuck at some point.
What do you do now? How do you unstick yourself ? One of the best approaches is to walk
away, let it go for a while, take a breather, and come back when you are fresh. Letting a
problem sit is a way to relax and look at it with fresh eyes later on. Having broken down the
problem into smaller pieces makes this step easier—reconnecting with a smaller problem is
easier than with a larger problem. Also, you may be able to work for a while on a different
piece of the puzzle.

However, if you have left your problem to the last minute, you do not have this step
available. Use your time well. Starting late on a program makes everything harder.

3.5 A S I M P L E E X A M P L E
Let’s implement the Babylonian square root algorithm to illustrate how to apply some of
the ideas presented so far.

First, note the subtle difference in this version when compared to the earlier version.
Earlier, we observed that equality between two floating-point values was not precisely
defined. In fact, we discussed that a “small enough” difference was good enough. Here
we have addressed that issue by introducing a tolerance That is, “different” means that the
two values differ by less than some tolerance that we define as “good enough” for our
algorithm.

170 C H A P T E R 3 • A L G O R I T H M S A N D P R O G R A M D E V E L O P M E N T

We begin with the requirements:

1. The user provides three inputs: an integer number to find the square of, an integer
initial guess, and a floating-point tolerance. All of these inputs are required. When the
difference between two successive answers generated by the algorithm differs by a value
less than the provided tolerance, the algorithm finishes.

2. Babylonian square root algorithm:
(a) Guess the square root of the number.
(b) Divide the number by the guess.
(c) Average the quotient (from step b) and the guess.
(d) Make the new guess the average from step c.
(e) If the new guess differs from the previous guess by more than the specified tolerance,

go back to step b; otherwise, stop.
3. When the algorithm reaches the finishing condition, output the original conditions

(number, guess, tolerance), its square root, and the number of iterations (guesses)
required to reach that result.

3.5.1 Build the Skeleton
Let’s now try to put together an outline of the program in the form of a skeleton program.
There are three parts to the description, so let’s start with three parts of the skeleton. We
express this skeleton first as comments in English:

get three inputs from the user (two ints , 1 f loat)

do the algorithm steps described above

output the three original values , the number of
iterations and the square root

See, that wasn’t too hard. In fact, it was trivial, but that is the point. Start with something
you can do. We now have three pieces that can be considered separately.

3.5.2 Output
Which piece should we solve first? Go for the easiest. Let’s pick output. Here is an outline
of what our code might be:

print("Square root of",number," is:",guess)

print("Took ",count," reps to get it to tolerance: ",tolerance)

print("Starting from a guess of:", original guess)

3 . 5 • A S I M P L E E X A M P L E 171

Some of the variables we will use in other parts of the program are first defined here in
these output statements. Of course, our program piece won’t run yet, because those variables
have not yet been assigned values. Here is what our program looks like so far:

get three inputs from the user (two ints , 1 f loat)

do the algorithm steps described above

output the three original values , the number of
iterations and the square root
print("Square root of",number," is:",guess)

print("Took ",count," reps to get it to tolerance: ",tolerance)

print("Starting from a guess of:", original guess)

Notice how we have left out the type suffix. We did that to illustrate a point: let’s see
what trouble we get into because of that omission.

3.5.3 Input
The input looks like the next easiest task. It will use some of the variables we have already
defined, providing them with the values that they presently lack. Properly doing input will
require checking whether we are getting the input we want, but we can begin by assuming
the input is good initially. That assumption lets us get going and allows us to come back later
and solve the input problems more fully. Filling in details later makes solving the problem
easier now and allows us to focus better later when only details remain.

For our first cut, let’s just work with one of the inputs—the number to find the square
root of. We’ll need to do something similar for the other two numbers, so let’s keep it simple
by doing one first. That is, simplify first, and then once we get that working, repeat it for
the remaining numbers. What we have to do is:

� Prompt the user
� Turn the resulting string into the appropriate type (here, an integer)

number str = input("Find the square root of integer: ")
number int = int(number str)

Is that good enough? Yes and no. As long as you expect the user to type only integers in
response to the prompt, then it is good enough. However, what if the user mistypes, an “a”
instead of a “1”? What will happen? (Try it.) Remember that our goal is to create a robust
program, one that can respond to even incorrect input. What might we do to deal with this
problem? Ultimately, it comes down to checking whether the input, a string in this case,
has the kind of information within that we desire. Doing so at this stage is a little beyond
our abilities, but it is important to be aware that we have a problem here, and that we will

172 C H A P T E R 3 • A L G O R I T H M S A N D P R O G R A M D E V E L O P M E N T

learn how to address it when we learn more about strings. For now, we will assume that the
user types an integer in response to the prompt. If not, the program will halt with an error.

We can repeat the process for the other input, giving good names to the new variables.
Note that for the tolerance flt value, we combined the input and conversion to
float into one line. We did this by taking the return value of the input function and
calling the float function on that return value. This looks like a “function within a
function” in the code. It is shorter, but is it more readable? You be the judge. Code is shown
in Code Listing 3.4.

Code Listing 3.4

Newton ' s Method to c a l cu l a t e square roo t

g e t thr e e inputs from the user (two in t s , 1 f l o a t)
note not robust on bad input
num str = input("Find the square root of integer: ")
num int = int(num str)
guess str = input("Initial guess: ")
guess int = int(guess str)
tolerance float = float(input("What tolerance: "))

original guess int = guess int # hang onto the o r i g ina l gue s s
count int = 0 # count the number o f g u e s s e s

do the algorithm s t e p s as de s c r ibed above

output the thr e e o r i g ina l values , the number o f
i t e r a t i o n s and the square roo t
print("Square root of",num int," is: ",guess int)
print("Took ",count int," reps to get it to tolerance: ",tolerance float)
print("Starting from a guess of: ", original guess int)

Testing the Input Routine
Ah, RULE 5 again. We need to test what we have, even though it is incomplete. When run,
the program should prompt for input and provide some output. No calculations are yet
made, so the answers are wrong, but the existing parts do work. Having confirmed that the
two provided parts work as required, we can move on to the next step:

>>>
Find the square root of integer: 16
Initial guess: 2
What tolerance :0.01
Square root of 16 is: 2

3 . 5 • A S I M P L E E X A M P L E 173

Took 0 reps to get it to tolerance: 0.01
Starting from a guess of: 2
>>> ================================ RESTART ================================
>>>
Find the square root of integer: 16
Initial guess: a
Traceback (most recent call last):
File "/Users/bill/tpocup/ch03/programs/program4-3.py", line 8, in <module>
guess int = int(guess str)

ValueError: invalid literal for int() with base 10: 'a'
>>>

Even though our testing is not complete, it looks promising. Note that the program
does fail with incorrect input.

3.5.4 Doing the Calculation
Now we have two simple parts working: the input and output. Next we need to do the real
work: the calculation. Here is the basic algorithm again:

Babylonian square root algorithm:

1. Guess the square root of the number.
2. Divide the number by the guess.
3. Average the quotient (from step 2) and the guess.
4. Make the new guess the average from step 3.
5. If the new guess differs from the previous guess by more than the specified tolerance,

go back to step 2; otherwise, stop.

We already have the initial guess, so let’s focus next on steps 2, 3, and 4. Those steps
are simple enough to write directly from the English in the algorithm. Observe how steps 3
and 4 are combined into one Python statement. Step 3 is on the right-hand side and step 4
is the left-hand side of the statement.

quotient = number/guess
guess = (quotient+guess)/2

Step 5 tells us to repeat our steps, but how often? Step 5 tells us to keep going if the
new guess differs from the old guess by a tolerance. Rephrased, step 5 tells us that while
the difference is greater than the tolerance, we keep going. What difference? We calculate
the difference between the previous guess and the current guess. The result is:

while (previous - guess) > tolerance:
quotient = number/guess
guess = (quotient+guess)/2

We now have a slight problem because the variable named previous does not have
a value. We need to get the previous value of the variable named guess. In addition,

174 C H A P T E R 3 • A L G O R I T H M S A N D P R O G R A M D E V E L O P M E N T

previous needs to change every time there is a new guess. A good time to do that is before
guess gets its new value. Finally, previous needs an initial value before we find the dif-
ference the first time. An initial value of 0 works fine, as there is no “previous” value initially.

previous = 0
while (previous - guess) > tolerance:

previous = guess
quotient = number/guess
guess = (quotient+guess)/2

Now let’s stick that piece of code into the rest of the program. Let’s clean up the names
a bit as well and add their types to their names (so we can track things better). Note that we
need to change guess from an int to a float, and subsequently other variables as well.
Take a look at Code Listing 3.5 and see if you can tell why.7

Code Listing 3.5

Newton ' s Method to c a l cu l a t e square roo t

g e t thr e e inputs from the user (two in t s , 1 f l o a t)
note not robust on bad input
number str = input("Find the square root of integer: ")
number int = int(number str)
guess str = input("Initial guess: ")
guess float = float(guess str)
tolerance float = float(input("What tolerance: "))

original guess float = guess float # hang onto the o r i g ina l gue s s
count int = 0 # count the number o f g u e s s e s
previous float = 0 # track the previous ca l cu la t ed value

while (previous float - guess float) > tolerance float:
previous float = guess float
quotient float = number int/guess float
guess float = (quotient float + guess float)/2
count int = count int + 1

output the thr e e o r i g ina l values , the number o f
i t e r a t i o n s and the square roo t
print("Square root of",number int," is: ",guess float)
print("Took ",count int," reps to get it to tolerance: ",tolerance float)
print("Starting from a guess of: ", original guess float)

7 Reason: guess is going to be updated by division, which always returns a float.

3 . 5 • A S I M P L E E X A M P L E 175

Two output variables that we didn’t discuss are handled in the previous code. The first
is that we needed a value for the variable original guess flt. It needs to go right
after the conversion of guess str to guess flt so it holds the original value of the
guess. We also included count int, which is a count of the number of times through the
loop.

Now the program appears to have all the pieces, but does it give us the answers we
want? Let’s test it:

>>>
Find the square root of integer: 100
Initial guess: 5
What tolerance: 0.0000001
Square root of 100 is: 5
Took 0 reps to get it to tolerance: 1e-07
Starting from a guess of: 5

Hmmm, that isn’t very good, is it? What’s wrong?

We need to step through what we have done to find the problem. Where did we go
wrong?

Scanning the output for anomalies is a good start. “Took 0 reps to get it to tolerance”
sticks out. That means that the main while loop was never entered. Hmmm.

Let’s reason our way through the code one step at a time:

� The input used means that num int = 100 , guess flt = 5 , and
tolerance flt = 0.0000001 . There are three reasons to believe that the in-
put part is okay. First, it is simple; second, we output the input as a check; and third, it
was tested. By having tested the code previously, we are confident it is correct.

� We can verify by reading that previous flt correctly gets set to 0.
� When the loop is entered, the difference previous flt - guess flt is -5.0.

Is -5.0 > .0000001? No, so the Boolean expression is False and we never entered our
while loop.

� We found a problem.

The negative value in the Boolean expression is causing us a problem. The variables
previous flt and guess flt are 5 apart, but the difference is -5.0, which, as it turns
out, is less than our tolerance. It would be better for the difference to always be positive. How
can a difference always be positive? How about an absolute value function? Such a function
would always yield a positive number. Fortunately, Python provides a abs function. Note
that this issue is essentially the same as the Programming Tip on floating-point equality in
Section 2.2.3.

The revised while loop is now:

while abs(previous flt - guess flt) > tolerance flt:

176 C H A P T E R 3 • A L G O R I T H M S A N D P R O G R A M D E V E L O P M E N T

Let’s test it to see how we are doing.

>>>
Find the square root of integer: 100
Initial guess: 5
What tolerance: 0.0000001
Square root of 100 is: 10.0
Took 6 reps to get it to tolerance: 1e-07
Starting from a guess of: 5.0

That result looks promising. Let’s try another:

>>>
Find the square root of integer: 2
Initial guess: 1
What tolerance :0.0000001
Square root of 2 is: 1.414213562373095
Took 5 reps to get it to tolerance: 1e-07
Starting from a guess of: 1.0
>>>

That looks good as well.
Here then is the final program.

Code Listing 3.6

Newton ' s Method to c a l cu l a t e square roo t

g e t thr e e inputs from the user (two in t s , 1 f l o a t)
note not robust on bad input
number str = input("Find the square root of integer: ")
number int = int(number str)
guess str = input("Initial guess: ")
guess float = float(guess str)
tolerance float = float(input("What tolerance: "))

original guess float = guess float # hang onto the o r i g ina l gue s s
count int = 0 # count the number o f g u e s s e s
previous float = 0 # track the previous ca l cu la t ed value

while abs(previous float - guess float) > tolerance float:
previous float = guess float
quotient float = number int/guess float
guess float = (quotient float + guess float)/2
count int = count int + 1

S U M M A R Y 177

output the thr e e o r i g ina l values , the number o f
i t e r a t i o n s and the square roo t
print("Square root of",number int," is: ",guess float)
print("Took ",count int," reps to get it to tolerance: ",tolerance float)
print("Starting from a guess of: ", original guess float)

More testing might be needed, but we’ll leave that as an exercise for the reader.

VideoNote 3.2
Algorithm
Development

Summary
In this chapter, we introduced the concept of an algorithm, especially with respect to
the implementation of algorithms in programs. We also discussed some problem-solving
techniques. With these two concepts in hand, we can tackle more complex problems.

Algorithms
� An algorithm is a description of how a problem can be solved.

A program is an implementation of an algorithm.

� An algorithm should be:

- Detailed
- Effective
- Specific
- General purpose

� An program should be:

- Readable
- Robust
- Correct

Rules
� RULE 1: Think before you program!

� RULE 2: A program is a human-readable essay on problem solving that also happens
to execute on a computer.

� RULE 3: The best way to improve your programming and problem skills is to practice!

� RULE 4: A foolish consistency is the hobgoblin of little minds.

� RULE 5: Test your code, often and thoroughly!

� RULE 6: If it was hard to write, it is probably hard to read. Add a comment.

178 C H A P T E R 3 • A L G O R I T H M S A N D P R O G R A M D E V E L O P M E N T

Exercises
1. Write an algorithm for frying an egg. Test it out with a friend: in a kitchen, read the

algorithm and have the friend do exactly what you say. How did you do?

2. (Algorithms vs. programs)

(a) Define algorithm and program.
(b) In what ways are they the same?
(c) In what ways are they different?

3. Write an algorithm that determines whether a number is between 2 and 20 and is
divisible by 3.

4. We mentioned first fit and best fit as applied to finding parking spaces at a mall.

(a) Write a first-fit car-parking algorithm.
(b) Write a best-fit car-parking algorithm.
(c) In your own words, explain why first fit might be a better algorithm on average to

minimize the time to get to the door of the mall.

5. When you are stuck on creating a program, it helps to stop and think. Can you see
what is wrong with the following program? Why is it generating an error?

A int = input('Enter an integer greater than 10: ')
while A int > 10:
A int = A int - 1
print(A int)

•4C H A P T E R

Working with Strings

The basic tool for the manipulation of reality is the manipulation of words.

Phillip K. Dick, author

MUCH OF THE TIME SPENT ON COMPUTERS INVOLVES WORKING WITH WORDS. WE

write emails and essays, we send text messages and instant messages, we post to blogs,
we create Facebook pages, we Google for information, and we read web pages. In program-
ming languages, any sequence of printable characters is referred to as a string. The origin of
the word is unclear, but Dr. Don Weinshank notes:

The 1971 OED (p. 3097) quotes an 1891 Century Dictionary on a source in
the Milwaukee Sentinel of 11 Jan. 1898 (section 3, p. 1) to the effect that this
is a compositor’s term. Printers would paste up the text that they had generated
in a long strip of characters. (Presumably, they were paid by the foot, not by the
word!) The quote says that it was not unusual for compositors to create more
than 1500 (characters?) per hour.1

A sequence of characters is not necessarily a word as we know it—that is, something that
we might find in a dictionary. This distinction is particularly useful with computers, because
a shortcut such as 'brb' used in instant messaging is a perfectly fine string but does not
appear in most dictionaries. Also, strings are independent of language, so 'Gesundheit'
is a legal string. In fact, something nonsensical such as 'good4u2' also counts as a string.
A sequence of characters requires no underlying meaning; it is only a sequence. For us, that
is all a string need be.

1 Humanist Discussion Group, Vol. 5, No. 0883 (May 4, 1992), see http://digitalhumanities.org/humanist/.

179

http://digitalhumanities.org/humanist/

180 C H A P T E R 4 • W O R K I N G W I T H S T R I N G S

4.1 T H E S T R I N G T Y P E
The string type is one of the many collection types provided by Python. As first discussed in
Section 2.1.4, a collection is a group of Python objects that can be treated as a single object.
In particular, a string type is a special kind of collection called a sequence. A sequence type
has its collection of objects organized in some order—a sequence of objects. A Python string
is an object that has, as an attribute, a sequence of characters. A Python string object can be
constructed either by using the string constructor str or, as a shortcut, by encompassing a
group of characters in either two single quotes (') or two double quotes ('').

Examples of string objects are: 'a', "brb", 'What is your name?'. The only
requirement is that the quotes on either end of the string match. That is, 'bad string"
is not a good string in Python because it uses a mixture of single and double quotes to create
the string.

P R O G R A M M I N G T I P

It is good to decide how you want to delimit strings and then stick with it. If you like double
quotes, stick with that. In general, double quotes are a little less trouble, as you can encode
possessives and contractions more easily, such as "bill's" or "can't". If you try that
with single quotes, you need to use the escape character (“\”) in front of the apostrophe,
such as 'bill\'s'.

4.1.1 The Triple-Quote String
There is a special kind of string denoted by triple quotes, as in '''Hello World'''.
This, too, is a string, but it has one special property. This string preserves all the format
information of the string. If the string spans multiple lines, those carriage returns between
lines are preserved. If there are quotes, tabs, any information at all, it is preserved. In this
way, you can capture a whole paragraph as a single string. Here is an example from The Zen
of Python:

zen str = '''Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.'''

The variable zen str is now associated with a string object with all the formatting of
the paragraph preserved.

4 . 1 • T H E S T R I N G T Y P E 181

P R O G R A M M I N G T I P

If you have a long, multiline comment that you want to insert, consider using a triple-quoted
string. You need provide only the quotes at the beginning and the end of the comment,
unlike using the # at the beginning of every line.

4.1.2 Non-Printing Characters
Some characters perform necessary operations but show up as whitespace in the output.
The two most common examples are the tab and the carriage return. We need to represent
them, so the backslash character is combined with another character for that purpose (see
Table 4.1). Here is a session illustrating the use of \n when printing a string.

>>> print(" first line \n second line")
first line
second line

carriage return \n
tab \t

TABLE 4.1 Common Non-Printing Characters

4.1.3 String Representation
What is the difference between a string and other Python types? For example, what is
the difference between the integer 1 and the string '1'? One answer is obvious: they are
different types! As we have discussed previously, the type of an object determines both the
attributes of an object and the kinds of operations that can be performed on the object.
A string is a collection type that has multiple parts: an integer is the representation of a
number. Integers are created with the constructor int or with a number (without decimal
points); strings are created with the constructor str or by enclosing characters with a pair
of quotes. Just as important as its creation, the type of an object determines much of what
you can do with that object.

Single-character strings, like all other data, are represented in a computer as numbers.
When you type on your keyboard, the individual characters are stored in a special computer
representation know as Unicode (UTF-8 is the Unicode default for Python 3). UTF-8, and
any Unicode set in general, maps each character to an integer. By “map,” we mean that in
the UTF-8 set, each character is associated with a particular integer value. That integer is
what gets stored in a computer, and Python labels its type as str. Because that integer is

182 C H A P T E R 4 • W O R K I N G W I T H S T R I N G S

stored as a string type, Python knows to map that integer to a particular character in the
UTF-8 character set. Take a look at the UTF-8 character mapping shown in Appendix D.
Note that, at least within the groups of lowercase letters, uppercase letters, and numbers,
the order of the characters is as you would expect: 'a' comes before 'b', '1' before '2',
etc. This is useful for string comparison (see Section 4.2.3).

You can experiment with the mapping yourself. Python provides two special functions,
ord and chr, to capture the relationship between UTF-8 and a character. The ord function
shows the UTF-8 integer associated with a character. For example, ord('a') yields a value
97, because 'a' is associated with 97 in the UTF-8 table. Similarly, the chr function takes
an integer and yields the character associated with that integer in the UTF-8 table. Thus
chr(97) yields the value 'a' because 'a' is associated with the integer 97 in the UTF-8
table.

4.1.4 Strings as a Sequence
We defined string objects as a sequence of characters. Therefore, 'Hello World' is a
sequence of 11 characters—remember that a space is a character. Because a sequence has
an order, we can number the characters by their position in the sequence, as shown in
Figure 4.1.

H e l l o W o r l d

0 1 2 3 4 5 6 7 8 9 10

characters

index

�1�2...

FIGURE 4.1 The index values for the string 'Hello World'.

This position is called the index of the character within the string. In Python, and other
languages as well, the first index (the first position) in a sequence is index 0. Starting the
counting at 0 feels strange at first, but you will get used to it.

Python lets us look at the individual characters in the string sequence using the indexing
operator, represented by the square brackets operator []. The indexing operator works by
associating square brackets with a string, with an integer within the brackets. The integer
in the brackets represents an index of the associated string and returns the single-character
string at that index. An example of its use is 'Hello World'[0]. The string associated
with the square brackets is 'Hello World'. The integer in between the square brackets,
0, indicates the single character string at index position 0, in this case 'H'.

It is important to remember that indices start at 0. Thus 'Hello World'[4] is the
character at index position 4, which is the fifth element in the sequence: the single character
string 'o'.

4 . 1 • T H E S T R I N G T Y P E 183

Python also allows indexing from the back end of the sequence. Thus, if you want to
index from the string end, Python starts indexing the last character of the string with -1
and subtracts one from the index for each character to the left. Thus the index numbers
get smaller (-2, -3, -4) as you move toward the beginning of the string. Looking again at
Figure 4.1, notice that -1 is the last character in the string, -2 is the second to last, and so forth.

The following session illustrates indexing. This session also shows how an index that is
out of the range for the string generates an error:

>>> hello str = 'Hello World'
>>> hello str
'Hello World'
>>> hello str[0] # counting s t a r t s at zero
'H'
>>> hello str[5]
' '
>>> hello str[-1] # negat ive index works back from the end
'd'
>>> hello str[10]
'd'
>>> hello str[11]
Traceback (most recent call last):
File "<pyshell#19>", line 1, in <module>
hello str[11]

IndexError: string index out of range

P R O G R A M M I N G T I P

What does “out of range” mean? A particular string has a fixed sequence of characters, and
thus a fixed sequence of indicies. If the index provided within the square brackets operator
is outside of this fixed range of indicies, Python generates an error, as it is unclear what
character the index represents. This is a very common error! Make sure the index you ask
for exists in the string you are examining.

4.1.5 More Indexing and Slicing
Indexing in Python allows you to indicate more than just a single character string. You can
also select subsequences of the string with the proper indicies. Python calls such a subsequence
a slice. Remember, just like for a single index, a slice returns a new string and does not change
the original string in any way (even though slice sounds like it would!).

To index a subsequence, you indicate a range of indicies within the square bracket by
providing a pair of indices separated by a colon (:). The colon within the index operator
brackets indicates that, instead of a single position being selected, a range of indices is

184 C H A P T E R 4 • W O R K I N G W I T H S T R I N G S

being selected. Python uses a half-open range, as we discussed in the context of the range
function in Section 2.2.13. A half-open range designates the beginning of the sequence
that is included in the result along with an end of the sequence that is not included. For
hello str[6:10] the range indicates a subsequence consisting of the strings at indices
6, 7, 8, and 9. The string at index 10 is not included. The result returned is the string
'Worl', as shown in Figure 4.2 and displayed in the following section.

first last

H

helloString[6:10]

e l l o W o r l d

0 1 2 3 4 5 6 7 8 9 10

characters

index

FIGURE 4.2 Indexing subsequences with slicing.

>>> hello str[6:10]
'Worl'
>>>

Every range can be specified with two values: the beginning index of the range and end
index of the range, separated by a colon (:). If a value on either side of the colon is missing, a
default is used in place of the missing value. If the first index is missing, the index before the
colon (:), Python assumes the start index is the beginning of the string, i.e., index 0. If the
last index is missing, the value after the colon (:), Python assumes the end of the sequence
including the last character.

Look at the examples in Figure 4.3. The hello str[6:] expression specifies a
subsequence beginning at index 6 and continuing through the end of the string. In this
case, the result is 'World'. The same result can be achieved using hello str[6:11].
The 11 is acceptable to specify the end of the sequence, as the second number indicates the
index after the last element.

Similarly, in Figure 4.3, hello str[:5] is the subsequence from the beginning of
the string up to, but not including, the character at index 5. The same result is obtained
with the expression hello str[0:5]. Both expressions yield the subsequence'Hello'.

Knowing that the end of a sequence is specified as one after the end of the desired
sequence helps make sense of the negative index. The negative index means that if the end
marker is one more than the last index, the -1 (to the left) of that end marker is the last
index, -2 the second to last, and so forth. Figure 4.4 shows the negative indices.

Let’s put this all together. Consider hello str[3:-2], which specifies the range
starting at index 3 and ends three characters from the end resulting in the subsequence
'lo Wor'. See Figure 4.5.

4 . 1 • T H E S T R I N G T Y P E 185

first last

H e l l o W o r l d

0 1 2 3 4 5 6 7 8 9 10

characters

index

helloString[6:]

first last

H e l l o W o r l d

0 1 2 3 4 5 6 7 8 9 10

characters

index

helloString[:5]

FIGURE 4.3 Two default slice examples.

H e l l o W o r l d

0 1 2 3 4 5 6 7 8 9 10

Characters

Index

Last

�1�2�3�4�5�6�7�8�9�10�11

helloString[-1]

FIGURE 4.4 Negative indices.

H e l l o W o r l d

0 1 2 3 4 5 6 7 8 9 10

Characters

Index

First Last

helloString[3:-2]

FIGURE 4.5 Another slice example.

186 C H A P T E R 4 • W O R K I N G W I T H S T R I N G S

In summary, here are the slicing operations we mentioned as they appear in the Python
shell:

>>> hello str = "Hello World"
>>> hello str[6:11]
'World'
>>> hello str[6:] # no ending value d e f au l t s to the end of s t r i n g
'World'
>>> hello str[:5] # no s t a r t value d e f au l t s to beginning o f s t r i n g
'Hello'
>>> hello str[0:5]
'Hello'
>>> hello str[-1] # negat ive index works back from the end
'd'
>>> hello str[3:-2]
'lo Wor'

Extended Slicing
Slicing allows a third parameter that specifies the step in the slice. This means that you
can have as many as three numbers in the index operator brackets separated by two colon
characters: the first number is the beginning of the sequence, the second number specifies
the end of the sequence, and the third is the step to take along the sequence. As with the
first two arguments, the step number has a default if not indicated: a step of 1. The step
value indicates the step size through the sequence. For example, in the expression 'Hello
World'[::2], we are indicating a subsequence from the beginning to the end of the
sequence, but, given a step size of 2, only every other character is specified. The expression
would yield a new string 'HloWrd'. Similarly, a step of 3 yields every third character.
Figure 4.6 shows how a step of 2 works.

One odd variation that is not immediately obvious is to use a step of -1. Python
interprets a negative step number as stepping backward. The following session demonstrates
the use of a step:

>>> hello str = "Hello World"
>>> hello str[::2] # every o ther l e t t e r in the s l i c e

H e l l o W o r l d

0 1 2 3 4 5 6 7 8 9 10

Characters

Index

helloString[::2]

FIGURE 4.6 Slicing with a step.

4 . 1 • T H E S T R I N G T Y P E 187

'HloWrd'
>>> hello str[::3] # every third l e t t e r
'HlWl'
>>> hello str[::-1] # s t e p backwards from the end to the beginning
'dlroW olleH'
>>> hello str[::-2] # backwards , every o ther l e t t e r
'drWolH'
>>>

An interesting application of the step can be seen by using a string of digits. Different
steps and different starting points yield even, odd, or reversed digits, as shown in this session:

>>> digits = "0123456789"
>>> digits[::2] # even d i g i t s (de fau l t s t a r t at 0 ; sk ip every o ther)
'02468'
>>> digits[1::2] # odd d i g i t s (s t a r t at 1 ; sk ip every o ther)
'13579'
>>> digits[::-1] # r e v e r s e d i g i t s
'9876543210'
>>> digits[::-2] # r e v e r s e odds
'97531'
>>> digits[-2::-2] # r e v e r s e evens (s t a r t with 2nd l a s t l e t t e r)
'86420'

Copy Slice
A common slicing application is the copy slice. If the programmer provides neither a
beginning nor an end—that is, there is only a colon character in the square brackets([:])—a
complete copy of the string is made. If you think about this, it is clear why. The [:]
slice takes both defaults, from the beginning through the end of the string. This feature is
illustrated in the following session:

>>> name one = 'Monty'
>>> name two = name one[:]
>>> name two
'Monty'
>>>

Remember, a new string is yielded as the result of a slice; the original string is not
modified. Thus a copy slice is indeed a new copy of the original string.

4.1.6 Strings Are Iterable
We saw the first discussion of what it means to be iterable in the context of the range
function in Section 2.2.13. A data type that is iterable means that the individual elements

188 C H A P T E R 4 • W O R K I N G W I T H S T R I N G S

can be “iterated through” using a for loop (or other methods). A string is indeed an iterable
data type, and you can iterate through the individual elements of a string using a for loop.
Because strings are also a sequence, iteration through a string yields the elements of the
string in the order in which they appear in the string. See the following session.

>>> for char in 'Hi mom':
print(char, type(char))

H <class 'str'>
i <class 'str'>
<class 'str'>

m <class 'str'>
o <class 'str'>
m <class 'str'>
>>>

As with range, the for assigns each individual element of the string, one at a time,
to the variable char and prints them out. Also printed is the type of the object associated
with char, which is of course type str.

Iterating through the elements of a string is a very common operation in Python, one
that you will see again and again.

Check Yourself: Slicing Check

1. Answer the questions for the following program.

user_str = "aabbcc"
sub_str1 = user_str[2:]
sub_str2 = user_str[1:4]
sub_str3 = user_str[1: :2]
sub_str4 = user_str[:-2]
print(sub_str1) # Line 1
print(sub_str2) # Line 2
print(sub_str3) # Line 3
print(sub_str4) # Line 4
index_int = 0
print(user_str[index_int],user_str[index_int+2]) # Line 5

(a) What output is produced by Line 1 ?
(b) What output is produced by Line 2 ?
(c) What output is produced by Line 3 ?
(d) What output is produced by Line 4 ?
(e) What output is produced by Line 5 ?

4 . 2 • S T R I N G O P E R A T I O N S 189

4.2 S T R I N G O P E R A T I O N S
Strings can utilize some of the same binary operators that integers and floating-point
numbers use, though the functions these operators perform is quite different.

4.2.1 Concatenation (+) and Repetition (*)
The + and the * operators can be used with string objects. However, their meanings are not
what you are used to with integers and floats:

+ : concatenate. The operator + requires two string objects and creates a new string object.
The new string object is formed by concatenating copies of the two string objects
together: the first string joined at its end to the beginning of the second string.

* : repeat. The * takes a string object and an integer and creates a new string object. The
new string object has as many copies of the string as is indicated by the integer.

The following session shows some examples.

>>> my str = "Hello"
>>> your str = "World"
>>> my str + your str # concatenation
'HelloWorld'
>>> your str + my str # order does matter in concatenation
>>> 'WorldHello'
>>> my str + ' ' + your str # add a space between
'Hello World'
>>> my str * 3 # r ep l i c a t i on
'HelloHelloHello'
>>> 3 * my str # order does not matter in r e p l i c a t i on
'HelloHelloHello'
>>> (my str + ' ')*3 # paren the s e s f o r c e ordering
'Hello Hello Hello '
>>> my str + ' ' * 3 # without par en the s e s : r e p ea t s 3 s pa c e s
'Hello '
>>> my str
'Hello'
>>> your str # or i g ina l s t r i n g s unchanged
'World'
>>> 'hello' + 3 # wrong t y p e s f o r concatenation , r equ i r e s two s t r i n g s
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: cannot concatenate 'str' and 'int' objects
>>> 'hello' * 'hello' # wrong t y p e s f o r r e p l i c a t i on : r equ i r e s s t r i n g and int
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: can't multiply sequence by non-int of type 'str'
>>>

190 C H A P T E R 4 • W O R K I N G W I T H S T R I N G S

A couple of points of interest:

� Both the + and * create new string objects and do not affect the strings in the expres-
sion. That is, a str + 'a' does not change the contents of a str. Neither does
a str * 3.

� In concatenation, there is no space introduced between the end of the first and the
beginning of the second string, unless you include it explicitly.

� The order of the two string objects does matter in concatenation. The first string shows
up at the beginning of the new string object; the second string at the end. Changing
the order changes the order in which the strings occur in the new string object.

� The order of the string and integer in replication does not matter.
� The types needed for each operator are very specific. For concatenation, you need

two string objects. For replication, you need one string and one integer. No other
combinations of types are allowed for each operator.

4.2.2 Determining When + Indicates Addition
or Concatenation

How does Python know whether to do concatenation or addition when it sees a + operator?
The answer is that the types of the operands indicate the operation to be performed.

In general, the fact that a single operator can perform multiple tasks is called operator
overloading. By overloading, we mean that a single operator, such as +, will perform different
operations depending on the types of its operands.

When the Python interpreter sees a + operator, it examines the types of the operands. If
the operands are numbers (integers or floating-point numbers), the interpreter will perform
addition. If the operands are strings, the interpreter will perform concatenation. If the
operands are a mixture of numbers and strings, the Python interpreter will generate an
error. Python can dynamically (as it runs) examine the types of objects associated with
variables. In this way, it knows the types of operands, and so it can determine which
operation to perform. As a result, Python also knows what operations it can and cannot
perform! If you give a Python operator a combination of types it does not have an operation
for, it generates an error.

The type Function
You can also check the type of any object as we discussed in Section 1.6 by using the type
function. As we showed, the type function returns the type associated with any object.
Like the int type for integers, a string has an associated type, str.

>>> my str = 'Hello'
>>> type(my str) # what type o f ob j e c t i s a s s o c i a t ed with my str
<class 'str'>
>>> my str = 245 # bad var iab le name
>>> type(my str)

4 . 2 • S T R I N G O P E R A T I O N S 191

<class 'int'>
>>> type(3.14159)
<class 'float'>
>>>

We can help the reader of a program keep track of types by including the type in the
objects name—e.g., my str—as we have been doing. By using that protocol, a human
reader who sees my str + your str knows that + is supposed to mean concatenation.

4.2.3 Comparison Operators
As with +, you can use the comparison operators we use with numbers to compare strings.
However, the meaning of the comparison operators are, again, a little different than with
integers.

Single-Character String Compares
Let’s start easy and work with only single-character strings. You can compare two single-
character strings using the equality operator ==, as in 'a' == 'a'. If the two single
characters are the same, the expression returns True. Note that the expression 'a' == 'A'
returns False as those are indeed two different strings.

What about the greater than (>) or less than (<) operators? The easy example would be
'a' > 'a', which is obviously False. What is the result of 'a' > 'A'? If you type it
into the shell, you will get the result True. Why? We introduced the functions ord and chr
in Section 4.1.3. These two functions help us relate a character and its integer representation
in the Unicode UTF-8 table. All comparisons between two single characters are done
on the basis of their UTF-8 integer mapping. When we compare 'a' > 'A', Python
fetches the associated UTF-8 number for both characters and compares those two numbers.
Because ord('a') is 97 and ord('A') is 65, the question becomes whether 97 > 65,
which yields True. Conveniently, the lowercase letters are all sequentially ordered, so that
'a' < 'b', 'b' < 'c', and so on. Similarly, the capital letters are sequentially ordered,
so that 'A' < 'B', 'B' < 'C', and so on. Finally, the numeric characters are also
ordered, so that '0' < '1', '1' < '2', and so on. However, only the run of lowercase,
uppercase, and numeric strings follow the assumed order. It is also True that '0' < 'a'
and 'A' < 'a'. If you wonder about character ordering, the UTF-8 table or the associated
functions ord and chr should resolve the question.

Comparing Strings with More than One Character
When strings with more than one character are compared, the process is slightly more
complicated, though still based on the concept of a character’s UTF-8 number.

String comparison—in fact, any sequence comparison—works as follows. The basic
idea is to, in parallel, examine both string characters at some index and then walk through
both strings until a difference in characters is found.

192 C H A P T E R 4 • W O R K I N G W I T H S T R I N G S

1. Start at index 0, the beginning of both strings.
2. Compare the two single characters at the present index of each each string.

� If the two characters are equal, increase the present index of both strings by 1 and go
back to the beginning of step 2.

� If the two characters are not equal, return the result of comparing those two characters
as the result of the string comparison.

3. If both strings are equal up to some point but one is shorter than the other, then the
longer string is always greater. For example, 'ab' < 'abc' returns True.

The following session shows some examples:

>>> 'abc' < 'cde' # d i f f e r e n t at index 0 , ' a ' < ' c '
True
>>> 'abc' < 'abd' # d i f f e r e n t at index 2 , ' c ' < 'd '
True
>>> 'abc' < 'abcd' # ' abc ' equal up to 'd ' but s h o r t e r than ' abcd '
True
>>> '' < 'a' # the empty s t r i n g ' s l ength i s 0 , always smal l e r
True

The empty string (") is always less than any other string, because it is the only string of
length 0.

It is an interesting challenge to write a string-comparison algorithm using only single-
character compares. See the exercises.

4.2.4 The in Operator
The in operator is useful for checking membership in a collection. An example of its use is
'a' in 'abcd'. The operator takes two arguments: the collection we are testing and the
element we are looking for in the collection. As it applies to strings, the operator tests to
see if a substring is an element of a string. As it is a membership check, it returns a Boolean
value to indicate whether the first argument is a member (can be found in) the second
argument. For the previous example, the return value is True. The test string sequence
must be found exactly. For example, in 'ab' in 'acbd', the question being asked is
whether the exact sequence 'ab' occurs anywhere in the string. For this example, the
return value is False. Like most of these operators, in can be used with other collections,
in which the interpretation of membership depends on the collection type. Here is a session
showing some ways to use the in operator:

>>> vowels = 'aeiou'
>>> 'a' in vowels
True
>>> 'x' in vowels
False
>>> 'eio' in vowels

4 . 2 • S T R I N G O P E R A T I O N S 193

True
>>> 'aiu' in vowels
False
>>> if 'e' in vowels:

print("it's a vowel")

it's a vowel

4.2.5 String Collections Are Immutable
Given that a string is a collection—a sequence, in fact—it is tempting to try the following
kind of operation: create a string and then try to change a particular character in that string
to a new character. In Python, that would look something like the following session:

>>> my str = 'Hello'
>>> my str[0] = 'J' # change 'H' to ' J ' , make the s t r i n g ' J e l l o '
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: 'str' object does not support item assignment

What is wrong? The problem is a special characteristic of some collections in Python.
The string type, as well as some other types, are immutable. This means that once the object is
created, usually by assignment, its contents cannot be modified. Having an index expression
on the left side of an assignment statement is an attempt to do exactly that—change one of
the elements of the string sequence. Such a modification is not allowed with the string type.

Check Yourself: String Comparison Check

1. Answer the questions for the following program:

my_str = input("Input a string: ")
index_int = 0
result_str = '' # empty string
while index_int < (len(my_str) - 1): # Line 1

if my_str[index_int] > my_str[index_int + 1]:
result_str = result_str + my_str[index_int]

else:
result_str = result_str * 2

index_int += 1 # Line 2
print(result_str) # Line 3

(a) What output is produced by Line 3 on the input ‘abc’ using the example program?
(b) What output is produced by Line 3 on the input ‘cba’ using the example program?
(c) What output is produced by Line 3 on the input ‘cab’ using the example program?
(d) What happens if Line 2 is removed?
(e) What happens if Line 1 is modified to while index int < len(my str):?

194 C H A P T E R 4 • W O R K I N G W I T H S T R I N G S

There are some efficiency reasons for this restriction. By making strings immutable,
the Python interpreter is faster. However, immutable strings are an advantage for the
programmer as well. No matter what you do to a string, you are guaranteed that the original
string is not changed. By definition, it cannot be changed; it is immutable. As a result, all
Python string operators must generate a new string. Once you create a string, you cannot
change it. You must create a new string to reflect any changes you desire.

How, then, to solve the problem of “changing” a string? For example, how can I change
the string 'Hello' into the string 'Jello'? The approach is to create a new string
'Jello' from the existing string my str (associated with the string object 'Hello').
We do so by concatenating 'J' to the front of a slice from my str. The slice my str[:1]
is a new string object 'ello'. If we concatenate the two strings, we get the desired result,
'Jello'.

For example, consider the following session:

>>> my str = 'Hello'
>>> my str = 'J' + my str[1:] # c r ea t e new s t r i n g with ' J ' and a s l i c e
>>> my str # my str i s now a s s o c i a t e d with the new s t r i n g
'Jello'

4.3 A P R E V I E W O F F U N C T I O N S A N D M E T H O D S
Here we take a brief look at how methods and functions work—in particular, how they
work with strings. We will revisit this topic in more detail later (Chapter 6).

4.3.1 First Cut: What Is a Function?
Think of a function as a small program that performs a specific task. That program is
packaged up, or encapsulated, and made available for use. The function can take some
input values, perform some task by executing statements and evaluating expressions, and,
when finished, potentially return a value. Functions are useful because we use them to
perform commonly needed tasks. Instead of writing the same code over and over again, we
encapsulate that code in a function, making it easier to use.

Functions should not be a completely new concept for you, as we use functions fre-
quently in mathematics. One example is the square root function. It takes a real number as
an argument and then returns a number that is the square root. How the square root is calcu-
lated is not important to us. We care only that works and that it works correctly. In this way,
the square root operation is encapsulated; the details of its operation are hidden from you.

There are many good reasons to use functions in your programs, but for now it is
sufficient to know that many of the types we use in Python come with predefined functions
that allow us to perform common tasks for that type. In Chapter 8, you will learn about
how to write your own functions.

4 . 3 • A P R E V I E W O F F U N C T I O N S A N D M E T H O D S 195

Strings come with a set of functions as well as a special kind of function called a method.
For example, you can find out the length of a string, generate a new string that has all the
letters of the original string converted to capital letters, find the position of a substring in a
string, and so on. There are currently more than 35 such tasks that you can do with strings.

A String Function
Consider the len function. The len function is used to find a string’s length, the number
of individual characters in a string. You use a function just like any other command in
Python. The function is invoked, or called, when the interpreter reaches the function name
in a program. A function name is always followed by a set of parentheses, indicating
that the name represents a function. Within the parentheses are zero or more arguments.
Arguments are values that are passed to the function so the function can accomplish its task.
If the function requires multiple arguments, a comma is placed between each object in the
argument list. After the function completes its processing, it may return some value that can
be saved by an assignment or other operation.

The len function requires only a single argument in its parentheses, the string whose
length we are trying to find. The function returns a single integer, the length of the string. If
the correct number of arguments is not given to the function, the interpreter shows an error
to that effect. More generally, the function len can be used with any collection. Like the
operator +, it is overloaded, in that it returns the length of different collections depending on
what is appropriate for each collection. For strings, it is the number of individual characters
in the string.

A sample session illustrating the len function is shown here:

>>> my str = 'Hello World'
>>> len(my str)
11
>>> length int = len(my str)
>>> print(length int)
11
>>> len()

Traceback (most recent call last):
File "<pyshell#48>", line 1, in <module>
len()

TypeError: len() takes exactly one argument (0 given)

Again, a function invocation is a function name, followed by a parenthetical list of zero
or more arguments, with multiple arguments separated by commas in the list.

4.3.2 A String Method
A method is a variation on a function. It looks very similar. It has a name and it has a list
of arguments in parentheses. It differs, however, in the way it is invoked. Every method is

196 C H A P T E R 4 • W O R K I N G W I T H S T R I N G S

called in conjunction with a particular object. The kinds of methods that can be used in
conjunction with an object depends on the object’s type. String objects have a set of methods
suited for strings, just as integers have integer methods, and floats have float methods. The
invocation is done using what is called the dot notation. An example would be the string type
upper method. An example invocation would be 'A String'.upper(). In this case,
the object, the string 'A String', is calling the associated method upper. This method
takes the associated object and creates a new string where all the letters are converted to
uppercase, in this case the string object 'A STRING'. The interpretation of this invocation,
in plain English, would be something like: The object 'A String' is calling the method
upper on itself to create a new string, an uppercase version of the calling object. An example
session for the method upper is shown here:

>>> my str = 'Python rules!'
>>> my str.upper()
'PYTHON RULES!'
>>>

The calling object may be just an object, such as 'A STRING' above, or a variable
associated with an object, such as my str. There are reasons to have methods separate
from functions—concepts that we will cover in Chapter 11. In general, a method is invoked
using “dot notation.”

An example string method with arguments would be the find method. The find
method’s task is to locate a substring within the calling string (the object that invoked the
method using the dot notation). The find method returns the index of the substring in
the string where the substring first occurs (if there are multiple occurrences) but returns -1
if the substring is not found. As an example, let us try to find the character 'm' in the string
'mellow yellow'. We could do so by invoking the find method: 'mellow yellow'
.find('m'). In this method call, the object 'mellow yellow' is invoking the find
method, passing a single argument 'm' as the search target. Note that the string object
'mellow yellow' is the string to be searched by find and is part of the invocation, the
left part of the dot notation. The 'm' character is first found is at index 0, which is the
value returned by find (remember that indexing starts at 0). A search for 'll' returns 2,
which is the position of the first (leftmost) substring find discovered (another is at index 9).
When find searches for 'z', that substring will not be found and find returns -1.

>>> my str = 'mellow yellow'
>>> my str.find('m')
0
>>> my str.find('ll')
2
>>> my str.find('z')
-1

It is interesting to think about why the find method returns a -1 in the case of not
finding the substring argument in the calling object. Why wouldn’t it just return 0, which

4 . 3 • A P R E V I E W O F F U N C T I O N S A N D M E T H O D S 197

is synonymous with the value False? Look at the example above. A successful search might
return a 0 as the location of a successful search, the first character of the calling object! For
this reason, one must be careful when using find in a Boolean expression.

Chaining of Methods
A powerful feature of the Python language is that methods and functions can be chained,
meaning there are a series of “dot notation” invocations, such as 'A string'.upper()
.find('S'). The calls are chained in the sense that an object returned from one method
can be used as the calling object in another method. The rule for the order of invocation is to
proceed from left to right, using the resulting object of the previous method as the calling ob-
ject in the next method. In our example, we first call the method 'A string'. upper(),
which produces the new string object 'A STRING'. That new object now becomes the call-
ing object for the next method, the invocation 'A STRING'.find('S'). This expression
yields the value 2, the index of the 'S'. Another example is shown in the session below.

>>> my str = 'Python rules!'
>>> my str.upper()
'PYTHON RULES!'
>>> my str.upper().find('O') # convert to uppercase and then ' f ind '
4

Optional Arguments
Some methods have additional optional arguments. If the argument is not provided, a
default for that argument is assumed. The default value depends on the method. However,
you can choose to provide that argument and override the default. The find method is
one with default arguments. You can start the find process from an index other than 0, the
leftmost index. By default, find starts at index 0, but if you provide a second argument,
that is the index where the find process begins.

Consider the assignment a str = 'He had the bat.' in which you want to
find 't'. The call a str.find('t') will return 7, the index of the leftmost 't'. If
you provide 8 as the second argument, you will start your search at index 8 and find the
next 't'—that is, a str.find('t',8) returns 13. The find method also has a third
optional argument, the index where searching stops. The default is the end of the string, but
if you provide the third argument, find will stop its search at that index. Thus, a str.
find('t',1,6) searches for 't' in the index range 1–6, which returns a -1 value (it is
not found in the given range).

Nesting of Methods
You can also use method and function invocations as arguments to another method call.
This kind of “method in a method” is called nesting. The rule for nested calls is that all
invocations inside parentheses, such as those found in a function invocation, are done first.

198 C H A P T E R 4 • W O R K I N G W I T H S T R I N G S

For example, how could you find the second occurrence of a substring? You do so by nesting
one call of find as an argument of a find invocation in the following way. Suppose you
wish to find the second 't'. The first step is to find the first 't'. The second step begins
with a search (a second invocation of find) starting from one past the location where the
first 't' is found. That is, find the index of the first 't', add 1 to that index, and use that
value as the starting point for a search for the second 't'. That is,

a string.find('t', a string.find('t')+1)

The nested method invocation is called first, yielding 7 + 1 = 8. The outer invocation
then begins by searching for 't' starting at position 8. A session illustrating this process
follows:

>>> a str = 'He had the bat.'
>>> a str.find('t') # look f o r ' t ' s t a r t i n g at beginning
7
>>> a str.find('t',8) # s t a r t at index 8 = 7 + 1
13
>>> a str.find('t',a str.find('t')+1) # s t a r t at one a f t e r the f i r s t ' t '
13

4.3.3 Determining Method Names and Method Arguments
How can you determine the methods associated with a type, and once you find the name,
how can you determine the arguments?

IDLE to the rescue!
You can ask IDLE to show you all the potential methods for an object. IDLE will show

all the methods available for an object of that type if you type the object (or a variable of that
type), the dot (.), and then a tab character. IDLE will respond by providing a list of all the
potential methods that can be invoked with an object of that type, as shown in Figure 4.7.

Because the variable my str is associated with a string object, all the string methods
are listed in alphabetical order. Note that find method is listed, as well as a number of
other methods. If one provides the leading letter, for example 'i', before the tab is typed,
then the list begins with the first method that begins with 'i', as shown Figure 4.8.

Once the object.method name is typed, if you type the first parenthesis and wait
just a moment, the list of arguments is also provided. The find function is shown in
Figure 4.9.

The wording in the pop-up can sometimes be confusing, so you might have to think
about the meanings. Knowing what we know about find, the pop-up indicates that there
are three arguments. The first is called sub, which stands for “substring.” It is a required
argument. The remaining two arguments are bracketed in square brackets, indicating that
they are optional. The first optional argument is start, where the search starts, and end,
where the search ends. When find finishes, it returns (the →) an integer.

4 . 3 • A P R E V I E W O F F U N C T I O N S A N D M E T H O D S 199

FIGURE 4.7 In IDLE, tab lists potential methods. [Screenshot by Python. Copyright © 2001 –
2010 by Python Software Foundation. All Rights Reserved. Reprinted with permission.]

FIGURE 4.8 In IDLE, tab lists potential methods, with leading letter. [Screenshot by Python.
Copyright © 2001 – 2010 by Python Software Foundation. All Rights Reserved. Reprinted
with permission.]

200 C H A P T E R 4 • W O R K I N G W I T H S T R I N G S

FIGURE 4.9 IDLE pop-up provides help with function arguments and return types. [Screenshot
by Python. Copyright © 2001 – 2010 by Python Software Foundation. All Rights Reserved.
Reprinted with permission.]

Of course, you can also look up the methods in the provided documentation. Select the
help window in IDLE and that documentation will be brought up in your local browser.

4.3.4 String Methods
Like many of Python’s built-in types, strings have a number of powerful and useful methods.
Table 4.2 lists a number of them. Remember: square brackets indicate optional arguments.
Because the names are carefully chosen, you can guess what most of them do from their
name. Take a moment and open a Python shell to try some string methods. Experiment!

capitalize() lstrip([chars])
center(width[, fillchar]) partition(sep)
count(sub[, start[, end]]) replace(old, new[, count])
decode([encoding[, errors]]) rfind(sub [,start[,end]])
encode([encoding[,errors]]) rindex(sub[, start[, end]])
endswith(suffix[, start[, end]]) rjust(width[, fillchar])
expandtabs([tabsize]) rpartition(sep)
find(sub[, start[, end]]) rsplit([sep [,maxsplit]])
index(sub[, start[, end]]) rstrip([chars])
isalnum() split([sep [,maxsplit]])
isalpha() splitlines([keepends])
isdigit() startswith(prefix[, start[, end]])
islower() strip([chars])
isspace() swapcase()
istitle() title()
isupper() translate(table[, deletechars])
join(seq) upper()
lower() zfill(width)
ljust(width[, fillchar])

TABLE 4.2 Python String Methods

4 . 4 • F O R M A T T E D O U T P U T F O R S T R I N G S 201

4.3.5 String Functions
The set of functions available for strings is smaller than the set of methods, and those

VideoNote 4.1
Playing with Strings

functions are generally common to other sequence types. You have seen only len so far, but
you will see others later.

4.4 F O R M A T T E D O U T P U T F O R S T R I N G S
Using the default print function is easy, but it provides no control of what is called the
format of the output. By format, we mean a low-level kind of typesetting to better control
how the output looks on the console. Python provides a finer level of control that gives us,
the programmer, the option to provide “prettier,” more readable, output. Conveniently, the
control of console typesetting is done through the use of the string format method. The
basic form of the format method is shown below.

"format string".format(data1, data2, ...)

The process of creating formatted output can be a bit complicated. In fact, there is
enough detail to the formatting process that the Python 3 documentation refers to it as a
“mini language” (Python 3 docs: 7.1.3.1. Format Specification Mini-Language). However,
like many things in Python, we can learn a little about formatting and grow into it as we
need more.

As with all strings, use of the format method creates a new string. The format string,
the string that is used to call the format method, provides a normal, everyday string
that is the “source” for the new string. Everything in that format string will be reproduced
exactly in the new string (same spacing, same character), with one important exception. The
programmer can insert special character sequences, enclosed in braces ({}), in the format
string that indicate a kind substitution that should occur at that position in the new string.
The substitution is driven by the arguments provided in the format method. The objects
in the arguments will be placed in the new string at the indicated position, as well as how it
will be placed in the string at that position. After substituting the formatted data into the
the new string, the new string is returned. An example is shown in Figure 4.10.

In its simplest form, the formatting commands are just empty braces. The objects that
will be substituted for each brace are determined by the order of both the braces and the argu-
ments. The first brace will be replaced by the first argument, the second brace by the second
argument, and so on. An example of this kind of formatting is shown in the following session:

>>> "{} is {} years old".format("Bill",25)
'Bill is 25 years old.'
>>> import math
>>> "{} is nice but {} is divine!".format(1, math.pi)
'1 is nice but 3.141592653589793 is divine!'
>>>

202 C H A P T E R 4 • W O R K I N G W I T H S T R I N G S

print('Sorry, is this the { } minute { }?' .format(5,'ARGUMENT'))

string indicated by quotes

Sorry, is this the 5 minute ARGUMENT?Sorry, is this the 5 minute ARGUMENT?

FIGURE 4.10 String formatting example.

The way each object is formatted in the string is done by default based on its type, as
was shown in the previous session. However, each brace can include formatting commands
that provide directives about how a particular object is to be printed. The four pieces of
information that one can provide for a particular object are a descriptor code, an alignment
number, a width number, and a precision descriptor. We will review each of those in the
sections below.

The general structure of the most commonly used parts of the format command is:2

{:[align] [minimum width] [.precision] [descriptor]}
where the square brackets, [], indicate optional arguments. It is important to note the

placement of the colon. All the optional information comes after a colon in the braces.
The different types are described in Table 4.3. There are actually 10 possible format

commands—we will cover the others later.

s string
d decimal integer
f floating-point decimal
e floating-point exponential
% floating-point as percent

TABLE 4.3 Most commonly used types.

4.4.1 Descriptor Codes
The formatting commands include a set of descriptor codes that dictate the type of object to
be placed at that location in the string and formatting operations that can be performed on

2 In fact, more options are available. See the Python documentation.

4 . 4 • F O R M A T T E D O U T P U T F O R S T R I N G S 203

that type. Table 4.3 shows the most commonly used descriptor codes. The descriptor can
control how an individual object of that type is printed to the screen. For example, float
descriptors can control the number of decimal points printed, and string descriptors can
control leading or following spaces. However, each descriptor works only with its associated
type. Associating an object of the wrong type with a descriptor will lead to a Python error.
There are many more descriptor types, but this will suffice for most work. See the Python
manual if you need others.

4.4.2 Width and Alignment Descriptors
A field width can be specified for each data item. It specifies a printing-field width, counted
as the number of spaces the object occupies. By default, formatted strings are left justified
and formatted numbers are right justified. If the specification includes a less than (<), the
data are placed left justified within the indicated width; a greater than (>) forces right
justification. Centering can be done using “ˆ”; see Table 4.4. In the following example, the
string “Bill” is right justified in a width of 10 spaces, and the number 25 is left justified in
a space of 10 spaces. Figure 4.11 displays an example.

< left
> right
ˆ center

TABLE 4.4 Width alignments.

print('{:>10s} is {:<10d} years old.' format('Bill', 25))

String 10 spaces wide
including the object,
right justified (>).

Decimal 10 spaces wide
including the object,
left justified (<).

 Bill is 25 years old.

10 spaces 10 spaces

OUTPUT:

FIGURE 4.11 String formatting with width descriptors and alignment.

204 C H A P T E R 4 • W O R K I N G W I T H S T R I N G S

The following session illustrates printing both without a specified field width and with
field width specified. Pay attention to how both spacing and justification are done.

>>> print("{} is {} years old".format("Bill",25))
Bill is 25 years old.
>>> print("{:>10s} is {:<10d} years old".format("Bill",25))

Bill is 25 years old.

Formatting is useful for aligning values when printing tables, as illustrated in the next
session:

>>> for i in range(5):
print("{:10d} --> {:4d}".format(i,i**2))

0 --> 0
1 --> 1
2 --> 4
3 --> 9
4 --> 16

VideoNote 4.2
String Formatting

4.4.3 Floating-Point Precision Descriptor
When printing floating-point values, it is desirable to control the number of digits to
the right of the decimal point—that is, the precision. Precision is specified in the format
descriptor using a decimal point followed by an integer to specify the precision. For example,
{:.4f} specifies that the printed value will have only four digits to the right of the decimal
point. Let’s illustrate using the constant pi from the math module. We show unformatted
printing, precision specified, and then both precision and width specified. Notice that
rounding occurred.

>>> import math
>>> print(math.pi) # unformatted pr int ing
3.141592653589793
>>> print("Pi is {:.4f}".format(math.pi)) # f l oa t ing−point p r e c i s i on 4
Pi is 3.1416
>>> print("Pi is {:8.4f}".format(math.pi)) # s p e c i f y both p r e c i s i on and width
Pi is 3.1416
>>> print("Pi is {:8.2f}".format(math.pi))
Pi is 3.14

Finally, there is a % floating point descriptor that converts from a decimal to a percent,
including the insertion of the % character.

>>> 2/3
0.6666666666666666
>>> print("{:8.2%}".format(2/3))
66.67%

4 . 5 • C O N T R O L A N D S T R I N G S 205

Check Yourself: More String Manipulation Check

1. What is the output of each print statement?

print("The word {} has {} letters.".format("Mississippi",11))
print("One number is {}; the other is {}.".format(4,3.5))
month = "June"
day = 5
year = 2011
print("The date is {} {}, {}.".format(month, day, year))
print("The interest rate is {:.2f} for you.".format(2.7))
print("{:>15s}: {:<8.1f}".format("Length",23.875))

4.5 C O N T R O L A N D S T R I N G S
Let’s write some code that manipulates strings. In particular, let’s look at how the find
method might be implemented. Let’s begin with a string:

river = "Mississippi"

We can find the first letter 'p' using the find method:

>>> river = "Mississippi"
>>> river.find("p")
8

How does the find method actually find a character and return its index? Let us see
how we could reproduce the operation of that method using what we know about control
and strings. Let’s begin by experimenting with some features in the Python shell. First, let’s
find the length of the string using the len function:

>>> river = "Mississippi"
>>> len(river)
11

Let’s combine the length of the string with the range function to print out all the indices,
one for each character in the word. Remember that the last argument to range is one more
than the last value in the range. This is actually convenient. The length of the string is 11,
but the active indices in the string are from 0 to 10. If we want a list of indices of the string,
range(len(river)) does nicely as a nested call. The len(river) yields the value 11,
which is used by range to generate the numbers 0–10. Very nice!

>>> river = "Mississippi"
>>> len(river)
11
>>> for index in range(len(river)): # value s o f 0 upto , but not including 11

print(index,end=' ') # s e t end to a space to suppr e s s new l in e

0 1 2 3 4 5 6 7 8 9 10

206 C H A P T E R 4 • W O R K I N G W I T H S T R I N G S

Now that we can print each index, we can use the same structure to print out each character
in the word. Note that when we printed the indices above we used end=' ' (space); when
we print the letters below we chose to use end='' (empty).

>>> for index in range(len(river)):
print(river[index],end='')

Mississippi

We now have the ability to print each index, and each character associated with that index,
in the string. We can now examine each character to see if it matches with the target
character 'p'. If it does, we print the index and break out of the loop, as we are only
looking for the first match. If we do not find a match, the loop ends normally and any else
clause of the for loop prints a failure message. The code and a session is shown in Code
Listing 4.1.

Code Listing 4.1

1 # Our implementation o f the find funct ion . Pr int s the index where
2 # the t a r g e t i s found ; a f a i l u r e message , i f i t i sn ' t found .
3 # This ve r s i on only s e a r ch e s f o r a s i n g l e charac t e r .
4

5 river = 'Mississippi'
6 target = input('Input a character to find: ')
7 for index in range(len(river)): # fo r each index
8 if river[index] == target: # check i f the t a r g e t i s found
9 print("Letter found at index: ", index) # i f so , pr int the index

10 break # s t op s earching
11 else:
12 print('Letter',target,'not found in',river)

>>> ================================ RESTART ================================
>>>
Input a character to find: s
Letter found at index: 2
>>> ================================ RESTART ================================
>>>
Input a character to find: a
Letter a not found in Mississippi
>>>

4 . 5 • C O N T R O L A N D S T R I N G S 207

We frequently look for both an index and the character, so Python provides the
enumerate iterator, which provides both the index of the character and the character
itself as it steps through the string. Let’s try it:

>>> for index, letter in enumerate(river):
print(index,letter)

0 M
1 i
2 s
3 s
4 i
5 s
6 s
7 i
8 p
9 p
10 i

Interestingly, notice that the for statement has two variables. This is because the
enumerate statement yields two values each time: the index and the character. As in double
assignment, we can capture both of those values by providing those two iterator variables.

Now that you’ve seen how enumerate works, let’s refactor our code (Section 2.2.9).
You may find it to be more readable.

Code Listing 4.2

Our implementation o f the find funct ion . Pr int s the index where
the t a r g e t i s found ; a f a i l u r e message , i f i t i sn ' t found .
This ve r s i on only s e a r ch e s f o r a s i n g l e charac t e r .

river = 'Mississippi'
target = input('Input a character to find: ')
for index,letter in enumerate(river): # fo r each index

if letter == target: # check i f the t a r g e t i s found
print("Letter found at index: ", index) # i f so , pr int the index
break # s t op s earching

else:
print('Letter',target,'not found in',river)

Finally, what if we want to list all the occurrences of a letter? We can try by removing
the break statement, and see if we can find all occurrences of the target. See Code
Listing 4.3.

208 C H A P T E R 4 • W O R K I N G W I T H S T R I N G S

Code Listing 4.3

Our implementation o f the find funct ion . Pr int s the index where
the t a r g e t i s found ; a f a i l u r e message , i f i t i sn ' t found .
This ve r s i on only s e a r ch e s f o r a s i n g l e charac t e r .

river = 'Mississippi'
target = input('Input a character to find: ')
for index,letter in enumerate(river): # fo r each index

if letter == target: # check i f the t a r g e t i s found
print("Letter found at index: ", index) # i f so , pr int the index
break

else:
print('Letter',target,'not found in',river)

>>>
Input a character to find: s
Letter found at index: 2
Letter found at index: 3
Letter found at index: 5
Letter found at index: 6
Letter s not found in Mississippi

Something is not quite right. Our program found all the examples of the 's' string
but then also printed the failure message. What went wrong? In our previous two examples,
we used the break statement to exit the loop, which bypasses the else. We would execute
the else only when the search failed. However, in this case, we did not break, meaning we
always entered the else clause. What to do?

We leave fixing this problem as an exercise.

4.6 W O R K I N G W I T H S T R I N G S
Here are some short examples that show how to work with some of the common string
methods to solve some simple problems.

4.6.1 Example: Reordering a Person’s Name
Let’s use a few string methods and try to do something useful. Here is our problem:

Transform a name from the order of 'First Middle Last' to the order of
'Last, First Middle'

For example, if the name provided is 'John M. Cleese' it would be transformed into
'Cleese, John M.'

4 . 6 • W O R K I N G W I T H S T R I N G S 209

The string split method is very useful for this problem. The split method takes
the calling string and creates substrings of that string, where substring creation occurs at a
particular character(s). The invocation to split on spaces is .split(' '); at every comma
is .split(','). For example, the invocation 'The Spanish Inquisition'.split
() would produce three strings: 'The','Spanish', and 'Inquisition' using a split
character of space (' '). The default is to split on whitespace, so commonly we simply use
split() with no arguments.

Remember, strings are immutable, so we do not literally remove any part of the original
string. Instead, split makes copies of parts that are created.

How could we use this to solve our problem? First, we can use the split method
to break the string object associated with name into parts, where the split character is any
whitespace character. We can then combine those results with Python’s ability to do multiple
assignments in the same line. For example,

>>> name = 'John Marwood Cleese'
>>> first, middle, last = name.split()
>>> transformed = last + ', ' + first + ' ' + middle
>>> print(transformed)
Cleese, John Marwood

The split method returns the three substrings from name when splitting at white-
space. We know this because our name is formatted as three space-separated strings. The
multiple assignment assigns the first substring to first, the second substring to middle,
and the final substring to last. The next line assigns a rearrangement via concatenation to
transformed, which is then printed.

Two things should be noted. This multiple-assignment approach has a problem if
split does not return exactly three items to match the three variables on the left-hand
side. You will learn later how to handle that problem using lists. Second, notice that the
original string associated with name is not changed by the split method.

Here is a session that illustrates this transformation. The session also shows the error
if the number of objects returned by the split method does not match the number of
variables on the left-hand side. It also shows that name is not changed by these operations.

>>> name = 'John Marwood Cleese'
>>> first, middle, last = name.split()
>>> transformed = last + ', ' + first + ' ' + middle
>>> print(transformed)
Cleese, John Marwood
>>> print(name)
John Marwood Cleese
>>> print(first)
John
>>> print(middle)
Marwood

210 C H A P T E R 4 • W O R K I N G W I T H S T R I N G S

>>> print(last)
Cleese
>>> first, middle = name.split() # er ro r : not enough p i e c e s
Traceback (most recent call last):
File "<pyshell#71>", line 1, in <module>
first, middle = name.split()

ValueError: too many values to unpack
>>> first, middle, last = name.split(' ') # s p l i t on space ' '
>>> print(first, middle, last)
John Marwood Cleese

The split method can be useful for comma-separated data such as those generated by
spreadsheets and databases. The following example shows a string split based on a comma.
You can split using any string, so '+' can be used to separate operands from operators as
shown in the following code. We also illustrate how methods can be used with string literals
rather than only variables. Finally, if a split character is not specified, splitting will be done
with whitespace; that is, with spaces, tabs, or returns.

>>> line = 'bob,carol,ted,alice'
>>> first, second, third, fourth = line.split(',')
>>> print(first, second, third, fourth)
bob carol ted alice
>>> op1, op2 = "A+B".split('+')
>>> print(op1, op2)
A B

4.6.2 Palindromes
Let’s try to do something a little more complicated: determining whether a string is a palin-
drome. A palindrome is a string that reads the same forward as backward. Classic examples
of a palindrome string are, “Madam, I’m Adam” and “A man, a plan, a canal, Panama”.

If you look carefully though, those strings are not exactly the same forward and back-
ward. We can easily show this with Python’s help. We can print the string forward and then,
backward, by simply reversing the string. Remember, string reversal is a slice from beginning
to end with a -1 step. The following session shows both of the examples:

>>> pal 1 = "Madam, I'm Adam"
>>> pal 2 = "A man, a plan, a canal, Panama"
>>> print("Forward: {} \nBackward: {}".format(pal 1,pal 1[::-1]))
Forward: Madam, I'm Adam
Backward: madA m'I ,madaM
>>> print("Forward: {} \nBackward: {}".format(pal 2,pal 2[::-1]))
Forward: A man, a plan, a canal, Panama
Backward: amanaP ,lanac a ,nalp a ,nam A

4 . 6 • W O R K I N G W I T H S T R I N G S 211

We did a few things in that session. We had to use double quotes for the first palindrome
so we could capture the apostrophe in the word "I'm", and we did a little string formatting
so that we could easily compare the two strings.

These palindromes are, in fact, not exactly the same forward and backward: for example,
pal 1[0] != pal 1[-1] because of case issues and pal 1[4] != pal 1[-5] as
they aren’t even the same character! Why are these called palindromes again?

In fact, the rules are relaxed in terms of character comparisons when talking about
palindromes. Typically, we ignore the case of the individual characters, so that the first
instance we noted previously is handled, and we completely discount non-alphabetic and
non-digit characters, which takes care of the second instance. So to evaluate for palindromes,
we really have two tasks:

1. Modify the input string so that:
� The case of all the characters is the same.
� Only letters and digits are in the string.

2. Once modified, compare the string forward and backward to see whether it is the same
string.

The second task is easy, so let’s concentrate on the first.

Changing Case
You have already seen the solution for this, but here is a quick reminder. Python provides a
number of string methods that create a new string where something like case is modified.
In the table in Section 4.3.4, there are two methods that look helpful: lower and upper.
It doesn’t matter which one we choose, as long as we apply it to the string and make all the
characters in the string of one case. Let’s use lower.

Only Letters and Digits
To accomplish the second sub-goal of having the string contain only alphabetic and digit
characters, there are a couple of options. However, there are two string concepts that are
helpful no matter the approach.

The first is thein operator that we introduced in Section 4.2.4 for checking membership
in a collection. We can use the in operator to query whether certain characters are in
the string. Conveniently, Python provides another module that stores various groups of
characters as a string for exactly this purpose. If we import the string module, you will
see that it contains a number of predefined strings, including:

string.punctuation: '!"# $%&\'()*+,-./:;<=>?@[\\]ˆ_`\{\}˜' |
string.digits: '0123456789'
string.ascii lowercase: 'abcdefghijklmnopqrstuvwxyz'
string.whitespace: '\t\n\x0b\x0c\r '

212 C H A P T E R 4 • W O R K I N G W I T H S T R I N G S

The last looks a bit odd, but it contains a representation using the (backslash) prefix
for the control characters, such as tab, carriage return, and space (which we couldn’t see
otherwise). We can use these predefined strings to do membership tests. For our palindrome,
we want to test only lowercase letters or digits and exclude punctuation and whitespace.
Once we find a character we do not want, what can we do?

Python provides another very useful string method, replace. The replace method
takes two arguments: the first is the string we are looking for, and the second is the
replacement string if the first string is found. For example, 'abbc'.replace('b','z')
would search through the string 'abbc' looking for any 'b' and, if found, replace the
'b' with a 'z'. It would return the new string 'azzc' (leaving 'abbc' unchanged).
One way to remove a character from a string is to replace with the empty string (”). This
will be our strategy.

Putting It All Together
Here’s a full solution. Examine it and then we’ll discuss the parts.

Code Listing 4.4

1 # Palindrome t e s t e r
2 import string
3

4 original str = input('Input a string:')
5 modified str = original str.lower()
6

7 bad chars = string.whitespace + string.punctuation
8

9 for char in modified str:
10 if char in bad chars: # remove bad chara c t e r s
11 modified str = modified str.replace(char,'')
12

13 if modified str == modified str[::-1]: # i t i s a palindrome
14 print(\
15 'The original string is: {}\n\
16 the modified string is: {}\n\
17 the reversal is: {}\n\
18 String is a palindrome'.format(original str, modified str, modified str[::-1
]))

19 else:
20 print(\
21 'The original string is: {}\n\
22 the modified string is: {}\n\
23 the reversal is: {}\n\
24 String is not a palindrome'.format(original str,modified str,modified str[::-
1]))

4 . 7 • M O R E S T R I N G F O R M A T T I N G 213

Line 2: We import the string module to get the predefined Python strings.
Line 4: We prompt for a string to test.
Line 5: We lowercase the original string to get the case uniform throughout the string. We

hold onto the original string.
Line 7: We create a new string, bad chars, which is a concatenation of all the charac-

ters we don’t want in our modified string—namely the punctuation and whitespace
characters.

Lines 9–11: The for loop is short and simple. We iterate through each character in the
modified string. If the character is in the string of unwanted characters, we remove it.
We do so by replacing all occurrences of that bad character with an empty string, '',
effectively deleting that character.

Line 13: This is the reversal test: is it or is it not a palindrome? That is, are the modified
string and the reversal of it the same?

Lines 14–18: This is a pretty printed line broken into multiple continuations—the backslash
(\) at the end of the lines—to get the strings to line up and produce a nicely formatted
output. The backslash (\) characters force carriage returns in the output.

Most of the work we had to do was in modifying the original string so that we could
do our simple reversal test. Using replace to remove the bad characters is not the only
way to do the palindrome. We leave as an exercise how to do palindromes without using
replace.

4.7 M O R E S T R I N G F O R M A T T I N G
Earlier in Section 4.4 we introduced basic string formatting. The basic formatting we
presented was:

{:[align] [minimum width] [.precision] [descriptor]}

Here we will describe more of the capabilities of string formatting.

{arg:[[fill]align][sign][#][0][minimum width][,][.precision][descriptor]}

In our previous formatting examples we did not specify positional arguments, so we
relied on the default: match formatting to data by position in order. That is, the first
format specifier applies to the first data item, then the second, and so on. The optional
“arg” argument that appears before the colon allows one to specify which of the particular
arguments to use. By so doing, format can mix arguments in a programmer-determined
way, even reusing an argument in multiple places. As usual, the numbering of arguments
starts at 0, so {1}, specifies data argument 1 in the format list, i.e., the second argument of
the format statement.

214 C H A P T E R 4 • W O R K I N G W I T H S T R I N G S

Also, notice how formatting can be done on any string and it need not appear within
a print statement.

>>> print('{} is {}'.format('Bill',25)) # using d e f au l t s
Bill is 25
>>> s = '{} is {}'.format('Bill',25) # print i s not needed
>>> s
'Bill is 25'
>>> print('{0} is {2} and {0} is also {1}'.format('Bill',25,'tall'))
Bill is tall and Bill is also 25

The align sign has been mentioned earlier (see Table 4.5): less than (<) left aligns, greater
than (>) right aligns, and “ˆ” centers. However, there is a fourth, “=”, which forces the “fill”
to be placed after the numeric sign and before the digits (it only works with numeric data).
The fill is a character that occupies any blank space in the formatted output. The “sign”
specification controls the numeric sign: “+” forces a sign for both positive and negative
values, “-” is the default and only display a sign for negatives, and “ ” (space) puts a space
for positives and a negative sign for negatives (allows easier alignment) (see Table 4.6). The
next session illustrates their use.

< left (default for most objects)
> right (default for numbers)
ˆ center
= force fill between sign and digits (numeric only)

TABLE 4.5 Alignments Format

+ sign for positive and negative
- sign for negative only (default)

space space for positive; minus for negative

TABLE 4.6 Sign Format

>>> print('{0:.>12s} | {1:0=+10d} | {2:->5d}'.format('abc',35,22))
.........abc | +000000035 | ---22

The “#” sign specifies the use of an alternative form—more detail than we will get
into here. However, one alternative form that may be useful to novices is when using “#”
with floats: it forces a decimal point even if there are no digits to the right of the decimal
point. The next session illustrates it use. Notice the difference between zero precision and
no precision.

4 . 7 • M O R E S T R I N G F O R M A T T I N G 215

>>> print('{:6.2f}'.format(3.4567))
3.46

>>> print('{:6.1f}'.format(3))
3.0

>>> print('{:6.0f}'.format(3)) # zero p r e c i s i on
3

>>> print('{:6f}'.format(3)) # no p r e c i s i on (de fau l t p r e c i s i on)
3.000000
>>> print('{:#6.0f}'.format(3)) # decimal point f o r c ed

3.

If the width field is preceded by a zero (“0”) character, zero-padding is enabled. This
is equivalent to an alignment type of “=” and a fill character of “0.” The “,” option signals
the use of a comma as a thousands separator (the American standard). The next session
illustrates their use.

>>> print('{:04d}'.format(4)) # zero pr e c e ed s width
0004
>>> print('{:,d}'.format(1234567890))
1,234,567,890

Finally, it is possible to specify names for arguments. In the session below, we named
the data arguments “lat” and “long” (we should have used the full words, but the page wasn’t
wide enough). Interestingly, it is also possible to specify various fields with data argument.
It can be quite useful to specify width as a parameter. These concepts are illustrated in the
following session:

>>> 'Coordinates: {lat}, {long}'.format(long='-112.41E',lat='32.18N')
'Coordinates: 32.18N, -112.41E'
>>> print('{:{width}d}'.format(31,width=10))

31

You will find formatted output most useful for creating tables and for displaying
floating-point values.

For example, consider making a table of polygon sides, total interior degrees, the degrees
of each interior angle, and the degrees for each exterior angle. The following session shows
unformatted output. The leftmost number causes misalignment when it reaches 10, and
the floating-point value for a septagon makes the table difficult to read.

>>> for n in range(3,11):
print(n,180*(n-2),180*(n-2)/n,360/n)

3 180 60.0 120.0
4 360 90.0 90.0
5 540 108.0 72.0

216 C H A P T E R 4 • W O R K I N G W I T H S T R I N G S

6 720 120.0 60.0
7 900 128.57142857142858 51.42857142857143
8 1080 135.0 45.0
9 1260 140.0 40.0
10 1440 144.0 36.0

Adding formatting, we get the more readable:

>>> for n in range(3,11):
print('{:4}-sides:{:6}{:10.2f}{:10.2f}'.format(n,180*(n-2),180*(n-2)/n,360/n))

3-sides: 180 60.00 120.00
4-sides: 360 90.00 90.00
5-sides: 540 108.00 72.00
6-sides: 720 120.00 60.00
7-sides: 900 128.57 51.43
8-sides: 1080 135.00 45.00
9-sides: 1260 140.00 40.00
10-sides: 1440 144.00 36.00

4.8 C O M P U T E R S C I E N C E P E R S P E C T I V E S :
U N I C O D E

We briefly mentioned Unicode in Chapter 0, but now that we have strings it is worth
spending more time on the subject of encoding characters. Since the initial rapid growth
of computing was dominated by English-speaking countries, the encoding of characters
was initially dominated by English with the ASCII encoding (defined in 1963). However,
the 128 ASCII characters were too limiting even for the European languages, let alone
huge languages such as Chinese. A broader character set called Unicode was defined in the
late 1980s to handle over 1 million characters across 93 scripts (alphabets). Each Unicode
character then needs to be encoded into binary for use in the computer. There are a number
of encodings, but a popular one is UTF-8 (defined in 1993). One reason for its popularity is
that the well-entrenched ASCII encoding is a subset of UTF-8, so backward compatibility
issues are eased. A language needs to choose some encoding as its default, and Python 3’s
default is UTF-8. Because ASCII is a subset of UTF-8, by default Python 3 can handily
read existing ASCII text files. In addition, at the time of writing this text, roughly half the
pages on the World Wide Web are encoded in UTF-8.

A Unicode character maps to something called a code point, a theoretical concept. How
that code point gets represented in a file is separate—that is the encoding. It is similar
to Plato’s Theory of Forms, where there is an ideal; abstract representation of an object,
e.g., the theoretically perfect circle; and then there is the circle that you draw on paper,

4 . 8 • C O M P U T E R S C I E N C E P E R S P E C T I V E S : U N I C O D E 217

which is not the perfect circle. With Unicode the code point is the abstract ideal, and the
encoding is the actual representation in the computer. There is one ideal “A,” but there
are multiple ways to encode it in binary, and UTF-8 is one of those ways. Fortunately,
Python 3 hides most of the complexity of dealing with Unicode and its encoding from the
programmer when dealing with text files. Life can get very complicated with other types
of files.

We say that Python “mostly” hides the complexity because there are times when a
programmer needs to consider encodings. For example, UTF-8 was defined before the euro
existed, so it doesn’t have a code for it. If you are reading files—say, from a spreadsheet (e.g.,
CSV)—that discuss euros, you will want to read the file using the Latin-1 encoding, which
understands the euro symbol. Later we will see how Microsoft generates CSV files from
its Excel spreadsheet using a particular encoding (Windows-1252)—a superset of ASCII,
but different from UTF-8, so unreadable characters can creep in. In the next chapter, we
describe how to specify the encoding when reading a file at those rare times when it will
make a difference.

We mentioned earlier that you can use the ord function to get the encoding for any
character. Since the default in Python 3 is UTF-8, the ord function provides the UTF-8
encoding (which for English characters is the same encoding as ASCII). The following
session shows some encodings of upper- and lowercase characters as well as some symbols.
Notice that even the space character has an encoding, as does the carriage return. Also,
notice how the encoding of upper- and lowercase each use a contiguous slice of numbers so
the encoding can be used to sort characters.

>>> chr(97)
'a'
>>> ord('A')
65
>>> chr(65)
'A'
>>> ord('a')
97
>>> chr(97)
'a'
>>> ord('b')
98
>>> ord('1')
49
>>> ord('2')
50
>>> ord('=')
61
>>> ord(' ')
32
>>> ord('\n')
10

218 C H A P T E R 4 • W O R K I N G W I T H S T R I N G S

Summary
In this chapter, we introduced the string type and the variety of methods and functions that
work on them. In isolation, these tools may not yet appear to be very useful or powerful.
However, when combined with the ability to make decisions and repeat instructions, these
tools will be heavily used.

Strings
� Strings are immutable.

� Strings are sequences.

� Strings have many methods. See Table 4.2.

� Standard operations:

- length function: len(s)
- membership: in

Indexing and Slicing
Given: s = 'Mississippi'

� Indexing starts at 0: s[0] is 'M'.

� Negative indices work backward from the end: s[-1] is 'i'.

� Slicing selects a subset up to but not including the final index: s[3:6] is 'sis'.

� Slicing default start is the beginning, so s[:4] is 'Miss'.

� Slicing default end is the end, so s[7:] is 'ippi'.

� Using both defaults makes a copy: s[:].

� Slicing’s optional third argument indicates step: s[:6:2] is 'Msi'.

� The idiom to reverse a string: s[::-1] is 'ippississiM'

Formatting
{arg:[[fill]align][sign][#][0][minimum width][,][.precision]type}

For example: print('X{:<10.3f}Y'.format(12.345678))
prints
X12.346 Y

E X E R C I S E S 219

Iteration: for, enumerate
� for walks through each character in a string:
for ch in 'Mississippi':

� enumerate generates both the index and the character:
for index, ch in enumerate('Mississippi'):

Rules
� RULE 1: Think before you program!

� RULE 2: A program is a human-readable essay on problem solving that also happens
to execute on a computer.

� RULE 3: The best way to improve your programming and problem skills is to practice!

� RULE 4: A foolish consistency is the hobgoblin of little minds.

� RULE 5: Test your code, often and thoroughly!

� RULE 6: If it was hard to write, it is probably hard to read. Add a comment.

Exercises
1. Given the string "Monty Python":

(a) Write an expression to print the first character.
(b) Write an expression to print the last character.
(c) Write an expression inculding len to print the last character.
(d) Write an expression that prints "Monty".

2. Given the string "homebody":

(a) Write an expression using slicing to print "home".
(b) Write an expression using slicing to print "body".

3. Given a variable S containing a string of even length:

(a) Write an expression to print out the first half of the string.
(b) Write an expression to print out the second half of the string.

4. Given a variable S containing a string of odd length:

(a) Write an expression to print the middle character.
(b) Write an expression to print the string up to but not including the middle character

(i.e., the first half of the string).
(c) Write an expression to print the string from the middle character to the end (not

including the middle character).

5. Given x = ‘water’, what is returned by x.replace('w','c',1)?

220 C H A P T E R 4 • W O R K I N G W I T H S T R I N G S

6. Given the string S = "What is your name?":

(a) What is returned by S[::2]?
(b) What is returned by S[2:8:-1]?

7. Given the string variable x = 'acegikmoqsuwy' and y = '+bdfhjlnprtvxz',
use indexing to create a string z that is the lowercase English alphabet.

8. The plus sign (+) is overloaded in Python. Explain why 5 + 4 equals 9, '5' + '4'
equals '54', and 5 + 4.0 equals 9.0.

9. What will be printed by the following?

x = 'This is a test.'
print(x * 3)

10. In the following program, replace the for with a while loop.

S="I had a cat named amanda when I was little"
count = 0
for i in S:

if i == "a":
count += 1

print(count)

11. (String operators) The Monty Python comedy troupe has a famous skit set in a restaurant
whose menu is predominately Spam—a canned meat mixture of ham and pork. One
menu entry was “Spam, Spam, Spam, Spam, Spam, baked beans, Spam, Spam, Spam,
and Spam.” Write a Python string expression using both the concatenation (+) and
repetition (*) string operators to form that menu entry.

12. The following Python statement generates this error: “ValueError: too many values to
unpack.” Why?

first,second = input('two space-separated numbers:')

13. We know that writing the following code:

print("I like writing in Python.")

print("It is so much fun.")

will result in:
I like writing in Python.

It is so much fun.

when executed. However, can you manage to do this same task with only one line of
code?

E X E R C I S E S 221

14. Five string methods manipulate case: capitalize, title, swapcase, upper,
and lower. Consider the strings: s1 = "concord", s2 = "souix city", s3 =
"HONOLULU", and s4 = "TopHat".

(a) Describe what capitalize does.
(b) Describe what swapcase does.
(c) Describe what upper does.
(d) Describe what lower does.
(e) Describe what title does.

15. It is possible to combine string methods in one expression. Given the expression s=
"CAT", what is s.upper().lower() ?

16. Two string methods left and right justify strings within a specified width. In addition,
they default by filling in with spaces but can be specified to fill in with a character.
Consider s = "Topkapi" and s.rjust(20,".") or s.ljust(15). Experiment
with right and left justification. Describe the rules for what ljust and rjust do.

17. Two string methods find where a character is in a string: find and index.

(a) Both work the same if a character is found, but they behave differently if the
character is not found. Describe the difference in how they behave when the
character is not found.

(b) The find and index methods are not limited to finding single characters. They
can search for substrings. Given s = "Topkapi", what does s.find("kap")
print? Describe the rule for what find prints.

18. Using the input command, prompt for input and then convert the input to lowercase.

19. Convert a string that is all capitals into a string where only the first letters are capitals.
For example, convert "NEW YORK" to "New York".

20. Experiment with the count method. What does it count?
For example,

some string = "Hello world!"
some string.count("o")

21. Experiment with the strip method. What does it do?
For example,

some string = "Hi!......"
some string.strip(".!")

22. The string methods that start with “is” all return either True or False. Experiment
with them to figure out how they work—i.e., what causes them to return “True” and
what causes them to return “False.”

222 C H A P T E R 4 • W O R K I N G W I T H S T R I N G S

23. (String operators)

(a) Suppose you want to print a line full of '#' characters. For simplicity, let’s say that a
line can have only 80 characters. One way is to create a long string to be printed. How
would you do it more elegantly in Python using the plus operation (+) of strings?

(b) Suppose you want to print a column full of '#' characters. For simplicity, let’s
say that a column could have only 30 characters. Similar to (a), how would you do
it more elegantly in Python using the mulitply operation (*) of strings? Hint: Use
the newline character (‘\n’).

24. Let, name str = 'Albert Einstein'. How would you extract the first name
and last name from name str using string operator ‘:’?

25. In British English, there is the word flavour. The American spelling is “flavor”. Suppose
you have a string in Python called brit word = 'flavour' and you want to
convert it into the American variant and store it in a string called amer word. How
would you do it?

26. Which of the following works without any error?

(a) var = 'xyz' * 10.5
(b) var = 'xyz' * '5'

(c) var = 'xyz' * 5
(d) var = 'xyz' * 5.0

27. (Reversing a string) Given a string variable X = 'Alan Turing', write an expression
to reverse it to get string Y = 'gniruT nalA'.

28. Suppose you have a string ab string = 'abababababababab'. Write an
expression to remove all the b’s and create a string a string = 'aaaaaaaa'.

29. Given the string 'abcdefghij', write a single line of code that will print the
following (Hint: Slicing is your friend):

(a) 'jihgfedcba'
(b) 'adgj'
(c) 'igeca'

30. Using the find method, write a short program that will print out the index of both
o’s when given the input “Who’s on first?”

31. Write a program that given a name in the form of “Chapman, Graham Arthur” will
convert it to the form “Graham Arthur Chapman.”

32. The expression ‘dog’ + ‘s’ will return ‘dogs’. What is returned by the expression ‘dog’
− ‘g’ ? Explain.

33. Similar to .lower: write a program that prompts for a string and prints the string in
lowercase without using the string.lower method.

P R O G R A M M I N G P R O J E C T S 223

34. In the palindrome example we used replace to remove bad characters. Refactor
that program to keep the good characters rather than remove the bad characters.

35. Given the following code:

x=input("Enter a string: ")
y=0
for i in x:

print(y,i)
y+=1

(a) What will be printed, if “hello” is entered?
(b) Refactor the code using enumerate.

36. Although Python’s formatted printing can be cumbersome, it can often drastically
improve the readability of output. Try creating a table out of the following values:

Melting and Boiling Points of Alkanes
Name Melting Point (deg C) Boiling Point (deg C)
Methane -162 -183
Ethane -89 -172
Propane -42 -188
Butane -0.5 -135

37. Write a program that prompts for two strings and then compares them, printing the
smaller string.

38. Write a program that plays the game of hangman. Use characters to print the hangman’s
status. Triple-quoted strings will be useful. Hint: draw the entire hangman status as a
string picture with a full picture for each partial hangman status.

Programming Projects
1. Mastermind

Mastermind is a code-breaking game for two players; play can be simulated in text on
a computer. Online versions exist and are useful for understanding how the game is
played, but if you can get a hold of the actual board game, that is even better. The game
is played using the following:
� A decoding board, with a shield at one end covering a row of four large holes, and

12 additional rows containing four large holes next to a set of four small holes;
� Code pegs of six different colors (we’ll use “colors” ABCDEF), with round heads,

which will be placed in the large holes on the board; and

224 C H A P T E R 4 • W O R K I N G W I T H S T R I N G S

� Scoring pegs, some black, some white, that are flat-headed and smaller than the code
pegs; they will be placed in the small holes on the board. Only the quantity of black
and white scoring pegs in each row matter in the game.

One player, the codemaker, selects four colors that are shielded from the other
player, the codebreaker. In our version, colors cannot repeat, e.g., AABB is illegal. The
goal of the game is for the codebreaker to correctly determine both the four colors
selected by the codemaker and their position in the code.

The codebreaker tries to guess the pattern, in both order and color, within 12 turns.
Each guess is made by placing a row of code pegs on the decoding board. Once placed,
the codemaker provides feedback by placing from zero to four scoring pegs in the small
holes of the row with the guess. A black scoring peg is placed for each code peg from
the guess that is correct in both color and position. A white peg indicates the existence
of a correct color peg placed in the wrong position.

Once feedback is provided, another guess is made; guesses and feedback continue
to alternate until either the codebreaker guesses correctly or 12 incorrect guesses are
made.

Write a program that simulates the game by providing the feedback. The code-
breaker will input each guess by entering a string of “colors.” Your simulation will
ensure that guessing rules are followed: the guess consists of exacly four colors from
ABCDEF. Feedback will be a count of black pegs and a count of white pegs. Your
program will determine the feedback and print it. The program will declare a win if
the guess is correct or a loss after 12 incorrect guesses. In addition, the program should
print the complete board state so the codebreaker can more easily view the history of
guesses made.

Hints:

� Play the game using paper and pencil to understand how the game is played before
designing your game-playing algorithm.

� Use strings for the code and guesses.
� Use a string 'ABCDEF' for the set of allowable colors so you can check membership

using in.
� The isalpha string method is useful for checking input.
� The history can be built as a long string using concatenation. The end-of-line char-

acter '\n' will be useful for readable output.

(a) The first version of the program should prompt for the codemaker’s code. Such
a game program isn’t much fun to play, but it is easier to test.

(b) The final version should use the random module to create the codemaker’s code
so it can be kept shielded from the codebreaker.
i. Use the index = random.randint(start,end) function (from

Section 2.2.10) to generate random indices, start ≤ index ≤ end, to select code
characters from 'ABCDEF'.

P R O G R A M M I N G P R O J E C T S 225

ii. Or, use random.sample(population,k) that returns a sample of
length k from a specified population. The join expression (that we learn the
meaning of in Chapter 7) converts to a string what is returned by the sample
function:

code = ".join(random.sample('ABCDEF',4))

2. Mad Libs
Mad Libs (madlibs.com) is an old word game for children. (If you have never played
Mad Libs, try it at eduplace.com/tales/.) You are prompted for categories of words
(color, girl’s name, place, etc.) and then those words are inserted into a predefined story.
The predefined story has placeholders for those words that get replaced by the values
prompted for. For example: Suppose you are prompted for a verb and a noun, and you
respond with giggle and spark. If the predefined string was the first line of Hamlet in
this form:

To VERB or not to VERB: that is the NOUN:

The revised version will be:

To giggle or not to giggle: that is the spark:

Create your own predefined story with parts of speech replaced with their description
in all capitals: VERB, NOUN, ADJECTIVE, etc. Your story will be more interesting
if you augment your words to be replaced with others appropriate for your story:
BOYS NAME, COLOR, ACTIVE VERB, etc. Be creative. If you are at a loss for
ideas, begin with a fairy tale. For example, here is the beginning of “Little Red Riding
Hood” (note the backslash continuation character \):

story = "Once upon a time in the middle of a ADJECTIVE ONE NOUN ONE stood a \

ADJECTIVE TWO NOUN TWO, the home of a ADJECTIVE ONE ADJECTIVE THREE \

NOUN THREE known to everyone as GIRLS NAME."

Prompt the user for strings to replace the various parts of speech that you have specified.
Print out the revised story.

Hint: the string method replace(old,new) will be helpful.

3. Pig Latin
Pig Latin is a game of alterations played on words. To make the Pig Latin form of an
English word the initial consonant sound is transposed to the end of the word and an
“ay” is affixed. Specifically there are two rules:

(a) If a word begins with a vowel, append “yay” to the end of the word.
(b) If a word begins with a consonant, remove all the consonants from the beginning

up to the first vowel and append them to the end of the word. Finally, append “ay”
to the end of the word.

226 C H A P T E R 4 • W O R K I N G W I T H S T R I N G S

For example:
� dog ⇒ ogday
� scratch ⇒ atchscray
� is ⇒ isyay
� apple ⇒ appleyay

Write a program that repeatedly prompts for an English word to translate into Pig
Latin and prints the translated word. If the user enters a period, halt the program.

Hints:
� Slicing is your friend: it can pick off the first character for checking, and you can slice

off pieces and concatenate to yield the new word.
� Making a string of vowels allows use of the in operator: vowels = 'aeiou'.

•5C H A P T E R

Files and Exceptions I

Exceptio probat regulam in casibus non exceptis.
Exception confirms the rule in the cases not excepted.

Seventeenth-Century English Law

NOW THAT WE UNDERSTAND STRINGS, LET US LOOK AT THE CONCEPT OF A FILE. FILES

are an important part of working with computers, and in this section we will introduce the
basics of file handling using Python.

5.1 W H A T I S A F I L E ?
A file is a collection of bytes of information that usually resides permanently on a disk. Files
fall into two broad categories: text files and binary files. Text files were originally organized
as ASCII data but now include Unicode data that can handle a greater variety of characters
that are required by many languages (see Appendix D for the Python default encoding). In
either case, text files are human-readable (when displayed in a text editor or browser, they
will be readable). Binary files are all other files—they use some other coding scheme. A
classic example is the format that Microsoft uses for Word documents. If you open a Word
document in a text editor, it appears as random characters—not human-readable characters.
For the rest of this chapter, we will focus on text files.

5.2 A C C E S S I N G F I L E S : R E A D I N G T E X T F I L E S
To access a file from Python you must open a connection between the Python shell and
the file residing on a disk. Thus, we are creating a kind of “pipe” between the information
on the disk and the program that will use it. This “pipe” will be the conduit for the file
contents to pass back and forth between the disk where the file resides and the program.

227

228 C H A P T E R 5 • F I L E S A N D E X C E P T I O N S I

The pipe in Python is a file object that is created when the connection is established. The
file object uses the main memory of the computer to store data as they are moved between
the disk and program. The Pythonopen command sets up that connection and returns the
file object that represents the connection. All subsequent actions we perform on a file are
done through this file object, also sometimes called a file descriptor or stream. A file can be
opened for reading or writing (or both) through this file object.

Let’s assume that a text file named temp.txt exists and is in the same folder (directory)
as our program (see Section 14.3.1 for a discussion of where the file needs to be). Here are
the contents of the file temp.txt :

First line
Second line
Third line

Let’s examine a Python shell session that opens the file for reading, reads the contents
of the file, and then closes the file. The first line calls the open function with arguments
specifying the file name and whether it is being opened for reading ('r') or writing ('w').
The connection to the file is created as a file object named temp file. Using temp file
we can iterate through the file contents line by line using a for statement, as we have done
before. Remember, when iterating through a file object we are iterating one line at a time. At
the end we close the file with temp file.close(), tearing down the connection between
the shell and the file. If we forget to close the file, the Python shell will close it when the
shell exits or is restarted.

>>> temp file = open("temp.txt","r") # open f i l e f o r reading
>>> for line str in temp file: # one l in e at a time

print(line str,end='') # end= ' ' , no car r iag e return

First Line
Second Line
Third Line
>>> temp file.close() # c l o s e the f i l e

VideoNote 5.1
Reading Files

5.2.1 What’s Really Happening?
When you set up a connection between your Python program and a file, you are creating
what is called a “stream” of data. Data flows from the file (on disk) to your program, as in
Figure 5.1. An important part of the stream is the buffer that is in main memory where
the data is stored on its way between the file on the disk and your program. The stream is
managed by the operating system, which tries to ensure that when your for loop needs the

5 . 3 • A C C E S S I N G F I L E S : W R I T I N G T E X T F I L E S 229

Executing
program

Input stream Output stream

Input device

Output device

a) Standard input and output

b) File input and output

Executing
program

Input stream Output stream

Input file Output file

FIGURE 5.1 Input-output streams.

next line, that line will already be in the buffer in memory. A buffer is needed because disk
access is slow, so the computer, when it isn’t busy, stores a lot of the file’s contents in memory.
If everything is working well, the whole process will be invisible to the programmer.

5.3 A C C E S S I N G F I L E S : W R I T I N G T E X T F I L E S
Writing files requires first creating a file object connection as we did for reading a file. The
only difference is that one specifies “w” rather than “r” in the open command. If the file
doesn’t exist for writing, it will be created.

Once a file is open, you can print to the file by adding the file= argument to the
print command. In the following session we write to the file temp.txt using its file
descriptor: file=temp file.

open f i l e f o r writing :
c r e a t e s f i l e i f i t does not e x i s t
ove rwr i t e s f i l e i f i t e x i s t s
>>> temp file = open("temp.txt","w")
>>> print("first line", file=temp file)
>>> print("second line", file=temp file)
>>> temp file.close()

230 C H A P T E R 5 • F I L E S A N D E X C E P T I O N S I

This is what the file looks like when we finish:
first line
second line

In Chapter 14 we will see other ways to write to a file, but this approach is very simple
and easy to use, so it is good enough for now.

5.4 R E A D I N G A N D W R I T I N G T E X T F I L E S
I N A P R O G R A M

Let’s put these concepts together into a simple line-reversal program. This program opens
two files: one for reading, the other for writing. The program reads, one line at a time, from
the file named input.txt. The line is stripped (to remove the carriage return), and then
iterated through, one character at a time. We add each character to the left of a new string
called new str, thus reversing the line. After processing the line, we write new str to a file
called output.txt. We include a print statement (with a little formatting to get things
lined up correctly) to make sure we know what we should be getting. The code is below.

Code Listing 5.1

r e v e r s e each l in e o f the input f i l e in the output f i l e

input file = open("input.txt", "r")
output file = open("output.txt", "w")

for line str in input file:
new str = ''
line str = line str.strip() # ge t rid o f ca r r iag e return
for char in line str:

new str = char + new str # concat at the l e f t (r e v e r s e)
print(new str,file=output file) # print to output f i l e

inc lude a print to s h e l l s o we can observe p r o g r e s s
print('Line: {:12s} reversed is: {:s}'.format(line str, new str))

input file.close()
output file.close()

We need to create the input.txt for the program to work on. Using a text editor, the
following is the content of input.txt:

First Line
Second Line
Third Line

5 . 5 • F I L E C R E A T I O N A N D O V E R W R I T I N G 231

Applying the program above to input.txt, the session below shows the result, fol-
lowed by the contents of ouput.txt.

>>>
Line: First Line reversed is: eniL tsriF
Line: Second Line reversed is: eniL dnoceS
Line: Third Line reversed is: eniL drihT

eniL tsriF
eniL dnoceS
eniL drihT

5.5 F I L E C R E A T I O N A N D O V E R W R I T I N G
When one opens a file for reading and the file doesn’t exist on the disk (or the operating
system cannot find the file), an error is generated. If the file exists, the file object connection
is created and we can read values from the file.

When one opens a file for writing and the file doesn’t exist, a file will be created in the
folder where the program is running (see Section 14.3 on how to change that behavior). If
the file already exists, its contents will be cleared; that is, the file contents will be lost, and
any new material is added to the now-empty file by default. The program looks for the file
in the folder that the program is running in.

The modes in which you can open a file and the effects they have on existing (or
nonexisting) files are shown in Table 5.1.

Mode How Opened File Exists File Does Not Exist
'r' read-only Opens that file Error
'w' write-only Clears the file contents Creates and opens a new file
'a' write-only File contents left intact and Creates and opens a new file

new data appended at file’s
end

'r+' read and write Reads and overwrites Error
from the file’s beginning

'w+' read and write Clears the file contents Creates and opens a new file
'a+' read and write File contents left intact and Creates and opens a new file

read and write at file’s end

TABLE 5.1 File Modes

232 C H A P T E R 5 • F I L E S A N D E X C E P T I O N S I

Check Yourself: File Check

1. Consider a file named input.txt.

Which of the following is the proper way to read the file?

(a) in_file = open('input.txt','r')
for ln in in_file:

do something
(b) in_file = open('input.txt')

for ln in in_file:
do something

in_file.close()
(c) in_file = open('input.txt','r')

for ln in in_file:
do something

in_file.close()
(d) in_file = open('input.txt','r')

while ln in in_file:
do something

in_file.close()

(e) None of the above.

5.6 F I R S T C U T , H A N D L I N G E R R O R S
We have been programming long enough now to know that errors occur in programs. Upon
some reflection, these errors come in two broad categories: syntax errors and runtime errors.

Syntax errors are errors where the code we as programmers write is malformed. Somehow
the code does not follow the rules of Python. Perhaps we forgot a colon at the end of a for
statement or did not provide an end parenthesis for a print statement. Whatever the error
might be, we as programmers must correct the problem and write the code so that it follows
the rules.

Runtime errors are errors, not of syntax but of application. For example, we can write
a Python program that is syntactically correct and tries to divide an integer by 0. There is
no rule of the Python language that prevents this, but application of this incorrect program
leads to an error. There are many examples of this: dividing by 0 accessing a character past the
end of a string, a while loop that never ends, etc. In particular, when we as programmers
interact with users, errors can occur. The user can provide a string of characters where
an integer is needed, the file string provided does not exist, etc. What are we to do, as
programmers, to try and deal with runtime errors when they occur?

Up to this point, our approach has been to ignore these issues. If the user provides a file
we cannot open (it doesn’t exist, it is in the wrong directory, etc.), then the program quits
at that point. This is not a very helpful solution, since both the user is frustrated (“What
the heck does that mean?”) and the programmer is frustrated because of a simple error. We
need a way to handle these types of errors as programmers, if we can.

5 . 6 • F I R S T C U T , H A N D L I N G E R R O R S 233

Python, and other programming languages, provide a way to deal with errors, the
exception system. We will deal with exceptions in more detail in Chapter 14 but for now,
exceptions are how we can deal with user input errors.

5.6.1 Error Names
Though we haven’t really paid much attention to it, Python provides very specific error
names to the various situations that occur when something goes wrong. Look at the session
below.

>>> input file = open("no such file.txt", 'r')
Traceback (most recent call last):
File "<pyshell#0>", line 1, in <module>
input file = open("no such file.txt", 'r')

IOError: [Errno 2] No such file or directory: 'no such file.txt'
>>> my int = int('a string')
Traceback (most recent call last):
File "<pyshell#1>", line 1, in <module>
my int = int('a string')

ValueError: invalid literal for int() with base 10: 'a string'
>>>

The last line of each error message explicitly names the error that Python has encoun-
tered. When we try to open a file that doesn’t exist, Python stops the program with a
IOError. Note the capitalization. The name of the error is exact, including capitalization.
When we try to convert a string of letters to an integer, Python stops the program with a
ValueError. Python is not only giving us hints as to what is wrong, but it is giving the
error a very specific name, something we can take advantage of!

P R O G R A M M I N G T I P

Typing code with a specific error in the shell is a very easy way to figure out what name
Python gives the error. There are many names Python has for the various errors it encounters,
but rather than remember them all (and their spelling), just type an example of the error
into the shell and see what name Python gives it!

5.6.2 The try-except Construct
Python provides a construct called the try-except construct that allows a programmer
to capture a runtime error and give the programmer the option to handle that error. This
construct has two suites, named (not suprisingly) thetry suite and some number of except
suites. Their functions are as follows:

234 C H A P T E R 5 • F I L E S A N D E X C E P T I O N S I

� The try suite contains code that we, as programmers, want to “watch over” for
possible runtime errors. That is, we are concerned about a suite of code that might
cause a runtime error.

� Each except clause has associated with it a particular Python error name,1 and a suite
of code that will run, if that particular error occurs.

In general, the construct looks like the following:

try:
suite of code to watch here

except ParticularErrorName:
suite of code to handle the named error, i f i t occurs

Marking a suite of code with a trymight seem a bit odd at first. How can a programmer
know what to watch? It is not as difficult as it might seem. The places where the user provides
input to a program are, again, a prime example. We know what errors might occur if the
user provides incorrect input. We should watch that code to make sure the user gets it right
and help the user correct his input if possible, reducing everyone’s frustration.

Failure to enforce correct input is a common source of security errors. In fact, this is
an opportunity for a rule. This is a quote from Michael Howard and David LeBlanc’s book
Writing Secure Code:

Rule 7: All input is evil, until proven otherwise.

Adherence to this rule will eliminate the majority of security errors.

5.6.3 try-except Flow of Control
The flow of control in a try-except is a little complicated, as control can skip around a
bit when an error occurs. The idea is something akin to an if statement. The conditions in
an if are the equivalent of the names of the errors associated with the except. Whichever
error name matches the present error, that associated suite is executed. If no such match
occurs, then the error suites are skipped.

Here is the flow of control in detail.

1. Normal flow of Python control enters a try suite.
2. If an error occurs within the try suite, stop executing the suite at the point where the

error occurred and abandon the rest of the suite. If unexecuted lines of the try suite
remain, they will be ignored.

3. Raise (let it be known that) the particular exception for that error that was encountered.

1 In fact, an except can have no or multiple errors (see Chapter 14).

5 . 6 • F I R S T C U T , H A N D L I N G E R R O R S 235

4. Look for an except suite that can handle that exception. That is, an except associated
with the particular error name that occurred.

5. If such an except suite is found, move control from the error in the try to the
beginning of the appropriate except suite. When the except suite finishes, skip to
the end of the try-except construct and continue normal Python execution.

6. If an error occurs and no appropriate except suite is found (no except is associated
with the present error), let Python handle it. This is the normal error process: print the
type of error encountered, stop the program, and go back to the interpreter.

7. If no error occurs in the try suite, that suite finishes, the except suites are skipped,
and Python continues with normal execution after the try-except construct.

5.6.4 Exception Example
The program below is a simple example of using a try-except construct, especially in

VideoNote 5.2
Simple Exception
Handling

the context of user interaction. The goal of the program is simple: to read a particular line,
indicated by a line number, from a file. The user is required to provide both the file name
and the line number. The program is shown below. Take a look Code Listing 5.2 and we
will examine it in more detail below.

Code Listing 5.2

1 # read a par t i cu la r l in e from a f i l e . User prov ide s both the l in e
2 # number and the f i l e name
3

4 file str = input("Open what file:")
5 find line str = input("Which line (integer):")
6

7 try:
8 input file = open(file str) # po t en t i a l u s er e r ro r
9 find line int = int(find line str) # po t en t i a l u s er e r ro r

10 line count int = 1
11 for line str in input file:
12 if line count int == find line int:
13 print("Line {} of file {} is {}".format(find line int, file str,
line str))

14 break
15 line count int += 1
16 else:
17 # ge t here i f l i n e sought doesn ' t e x i s t
18 print("Line {} of file {} not found".format(find line int, file str))
19 input file.close()
20

236 C H A P T E R 5 • F I L E S A N D E X C E P T I O N S I

21 except IOError:
22 print("The file",file str,"doesn't exist.")
23

24 except ValueError:
25 print("Line",find line str,"isn't a legal line number.")
26

27 print("End of the program")

Lines 4–5: The user is asked for the file name and the line number. Both are potential
sources of user input error.

Lines 7–19: The try suite. Errors within this suite can potentially be handled by except
suites.

Lines 8–9: The opening of the file and the conversion of the line number are the two errors
we are interested in handling, so we put them in the try suite.

Lines 10–11: The variable line count int will represent the number of lines read,
while line str will represent the content of the line just read. Note that we don’t
actually look at the content of the line; we only count lines.

Lines 12–15: This is the heart of the example. We read each line, and if that line has as its
line number the line number we seek, we print out a message. After we find the line we
seek and print it, we break out of the for loop.

Lines 16–18: If we get to the else part of the for loop, then we have gone through the
file and not found our line (we didn’t break out of the loop). So we print a messsage.

Lines 21–22: The first except suite catches a file opening error. We print a message if the
program cannot open the provided file.

Lines 24–25: The second except suite catches an int conversion error for the line
number. We print a message if the program cannot convert the provided string to an
integer.

Line 27: This is a print statement after the entire try-except construct. It gives us an
opportunity to see that the Python program continues even after an error occurs.

We run a session under various circumstances to test this code. We provide a file,
input.txt , with the same contents as before, namely:

First Line
Second Line
Third Line

Second, we run the code with various user input errors, namely:

1. With proper input
2. With a bad file name
3. With a bad line number (a string)
4. With a line number not in the file

5 . 6 • F I R S T C U T , H A N D L I N G E R R O R S 237

>>>
Open what file:input.txt
Which line (integer):2
Line 2 of the file input.txt is Second Line

End of the program
>>> ================================ RESTART ==========================
>>>
Open what file:badFileName.txt
Which line (integer):2
The file badFileName.txt doesn't exist
End of the program
>>> ================================ RESTART ==========================
>>>
Open what file:input.txt
Which line (integer):abc
Line abc isn't a legal line number
End of the program
>>> ================================ RESTART ==========================
>>>
Open what file:input.txt
Which line (integer):27
Line 27 of the file input.txt not found
End of the program
>>>

First, notice that even under the error conditions described, the code finishes with the
final print statement. The errors were handled by the provided except suites. Second,
follow the control under each user input error. If the code finishes without error (1,4), the
except suites are skipped and the program finishes. If an error occurs (2,3), the try code
halts at the error, the appropriate except suite is started, and then the program finishes.

For test case (2) when we enter a bad file name, notice that we also must enter a line
number before the error happens. It seems wasteful to enter a line number, if the file cannot
be opened. How can we fix that? Another adjustment to this code would be to keep asking
for input until it is correct. That is, keep asking for a file until it can be opened. Also, keep
asking for a line number until a correct line number is provided. We leave those as exercises.

P R O G R A M M I N G T I P

If you look more closely, the non-error (first) part of the session above has an extra carriage
return in its output. Why is that? The line still contained its original carriage return when
it was printed, so an extra line was printed. Including end='' in the print statement will
suppress the extra carriage return.

238 C H A P T E R 5 • F I L E S A N D E X C E P T I O N S I

Check Yourself: Exception Check

1. Given:

number_str = input("Input a floating-point number: ")
while True:

Line 1
print("Number is",number_float)

We want code that will keep prompting until a correctly formated floating-point
value is entered so it can be printed at the bottom. Which is the correct replacement
for Line 1?

(a) try:
number_float = int(number_str)
break

except ValueError:
number_str = input("Try again: input a floating-point number: ")

(b) try:
number_float = float(number_str)

except ValueError:
number_str = input("Try again: input a floating-point number: ")

(c) try:
number_float = float(number_str)
break

except ValueError:
number_str = input("Try again: input a floating-point number: ")

(d) try:
number_float = float(number_str)
break

except FloatError:
number_str = input("Try again: input a floating-point number: ")

5.7 E X A M P L E : C O U N T I N G P O K E R H A N D S
Poker is a card game that emerged in its current form from New Orleans in the mid-
nineteenth century. In its simplest form, a hand of five cards is dealt from a 52-card
English deck, and the combinations within those five cards determine the value of the hand.
Poker is a gambling game, so knowing the probabilities of the various combinations of
hands is important. Using the mathematics of combinatorics, it is possible to calculate the
probabilities, but with the computer we can also simply count the possibilities to determine
probabilities.

In the 52-card English deck, each card has a rank (a.k.a. value)—e.g., 9—as well as
one of four suits (hearts, spades, diamonds, clubs). Therefore, a card’s value is represented

5 . 7 • E X A M P L E : C O U N T I N G P O K E R H A N D S 239

Rank Name Description
9 Royal flush {Ace, king, queen, jack, ten} + flush
8 Straight flush Straight + flush
7 Four of a kind Four equal ranks within five cards
6 Full house Pair + different rank three of a kind
5 Flush Five cards with the same suit
4 Straight Five cards, sequentially ranked with no gaps
3 Three of a kind Three equal ranks within five cards
2 Two pairs Two pairs of equal ranks within five cards
1 One pair One pair of equal ranks within five cards
0 Nothing in hand

TABLE 5.2 Poker Hand Rankings

by a pair value:suit—e.g., 9 of clubs. In poker, card values proceed from ace (the highest),
to king, then queen, all the way down to 2, the lowest. For poker, players receive five cards,
which constitutes a hand, and it is the score of the hand that is used to determine winners in
a game. Both card value and card suit can figure in ranking overall card hands. For example,
a flush is a hand in which all five cards have the same suit. The rankings of hands (in contrast
to ranking of individual cards) are shown in a tabular form in Table 5.2 and in pictorial
examples in Figure 5.2.2 Within the same hand rank, the hand with higher ranked card
values wins—e.g., a pair of 10s wins over a pair of 2s.

What are the chances of getting any particular hand? One way to determine the
chances is to make a list of all 311,875,200 possibilities, count each type of hand, and
divide each count by 311,875,200. One could approximate the exact probabilities by doing
the same calculation with a smaller sample of 1,000,000 possibilities. If the smaller sample
is representative, you will get a good approximation. Generating a good list of 1 million
possibilities is an interesting problem in itself that is beyond your abilities at this point, but
it should be possible by the end of the book.

Fortunately, a good list of possible poker hands exists on the Internet.3 The data file has
1 million lines, each containing the rank and suit of each of five cards along with the hand
ranking, using the ranks in Table 5.2. A file line is shown in Table 5.3 with seven lines shown
in Figure 5.3.4 Each pair of values on each line represents a card. For example, the first three
cards in the first line are the 10 of diamonds, the 7 of hearts, and the queen of spades. The
number in the last (rightmost) column is the hand rank as specified in Table 5.2. Therefore,
the first two hands have rank 0, which means that they have nothing of value. The third line

2 The picture has one fewer hand because the “royal flush” is simply a special case of a “straight flush.”
3 It is available at the Machine Learning Repository at the University of California, Irvine, http://archive.ics.uci.edu/ml/datasets/

Poker+Hand.
4 This seven-line slice was formatted into more readable columns—the original has no spaces.

http://archive.ics.uci.edu/ml/datasets/Poker+Hand
http://archive.ics.uci.edu/ml/datasets/Poker+Hand

240 C H A P T E R 5 • F I L E S A N D E X C E P T I O N S I

Straight Flush

Flush

Straight

Three of a Kind

Two Pair

One Pair

High Cards

Four of a Kind

Full House

6

6

7

7

10

10

9

9

10

10

10

10

7

7

3

3

9

9

10

10

2

2

4

4

6

6

9

9

9

9

9

9

10

10

2

2

1

1

10

10

7

7

7

7

6

6

4

4

9

9

8

8

9

9

10

10

9

9

10

10

2

2

9

9

10

10

2

2

5

5

5

5

5

5

6

6

8

8

8

8

6

6

4

4

2

2

9

9

7

7

FIGURE 5.2 Poker hand rankings.

5 . 7 • E X A M P L E : C O U N T I N G P O K E R H A N D S 241

C1-suit, C1-rank, C2-suit, C2-rank, C3-suit, C3-rank, C4-suit, C4-rank, C5-suit, C5-rank, hand rank

TABLE 5.3 Poker File Format

3, 10, 1, 7, 2, 12, 4, 2 , 2, 1, 0
4, 9, 4, 12, 4, 13, 2, 6 , 3, 4, 0
3, 2, 2, 2, 3, 12, 3, 1 , 4, 2, 3
4, 11, 2, 8, 1, 13, 4, 7 , 1, 7, 1
4, 8, 3, 8, 1, 3, 1, 4 , 3, 7, 1
2, 7, 2, 5, 3, 10, 4, 13 , 3, 7, 1
1, 4, 3, 4, 3, 5, 4, 10 , 2, 10, 2

FIGURE 5.3 Poker file—seven lines out of 1 million.

represents a hand with rank 3, which is “three of a kind”—there are three cards of rank 2 in
the hand: 2 of diamonds, 2 of spades, and 2 of clubs. The next three hands each have one
pair (hand rank 1): 7s, 8s and then 7s again. The final hand has two pairs (hand rank 2): 4s
and 10s.

5.7.1 Program to Count Poker Hands
Now that we understand the file format, how will we count hands? First, observe that all
we care about is the last column of the line of the file, which indicates that hand’s rank.
Someone has already determined hand rank for us (something you will be able to do yourself
by the end of the book). Remember that the 11th column is index number 10, as we start
indexing at 0.

Program to Count the Total Hands in the File
As always, a useful strategy is to develop a program a little at a time. In this case, let’s begin
with a program that counts the number of hands in the file. We know that there should be
1 million—let’s see if we get that. Here is our algorithm:

1. Open the file for reading.
2. Create a variable to hold our count and initialize it to 0.
3. Loop through the file, adding 1 to our counter each time we get a line.
4. Print the value of the counter.

Let’s name the variable to hold our count total count int. We create a file object
poker file by using the open function, giving a file name as an argument. As we have
seen, the for iterates through all the lines of the file, and we add 1 to total count int

242 C H A P T E R 5 • F I L E S A N D E X C E P T I O N S I

for each line. The program counts the number of lines in the file. In the output, we see that
we indeed have 1 million hands. See Code Listing 5.3.

Code Listing 5.3

count poker hands

1 . open the poker data f i l e f o r reading
poker file = open("poker-hand-testing.data",'r')

total count int = 0 # 2 . c r ea t e var iab l e to hold the count −− i n i t i a l i z e d i t

3 . s t e p through each l in e o f the f i l e
for line str in poker file:

total count int = total count int + 1 # at each l in e increment the
counter

print("Total hands in file:", total count int)

>>>
Total hands in file: 1000000
>>>

Program to Count the Hands with One Pair
Now that we can loop through the file examining every line, let’s take another step toward
our goal. Using a for loop, we read each line of the file into the variable line str. Using
this line, let’s count the number of hands with exactly one pair. Such a hand has a rank 1,
so we need to examine the last (rightmost) item in each line to determine that hand’s rank.
Remember, each line represents a hand of poker. The line is formatted in a common text
format known as comma-separated value (CSV) format. A CSV format separates multiple
fields in a single line of data by commas, as you saw in Table 5.3. To access each individual
field in a line, we can split the line on a comma character and then examine the last
field. The split method returns a data structure we have not yet discussed, a list (see
Chapter 7), but for now all we need to know is that split separates the string into
individual string elements. For this example, the separation character is a comma (‘,’), so
we get 11 different string fields for each line, and we store those fields in the fields
variable. Because a list indexes in the same way as a string, we can use an index of -1 to
reference the last field. Remember that split returns each individual field as type str, so
we must convert any field element to an int if we wish to do arithmetic on it. We also

5 . 7 • E X A M P L E : C O U N T I N G P O K E R H A N D S 243

need a variable to hold our count of pairs, pair count int, and remember to initialize
it to 0.

Let’s update our algorithm with these changes highlighted in italics. Remember that at
this point we are only counting pairs. See Code Listing 5.4.

1. Open the file for reading.
2. Create variables to hold our counts and initialize them to 0.
3. Loop through the file reading one line at a time,

(a) add 1 to our total counter each time we read a line.
(b) get the hand rank: split on comma and get the last item (index -1).
(c) if handRank is 1, then add 1 to our pair counter.

4. Print the values of the counter.

Code Listing 5.4

count poker hands

1 . open the poker data f i l e f o r reading
poker file = open("poker-hand-testing.data",'r')

total count int = 0 # 2 . c r ea t e and i n i t i a l i z e var iab l e to hold the t o t a l
count
pair count int = 0 # c r ea t e and i n i t i a l i z e var iab l e to hold pair count

3 . Loop through each l in e o f the f i l e
for line str in poker file:

total count int = total count int + 1 # (a) . add one t o t a l f o r each
hand

fields = line str.split(',') # (b) . s p l i t on a comma
hand rank str = fields[-1] # and ge t the l a s t f i e l d
hand rank int = int(hand rank str)

if hand rank int == 1: #(c) i f handRank i s 1 (i t i s a
pair)

pair count int = pair count int + 1 # add one to pair count

print("Total hands in file: ", total count int) # 4. pr int the va lue s
print("Count of pair hands: ", pair count int)

>>>
Total hands in file: 1000000
Count of pair hands: 422498
>>>

244 C H A P T E R 5 • F I L E S A N D E X C E P T I O N S I

The for loop assigns the next line from the file to the line str variable. The
line str is a string of 11 comma-separated fields. We use the split function, line
str.split(','), to split the line at the commas and store the 11 resulting strings in
the fields variable, and then we grab the last item, fields[-1], which is the hand
rank. However, the resulting hand rank str is still a string, so we must convert it to
an integer using int(hand rank str). We can now check to see whether the con-
verted hand rank int has a value of 1—remember that checking equality in Python
uses a double-equal sign (==). If its value is 1, that is, if hand rank int == 1:,
that hand contains one pair, so we increment the pair count: pair count int =
pair count int + 1.

Program to Calculate the Probability of One Pair
An astute reader will have noticed that we wanted a probability but only did a count. Calcu-
lating such a probability is straightforward: the count of pairs divided by the total number of
hands in the file. Simply including the expression pair count int/total count int
provides the probability. Python division yields the appropriate floating point, and we
convert the result to a percentage using the “%” formatting command in the format
statement.

Let us experiment with these calculations and printing the results in a session. After run-
ning the program in the consle, the values for pair count int and total count int
are still available, so we can play with them in the Python shell. Here is a session showing
how the Python shell can be used to develop expressions to put into the program. We want
nicely aligned output, so we use right justification, limit the number of decimal points, and
automatically convert to percentages:

>> ================================ RESTART ===========================
>>>
Total hands in file: 1000000
Count of pair hands: 422498
>>> pair count int/total count int
0.422498
>>> print("result:{}".format(pair count int/total count int))
result:0.422498
>>> print("result:{:%}".format(pair count int/total count int))
result:42.249800%
>>> print("result:{:5.2%}".format(pair count int/total count int))
result:42.25%
>>> print("result:{:>9.4%}".format(pair count int/total count int))
result: 42.2498%
>>>

5 . 7 • E X A M P L E : C O U N T I N G P O K E R H A N D S 245

We can now put that expression into our code and try it out in Code Listing 5.5.

Code Listing 5.5

count poker hands

1 . open the poker data f i l e f o r reading
poker file = open("poker-hand-testing.data",'r')

total count int = 0 # 2 . c r ea t e and i n i t i a l i z e var iab l e to hold the t o t a l
count
pair count int = 0 # c r ea t e and i n i t i a l i z e var iab l e to hold pair count

3 . Loop through each l in e o f the f i l e
for line str in poker file:

total count int = total count int + 1 # (a) . add one t o t a l f o r each
hand

fields = line str.split(',') # (b) . s p l i t on a comma
hand rank str = fields[-1] # and ge t the l a s t f i e l d
hand rank int = int(hand rank str)

if hand rank int == 1: #(c) i f handRank i s 1 (i t i s a
pair)

pair count int = pair count int + 1 # add one to pair count

print("Total hands in file: ", total count int) # 4. pr int the va lue s
print("Count of pair hands: ", pair count int)
print("Probability of a pair: {:>9.4%}".format(pair count int/

total count int))

>>>
Total hands in file: 1000000
Count of pair hands: 422498
Probability of a pair: 42.2498%
>>>

Error Checking
Now that we have the basic code working, let’s add error checking—i.e., apply RULE 7. Our
initial code had a fixed file for input. A more general approach would be to prompt for a file
name and then ensure that it opened correctly before proceeding. We can do that by putting
a try-except block into a while True infinite loop and then break out of the loop if
the file is opened successfully. A file that fails to open will raise an IOError exception, so

246 C H A P T E R 5 • F I L E S A N D E X C E P T I O N S I

that is the exception name we catch. Once we break out of the file opening loop we know
that the file has opened and we can move on. A second error check can be made where we
read the hand type from the file. There we convert the input to an int and we can check
if that conversion was successful. If it fails, we have chosen to ignore the line as bad input
and not count it. The revised code to count pairs is in Code Listing 5.6.

Code Listing 5.6

count poker hands

1 . open the poker data f i l e f o r reading
file str = input("Enter a file name: ")
while True: # loop unt i l you break

try:
poker file = open(file str,'r')
break # s u c c e s s ! s o move on to r e s t o f program

except IOError:
print("Error opening file:",file str)
file str = input("Enter a file name: ")

total count int = 0 # 2 . c r ea t e and i n i t i a l i z e var iab l e to hold the t o t a l
count
pair count int = 0 # c r ea t e and i n i t i a l i z e var iab l e to hold pair count

3 . Loop through each l in e o f the f i l e
for line str in poker file:

total count int = total count int + 1 # (a) . add one t o t a l f o r each
hand

fields = line str.split(',') # (b) . s p l i t on a comma
hand rank str = fields[-1] # and ge t the l a s t f i e l d
try:

hand rank int = int(hand rank str)
except ValueError:

continue # bad l in e : qu i e t l y sk ip t h i s l i n e o f the
f i l e

if hand rank int == 1: #(c) i f handRank i s 1 (i t i s a
pair)

pair count int = pair count int + 1 # add one to pair count

print("Total hands in file: ", total count int) # 4. pr int the va lue s
print("Count of pair hands: ", pair count int)
print("Probability of a pair: {:>9.4%}".format(pair count int/

total count int))

5 . 7 • E X A M P L E : C O U N T I N G P O K E R H A N D S 247

The Rest of the Program
We now have a partial program that calculates the probability of getting a poker hand
with just one pair. To complete the program, we must include a counter for each type
of hand. We need a counter for each type of hand, and we need to increment that
counter each time that type of hand is encountered. The resulting program is quite a
bit longer, but if you examine it carefully, you will see that we simply duplicated the
counter initialization and increment statements. (Later, you will learn how to write a more
compact program with one compound counter as a list to accommodate all 10 types of
hands.)

Also, some details need to be decided upon—a common issue in problem solving: the
devil is in the details. In this case, when we count the number of flush-type hands, do we
include straight flushes, or is the flush count really “flushes that are not straight flushes”?
For simplicity, we have chosen the latter, but either would be reasonable.

Finally, a note on naming. Remember RULE 4: we can modify rules if it helps in
readability. Every count in the program is an integer, and it seems, at least for this pro-
gram, that “count” and “int” are redundant. So we modify our names to make them a
bit more compact but add a comment to notify the reader that every count variable is
an int. The final code is shown in Code Listing 5.7.

Code Listing 5.7

count poker hands

1 . open the poker data f i l e f o r reading
file str = input("Enter a file name: ")
while True: # loop unt i l you break

try:
poker file = open(file str,'r')
break # s u c c e s s ! s o move on to r e s t o f program

except IOError:
print("Error opening file:",file str)
file str = input("Enter a file name: ")

a l l counts are in t s , s o count as a s u f f i x i s enough
total count = 0
nothing count = 0
pair count = 0
two pair count = 0
three of a kind count= 0
straight count = 0
flush count = 0
full house count = 0
four of a kind count = 0

248 C H A P T E R 5 • F I L E S A N D E X C E P T I O N S I

straight flush count = 0
royal flush count = 0

for line str in poker file:
total count = total count + 1
fields = line str.split(',') # s p l i t on a comma
hand rank str = fields[-1] # and ge t the l a s t f i e l d
try:

hand rank int = int(hand rank str)
except ValueError:

continue # bad l in e : qu i e t l y sk ip t h i s l i n e o f the f i l e
if hand rank int == 1:

pair count = pair count + 1
elif hand rank int == 2:

two pair count = two pair count + 1
elif hand rank int == 3:

three of a kind count = three of a kind count + 1
elif hand rank int == 4:

straight count = straight count + 1
elif hand rank int == 5:

flush count = flush count + 1
elif hand rank int == 6:

full house count = full house count + 1
elif hand rank int == 7:

four of a kind count = four of a kind count + 1
elif hand rank int == 8:

straight flush count = straight flush count + 1
elif hand rank int == 9:

royal flush count = royal flush count + 1
else:

nothing count = nothing count + 1

print("Total hands in file: ", total count)
print("Hand counts by rank number: ", nothing count, pair count,
two pair count, \

three of a kind count, straight count, flush count, full house count, \
four of a kind count, straight flush count, royal flush count)

print("Probability:")
print(" of nothing: {:>9.4%} ".format(nothing count/
total count))
print(" of one pair: {:>9.4%} ".format(pair count/
total count))
print(" of two pairs: {:>9.4%} ".format(two pair count/
total count))

5 . 7 • E X A M P L E : C O U N T I N G P O K E R H A N D S 249

print(" of three of a kind: {:>9.4%} ".format(three of a kind count/
total count))
print(" of a straight: {:>9.4%} ".format(straight count/
total count))
print(" of a flush: {:>9.4%} ".format(flush count/
total count))
print(" of a full house: {:>9.4%} ".format(full house count/
total count))
print(" of four of a kind: {:>9.4%} ".format(four of a kind count/
total count))
print(" of a straight flush:{:>9.4%} ".format(straight flush count/
total count))
print(" of a royal flush: {:>9.4%} ".format(royal flush count/
total count))

Enter a file name: poker-hand-testing.data
Total hands in file: 1000000
Hand counts by rank number: 501209 422498 47622 21121 3885 1996 1424 230 12 3
Probability:
of nothing: 50.1209%
of one pair: 42.2498%
of two pairs: 4.7622%
of three of a kind: 2.1121%
of a straight: 0.3885%
of a flush: 0.1996%
of a full house: 0.1424%
of four of a kind: 0.0230%
of a straight flush: 0.0012%
of a royal flush: 0.0003%

Notice how spacing was used to make both the program and the output more readable.
Also, in the statement that prints the counts, notice a backslash (\). Remember, the backslash
indicates that the statement continues onto the next line—usually a newline or carriage
return indicates the end of a statement. This improves the readability of the code, which is
important, but it does not affect running the code.

Observations on the Output
The final output is interesting. Notice that slightly more than half the possible hands
have no value, and that a hand with only one pair makes up almost all the remaining
possibilities.

250 C H A P T E R 5 • F I L E S A N D E X C E P T I O N S I

Summary
In this chapter we introduced file reading and writing, with more detail to come in a later
chapter. We also introduced exceptions as a way to handle errors again with more details to
come in a later chapter.

Files
� Text files contain Unicode characters.

All other files are called binary files.

� Files need to be opened for reading:
file handle = open("file name","r")
for line str in file handle:

� Files need to be opened for writing:
file handle = open("file name","w")
print(string,file=file handle)

� When done, files are closed using file handle.close()

Exceptions
� Exceptions handle exceptional events such as errors.

� Errors raise exceptions with particular names.
Two of the most common are:

- ValueError: errors when converting strings to numbers
- IOError: errors when opening files

� Exception syntax:
try:

suite
except ErrorName:

suite

Rules
� RULE 1: Think before you program!

� RULE 2: A program is a human-readable essay on problem solving that also happens
to execute on a computer.

� RULE 3: The best way to improve your programming and problem skills is to practice!

� RULE 4: A foolish consistency is the hobgoblin of little minds.

� RULE 5: Test your code, often and thoroughly!

E X E R C I S E S 251

� RULE 6: If it was hard to write, it is probably hard to read. Add a comment.

� RULE 7: All input is evil, until proven otherwise.

Exercises
1. Why is closing a file important? Be specific.

2. In the exception example of Section 5.6.4, when error “(2) bad file name” occurred the
user had to enter a line number before the error occurred. Rewrite the code so that if a
bad file name is entered, the error will be handled before a line number is requested.

3. In the exception example of Section 5.6.4, rewrite the code so that if error “(2) bad file
name” occurs the program keeps asking for input until the user gets it right.

4. In the exception example of Section 5.6.4, rewrite the code so that if error “(3) bad line
number (string)” occurs the program keeps asking for input until the user gets it right.

5. In the exception example of Section 5.6.4, rewrite the code so that if error “(4) line
number not in file” occurs the program keeps asking for input until the user gets it
right.

6. File manipulations:

(a) Write a Python program that will open a file named thisFile.txt and write
every other line into the file thatFile.txt.

(b) Extend your program using the os module to save your file to a different directory
(folder).

7. Create a file words.txt that contains a paragraph of random words (approximately
100 words long). Next, create a program that prompts for the file name then iterates
through each word in this file and counts the frequency of each letter (a through z) and
stores the values in a dictionary. Make each letter lowercased and ignore punctuation.
Print a histogram of the word counts.

8. Create a test file with a single sentence of 20 words. Read the file, then insert
carriage-return characters (\n) and write the test to a new text file that will be
composed of four lines of five words.

9. In the exercises for Chapters 1 and 2, the football quarterback pass rating was developed
into a program. Go to http://nfl.com, find the quarterback data, and copy those
data into a file. It is easiest to grab the data of the “qualified” quarterbacks, as they fit on
only one web page. Write a program that reads your file, uses your pass rating function
to calculate the pass ratings of the quarterbacks, and prints the players from best
to worst.

http://nfl.com

252 C H A P T E R 5 • F I L E S A N D E X C E P T I O N S I

10. Write a program that prompts for three numbers. Divide the first number by the
second number and add that result to the third number. Using exceptions check for
the following errors: ValueError, and ZeroDivisionError.

11. Write a function named safe input(prompt,type) that works like the Python
input function, except that it only accepts the specified type of input. The function
takes two arguments:
� prompt: str
� type: int, float, str

The function will keep prompting for input until correct input of the specified
type is entered.

The function returns the input. If the input was specified to be a number (float
or int), the value returned will be of the correct type; that is, the function will perform
the conversion.

The default for a prompt is the empty string. The default for the type is string.

12. Write a function named prompt open that prompts for a file name and repeatedly
attempts to read the specified file until a correctly specified file has been entered. The
function takes one mode argument, 'r' or 'w', and returns the file handle that open
returns.

Programming Projects
1. Scrambled Words

Read the following paragraph as quickly as you can, and see if you encounter any
difficulties.

Aoccdrnig to rscheearch at an Elingsh uinervtisy, it deosn’t mttaer in waht oredr
the ltteers in a wrod are, the olny iprmoetnt tihng is taht the frist and lsat ltteer
is at the rghit pclae. The rset can be a toatl mses and you can sitll raed it
wouthit a porbelm. Tihs is bcuseae we do not raed ervey lteter by itslef but the
wrod as a wlohe.

This has been presented as an example of a principle of human reading comprehension.
If you keep the first letter and the last letter of a word in their correct positions, then
scramble the letters in between, the word is still quite readable in the context of an
accompanying paragraph. However, it seems that this is a bit of a myth and not truly
based on solid research.5 In short, for longer words the task is much more difficult.
Nonetheless, we are going to imitate the process on some English text.

5 http://www.balancedreading.com/cambridge.html

http://www.balancedreading.com/cambridge.html

P R O G R A M M I N G P R O J E C T S 253

The task will be to read in a paragraph from a file, scramble the internal letters of each
word, and then write the result to a file.

Handling punctuation is tricky. You are required to deal with punctuation that
comes at the end of a word (period, question mark, exclamation, etc.)—that is, punctu-
ation is left untouched and does not count as the final unscrambled letter. Optionally,
one can deal with the more difficult task of handling all punctuation, such as apostro-
phes for possessives or hyphenated words.

Truly randomizing the order of letters is a task for later in the text, but we can do
some reasonable approximations now.

Attacking this problem in a divide-and-conquer way should begin by writing code
to scramble the letters in a word. Here are three different approaches you might take,
in increasing order of difficulty:

(a) Easiest: Rotate letters by 13 (known as ROT13). That is, ‘a’ becomes ‘n’, ‘b’ becomes
‘o’, . . . , ‘n’ becomes ‘a’, The chr and its inverse, ord, functions will be useful.

(b) Harder: For each letter choose a random number and rotate that letter by the
random amount. Import random and use the random.randint(a,b) function
where ‘a’ and ‘b’ define the range of random numbers returned.

(c) Hardest: Improve on the above techniques by scrambling the letters by a method
of your choice.

This page intentionally left blank

•3P A R T

Functions and Data
Structures

Chapter 6 Functions—QuickStart

Chapter 7 Lists and Tuples

Chapter 8 More on Functions

Chapter 9 Dictionaries and Sets

Chapter 10 More Program Development

This page intentionally left blank

•6C H A P T E R

Functions---QuickStart

Function, the exercise, or executing of some office or charge.

T. Blount, Glossographia, 1656, earliest definition of function
in the Oxford English Dictionary

YOU HAVE SEEN MANY EXAMPLES OF USING PYTHON BUILT-IN FUNCTIONS AND

methods. In Section 4.3.1, we took at look at how functions work and how we could use them
to manipulate string objects. In this chapter, you’ll learn how to create your own functions.

The concept of a function should be familiar from its use in mathematics. Functions
in programming languages share many of the characteristics of mathematical functions but
add some unique features as well that make them more useful for programming.

One of the main advantages for using functions is that they support divide-and-conquer
problem solving. Remember divide-and-conquer from Section 3.4.5? This technique en-
courages you to break a problem down into simpler subproblems, solve those subproblems,
and then assemble the smaller solutions into the overall solutions. Functions are a way to
directly encode the “smaller subproblem” solution. You’ll see more about this as we work
through this chapter.

6.1 W H A T I S A F U N C T I O N ?
In mathematics, a function defines the relationship between values. Consider the function
f (x) ⇒ √

x . If you provide a particular value of x , e.g., x = 4, the function will perform
a calculation (here the square root operation) and return the associated value, e.g., 2.
Mathematicians term the variable x the argument to the function and say that the function
returns the value 2.

It is possible for a function to have multiple arguments—for example, a function that cal-
culates multiplication requires two arguments: f (x , y) ⇒ x ∗ y . However, a mathematical

257

258 C H A P T E R 6 • F U N C T I O N S --- Q U I C K S T A R T

function returns only one object. Note that the returned object can be a compound object—
an object with multiple elements. For example, when working with graph paper, each point
is represented by by its x and y coordinates, an ordered pair (x , y). A function that returns an
ordered-pair object does indeed return a single value, but it is a value with multiple elements,
the x and y values. An example of such a function would be the mirror function. The mirror
function swaps the x and y values of the ordered pair: f (x , y) ⇒ (y , x). The notion that
the object a function returns can be a compound object is very useful, including in Python.

Python functions share many of the characteristics of mathematical functions. In par-
ticular, a Python function:

� Represents a single operation to be performed
� Takes zero or more arguments as input
� Returns one value (potentially a compound object) as output

A function is also important because it represents an encapsulation. By encapsulation,
we mean that the details of an operation can be hidden, providing coarser operations that
we as programmers can use without having to understand the function’s internal details. A
function can represent the performance of an operation without making the reader plow
through the details of how the operation is actually performed.

Consider the sqrt function with respect to encapsulation. There are many ways to
calculate a square root that vary in accuracy and speed. Remember, we saw a particular
approach that we called the Babylonian square root approach in Section 3.5. Other imple-
mentations exist. However, each implementation, each method, represents the “square root”
operation. Each method takes in an argument and returns that object’s square root. As long
as the result is correct, we need not be concerned with the details of how the operation is
performed. That is encapsulation.

6.1.1 Why Have Functions?
As you progress in learning to program, you’ll move from essential programming elements
to important programming elements. Selection (if) and repetition (while) are essential
programming constructs. It is difficult to write any program without using these two essential
features. Functions, on the other hand, allow us to write better code in the sense that it is
more readable. Also, because functions allow us to divide programs into smaller pieces, they
assist in divide-and-conquer problem solving. In that way, functions make programs easier
to write. Finally, once a function is written, it can be shared and used by other programmers
(including ourselves). Thus, functions provide a powerful construct that we can use to make
our programs easier to read, write, and maintain.

From this point on, many of the programming elements we introduce will make
some tasks easier and will subsequently make writing and understanding (that is, reading)
the program easier. You could write programs without them, but those programs would be
more difficult to read, write, and maintain.

6 . 2 • P Y T H O N F U N C T I O N S 259

In more detail, functions provide the following features, which help in programming:

� Divide-and-conquer problem solving: As we have already mentioned, functions
divide programs into smaller pieces, an approach that corresponds nicely to a divide-
and-conquer approach to problem solving (introduced in Section 3.4.5).

� Abstraction: Functions provide a higher-level interface to operation that the function
implements. By encapsulating details, functions provide a programmer with a high-level
view of the function’s operation that could be implemented in multiple ways—possibly
by someone else. By analogy, consider how you drive a car. It has a simple interface that
hides considerable complexity. Your car has many options—for example, fuel-injection,
turbo, or many others. Does the existence of these options change that basic interface
you have to the car—i.e., turn the wheel, hit the gas, press the brake? Do you understand
how fuel injection provides better performance for your car than a carburetor does? Do
you care? You don’t have to know the difference: you simply drive the car. Abstraction
means that the operation the function represents (drive the car) can be implemented
in many ways that do not affect the basic car interface. The underlying operations can
also be changed (upgrade the engine) without changing the interface.

� Reuse: Once a function has been created, it can be reused. If you write a function that
locates strings in a database, then anywhere that functionality is needed can use that
function. The more such a function is needed, the “simpler” the code that uses it.

� Sharing: Once your function is well tested, you can distribute it for use by other people.
Those people can further test the function, refine its capabilities, and through improve-
ment provide a service to everyone in the field. Useful functions can be collected into
modules for sharing. Sharing of modules is one of Python’s strengths, as programmers
generously share modules in many diverse areas.

� Security: You hear again and again of security breaches in code: phone companies,
computer distributors, software companies, etc. One way to battle security issues is
the use of functions. Small pieces of code can be more easily vetted and security (and
other issues) more easily addressed. Once they have been approved, they can be used
to construct other secure components, which can also be reused, and so on. Building
securely from the bottom up is one approach to writing secure code.

� Simplification and readability (duplication removal): Because a function provides an
encapsulation, it can be used to simplify a program and make it more readable. Anywhere
that multiple lines of code might be needed to address a problem, a function can replace
those lines. If the replacement can be done in multiple places, the result is simpler code.

6.2 P Y T H O N F U N C T I O N S
There are two parts to a Python function, and they correspond to the two parts found in
mathematical functions:1 the definition and the invocation. The definition defines (creates)
the function; the invocation is the application of the function in a program. A function

1 Some languages, such as those derived from C (C++, Java, C#), have a third part—the declaration.

260 C H A P T E R 6 • F U N C T I O N S --- Q U I C K S T A R T

definition is the second way we have seen to create a name associated with an object in
Python, the first being an assignment statement.

Consider an example function that converts Celsius temperatures to Fahrenheit.

� First we need a conversion formula: C ∗ 1.8 + 32
� Mathematics has a function invocation:

f ahr enhe i t = f (C)

where the definition of the function is:

f (C) = C ∗ 1.8 + 32

� Python has a function invocation that looks very much like the mathematical one:
fahrenheit = f(C)

but the Python definition looks quite different:
def f(celsius float):

return celsius float* 1.8 + 32

As in mathematics, C is called an argument of the function. The celsius float
variable is termed a parameter of the function. Upon invoking the function, the argument
C’s value is passed to the parameter value celsius float for use in the calculation.2

More detail on the passing of values between arguments and parameters can be found in
Section 8.1.1.

A function definition begins with the keyword def. The Python definition works
similarly to an assignment statement. By executing a def statement, a new name is created
in the namespace and a new object, a function object, is associated with that name. As we
have observed elsewhere in Python, everything is an object, and functions are no different.

The def is a compound statement, meaning that it provides a suite of other Python
statements and expressions that are part of the function. The suite of statements are what
will constitute the calculation done by the function object. One of the special keywords
that can be used in functions is the return statement. The return indicates a value
that is returned as output from the function invocation. A function’s operation ends after a
return statement is executed. A function may have more than one return statement, but
the first one that is executed will end the function’s operation. (We have used the phrase “to
invoke a function,” but an equivalent and frequently used phrase is “to call a function.”)
The general form of a function is shown in Figure 6.1.

Let’s create a function to do our temperature conversion and use it in a session.
Note the parts of the function: the def and return keywords as well as the parameter
(celsius float). Finally, notice the indentation for the suite of statements, part of the

2 Note that to adhere to our naming convention, the argument C should have been named better, such as celsius float, but we
left it as plain C so that it looked more like the mathematical function.

6 . 2 • P Y T H O N F U N C T I O N S 261

def function_name (parameter1, parameter2) :

statement1
statement2

return value_to_return

Function name.
Must follow variable
naming rules.

List of parameters being
passed: in parenthesis,
comma separated.

Keyword
indicating
function is
being defined.

Return statement
indicates the
value returned
when the func-
tion finishes.

Function suite:
contains code to
perform some action.
Indented.

Suite of the
function
follows the
colon.

FIGURE 6.1 Function parts.

function definition. We will discuss the special comment with triple quotes (""") later. In
essence, it is a brief description of the function and is called a docstring.

Code Listing 6.1

1 # Temperature conver s ion
2

3 def celsius to fahrenheit(celsius float):
4 """ Convert Ce l s iu s to Fahrenheit . """
5 return celsius float * 1.8 + 32

>>> ================================ RESTART ================================
>>>
>>> celsius to fahrenheit
<function celsius to fahrenheit at 0xcc22f0>
>>> celsius to fahrenheit(100)
212.0
>>> celsius to fahrenheit(0)
32.0
>>> new fn()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

262 C H A P T E R 6 • F U N C T I O N S --- Q U I C K S T A R T

NameError: name 'new fn' is not defined
>>> new fn = "a string object"
>>> new fn
'a string object'
>>> new fn()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: 'str' object is not callable
>>>

Notice that Code Listing 6.1 contains only the function definition—no invocation.
When the file is run (we press the F5 key in IDLE), the def statement is executed, the name
of the function is added to the namespace, and a function object is created. That function
object is associated with the function’s name in the namespace. We can type the name of
the function and see that it is associated with a function object. We can then invoke (call)
the function and see what results are returned. Python recognizes to call/invoke a function
when a name is followed by parentheses, which may or may not contain a list of arguments.
It is the parentheses that mark the invocation, and the name adjacent to the parentheses
is the function invoked. In the session, we converted 100◦C to 212◦F and 0◦C to 32◦F. If
the function is not defined, or if the object associated with a name is not a function object,
then an error occurs, as is shown in the session.

6.3 F L O W O F C O N T R O L W I T H F U N C T I O N S
Functions introduce a new flow of control model. Up to this point, a program has essentially
been a series of statements and expressions that are executed in the order in which they appear
in the file. Some of the statements introduce local control paths within those statements,
such as with selection or repetition, but the flow remains sequential in the file. With
functions, we create a set of small, independent subprograms that can be used to construct
a larger program.

In short, the flow of control with functions is to flow from the invocation (call) in
the calling program, to the function itself, and then back to the calling program with
the function’s return value being made available to the calling program. Control within a
function remains sequential: one statement after another along with local control statements
such as if and while.

For every program, there is usually one “main” part where execution begins. After that,
the flow of control is based on the order of both statements and functions. In particular
for functions, operation of a function is determined by when it is invoked, not when it is
defined. Functions can be defined anywhere in the program file, as long as they are defined
before they are invoked. Functions must be defined before use because the function name
must be placed in the namespace before it can be called.

Figure 6.2 shows an example of function control flow.

6 . 3 • F L O W O F C O N T R O L W I T H F U N C T I O N S 263

Main program

statement

fahrenheit = celsius_to_fahrenheit(25)

statement

statement

def celsius_to_fahrenheit(celsius):

 val = celsius * 1.8 + 32

 return val

Function

Return

Call

FIGURE 6.2 Function flow of control.

6.3.1 Function Flow in Detail
Consider two programs: the caller, the program presently executing, and the function. In this
example, the caller is the main program, the program where execution begins. A caller exe-
cutes its statements until it encounters a function invocation, celsius to fahrenheit
(25) in Figure 6.2. At that point, the caller temporarily suspends, and the function
begins. Thus, one program is suspended (the caller) waiting for a result from the now
executing function. When the function finishes execution, the suspended caller receives
the return value from the function and the main program (caller) resumes execution from
that point.

Because the function is essentially a new program, the function gets its own namespace
when it begins execution. Any object that gets created and given a name (by assignment,
by a def, etc.) within the function is placed in the function’s separate namespace, not the
main program’s (caller’s) namespace. If a new name is created in the function that is the
same as a name that existed in the caller’s namespace, the newly created association is used
in the function. This protocol has some interesting consequences, which we will explore in
Section 8.1.1.

VideoNote 6.1
Simple Functions

6.3.2 Parameter Passing
Parameter passing is the passing of values from a calling program to a function, so
that the function can perform its operation. You will remember that the function
celsius to fahrenheit had a single argument, called C. The function had a sin-
gle parameter called celsius float. Parameter passing is the passing of values from
argument to parameter.

Parameter passing is done just before the calling program suspends. The caller associates
its argument values to the corresponding function parameter in the function object. In
Figure 6.2, the argument value 25 is associated with the parameter celsius. The parameter
is then defined in the function’s namespace and associated with the value of its corresponding
argument. After that, function operation begins.

264 C H A P T E R 6 • F U N C T I O N S --- Q U I C K S T A R T

Argument values are typically passed to parameter names in the order they are listed.3

The names of the corresponding argument and parameter need not match. Only the order
matters: the first argument value is passed to the first parameter, the second argument value
to the second parameter, and so on. The number of arguments and parameters must match.4

Again, after values are passed, the function then begins execution.
During function execution, if a return statement is executed, the function ends

and the return value is provided to the caller (“return” arrow in Figure 6.2). For example,
fahrenheit = celsius to fahrenheit(25) assigns the returned value to the main
program variable fahrenheit as shown in Figure 6.2. After the function ends, the caller
continues.

Code Listing 6.2 is a sample program with a function that takes in a Celsius temperature
to convert to Fahrenheit.

Code Listing 6.2

1 # Conversion program
2

3 def celsius to fahrenheit(celsius float):
4 """ Convert Ce l s iu s to Fahrenheit . """
5 return celsius float * 1.8 + 32
6

7 # main part o f the program
8 print("Convert Celsius to Fahrenheit.")
9 celsius float = float(input("Enter a Celsius temp: "))

10 # c a l l the conver s ion funct ion
11 fahrenheit float = celsius to fahrenheit(celsius float)
12 # print the returned value
13 print(celsius float," converts to ",fahrenheit float," Fahrenheit")

>>> ================================ RESTART ================================
>>>
Convert Celsius to Fahrenheit.
Enter a Celsius temp: 100
100.0 converts to 212.0 Fahrenheit
>>> ================================ RESTART ================================
>>>
Convert Celsius to Fahrenheit.
Enter a Celsius temp: 0
0.0 converts to 32.0 Fahrenheit

3 Python also has other ways to pass argument values to parameters. See Chapter 8.
4 In Chapter 8 you will learn about default values, which allow fewer arguments than parameters.

6 . 3 • F L O W O F C O N T R O L W I T H F U N C T I O N S 265

Lines 3–5 define the function. Notice def beginning the compound statement, the
parameter (celsius float), and the return with its associated expression within
the function suite. To repeat, the def statement is executed by Python and creates the
function. Once created, it can be called (invoked) by another program. Remember, a
function must be defined (the def statement must be executed) before a program can
call the function.

Lines 7–13 are the “main” program.
Line 9 prompts the user for input.
Line 11 invokes (calls) the function. The value in the argument celsius float

is passed to the parameter celsius float. Then control passes to the func-
tion. When the function ends, it returns a value that the main program assigns to
fahrenheit float.

Line 13. The main program continues with Line 13 and prints the results.

Check Yourself: Simple Functions Check

1. Given the function make odd, what are the results of the four function invocations
(print statements)?

def make_odd(n):
return 2*n + 1

print(make_odd(2))
print(make_odd('2'))
n = 3
print(make_odd(n))
print(1 + make_odd(3))

2. Write a function make even(n).
What happens if you use a string as an argument?
Why is the behavior different then with make odd(n)?

6.3.3 Another Function Example
You have used the len function to find the length of a string. Let’s write our own version
of that function that performs the same operation. We will name our function length to
avoid confusion with the Python built-in len.

Here is an algorithm to find the length of a string, S.
� Initialize a counter: count = 0
� Iterate through each character of the string using a for loop: for char in a str:
� When each character is encountered in the for loop, add 1 to the counter:
count += 1

266 C H A P T E R 6 • F U N C T I O N S --- Q U I C K S T A R T

Let’s put the algorithm in a function by adding the word def and a return statement.
Then we can “run” the function (F5 in IDLE) so it is loaded into the Python shell, where
we can invoke it. We deviate from our naming convention, assuming that count is an int
and that char is a string.

Code Listing 6.3

1 def length(a str):
2 """ Return the l ength o f a s tr """
3 count = 0
4 for char in a str:
5 count += 1
6 return count

>>> ================================ RESTART ================================
>>>
>>> question = "What is your quest?"
>>> length(question) # our funct ion
19
>>> len(question) # the Python bui l t−in funct ion
19

With a length function in hand, let’s modify it. Suppose that instead of a count of
the number of characters in the string, we wanted a count of only the letters in the string.
That is, we will ignore characters other than lowercase alphabetic letters (such as numbers,
spaces, punctuation, etc.) Our algorithm is similar:

� Initialize a counter.
� Iterate through each character of the string using a for loop.
� For each character in the string, if the character is a letter, add 1 to the counter.

The change in the algorithm is small, but the implementation takes a little more
thought. How do we check “if the character is a letter”? One way to do that is to create
a variable associated with a string of all the lowercase letters. We can then check if each
character we encounter in the parameter a str is in (remember in tests for membership)
the lowercase letters. However, Python has created for us a number of these strings that
we can test against. As discussed in Section 4.6.2, we could use a variable from the string
module, the string string.ascii lowercase. Finally, we must consider what to do
with uppercase letters. We have a choice: we could ignore them (not include them in the
count), or we could include them by converting every a str character to lowercase before

6 . 3 • F L O W O F C O N T R O L W I T H F U N C T I O N S 267

we test for membership. We can handle that by making the character lowercase before
checking to see whether it is in the string of letters. We will call our modified function
letter count.

Code Listing 6.4

1 import string
2

3 def letter count(a str):
4 """ Return the count o f l e t t e r s in a str . """
5 count = 0
6 for char in a str:
7 if char.lower() in string.ascii lowercase:
8 count += 1
9 return count

>>> ================================ RESTART ================================
>>>
>>> question = "What is your quest?"
>>> len(question)
19
>>> letter count(question)
15

Of course, there are many different algorithms to solve our letter-counting problem.
For example, we could have made a new string object resulting from the concatenation of
string.ascii lowercase and string.ascii uppercase and check for member-
ship in that string.

6.3.4 Function Example: Word Puzzle
Let’s use strings and functions to solve a word puzzle.

Find a word that contains the vowels a, e, i, o, and u in that order in a string.

To solve a word puzzle, we need a list of words.

Reading a File of Words
Many word lists can be found on the Internet by searching for either “word lists” or
“dictionary,” usually with one word per line. We can download a dictionary and save it in a

268 C H A P T E R 6 • F U N C T I O N S --- Q U I C K S T A R T

file; let’s name the file dictionary.txt. We have worked with files in Section 5.7.1 and will do
so in more detail in Chapter 14, but let’s review how to read the contents of a file.

To read through the file, one line at a time, we do the following:

� Open the file for reading.
� Read through the file one line at a time.

A Python program that reads through the whole file dictionary.txt, and simply prints
each line of the file is Code Listing 6.5:

Code Listing 6.5

Print a l l words in a di c t i onary f i l e that has one word per l in e

open f i l e named " di c t i onary . t x t " f o r reading (' r ')
data file = open("dictionary.txt", 'r')

i t e r a t e through the f i l e one l in e at a time
for line str in data file:

print(line str)

Interestingly, this program prints the lines of the file in double-space format. Why is
that?5

Searching a File of Words
Now that you remember how to read through a file of words, let’s try to solve our puzzle.

First, we need to handle a common feature of a file’s strings: there are often some
characters that we don’t want to deal with. In this case, the dictionary file contains a carriage-
return character at the end of each line, and it may contain stray characters such as spaces or
tabs. We can eliminate such characters using the strip string method, one of the methods
listed in Section 4.3.4. If no arguments are provided to strip, then a new string is returned
with whitespace removed from either end of the calling string. The calling string is not
modified. If a string argument is provided to strip, only those characters in the argument
string are removed. An example of its use is a str.strip('., '), which returns a new
string that strips commas, periods, and the space character from the beginning and end of
a str. In particular, ", this.".strip('., ') and " this,,.".strip('., ')
both return the new string object 'this'. The blank character in the argument string is
hard to see (after all, it is a blank), but it is there!

5 Each line already has a carriage return in the line. The print function adds another, hence double-spaced.

6 . 3 • F L O W O F C O N T R O L W I T H F U N C T I O N S 269

P R O G R A M M I N G T I P

The strip method works only on the beginning and end of a string. For example,
'this string'.strip() returns the string 'this string'. Because no arguments
are provided, the default behavior is to return a new string where whitespace (tabs, carriage
returns, space characters, etc.) are removed from the ends, but the space in the middle of the
string is unaffected. Note that all the whitespace characters are removed from the beginning
and the end.

For every line we fetch from the file, we strip that line to remove whitespace at the
beginning and end of the line. In addition, word puzzles are often easier if all characters
are known to be only lowercase (or only uppercase). The string method lower is useful
for that. Let’s create a function that strips out whitespace characters and makes all of the
remaining characters lowercase.

Code Listing 6.6

def clean word(word):
""" Return word in lowerca s e s t r i pp ed o f white space . """
return word.strip().lower()

Notice the use of chained method invocation in the function as described in
Section 4.3.2.

As our word puzzle requires a word with all five vowels in order, the word must be at
least six characters long, so there is no reason to consider shorter words. We can add that
check and the clean word function to our file-reading program.

Code Listing 6.7

Find a word with a s i n g l e example o f the vowels a , e , i , o , u in that order

data file = open("dictionary.txt", "r")

def clean word(word):
""" Return word in lowerca s e s t r i pp ed o f white space . """
return word.strip().lower()

main program
for word in data file: # fo r each word in the f i l e

word = clean word(word) # clean the word

270 C H A P T E R 6 • F U N C T I O N S --- Q U I C K S T A R T

if len(word) <= 6: # skip word i f too small to have a l l vowels
continue

print(word)

Our program still does nothing to solve our puzzle, but we now have a framework to
work in: a program that reads a file of words and returns each word stripped of extraneous
characters.

Solving the Puzzle
To solve this puzzle, we want to determine the vowels and their order in a word. Let’s write
a function that returns the vowels found in a word in the order in which they were found. A
function lets us consider each word in isolation. For any word, we can check each character
to see whether it is a vowel and collect the vowels into a string in the order in which they
were found. To begin, we create a variable that is associated with the empty string, with the
intent that we will add discovered vowels to that string. Our algorithm is:

� Create an empty string; let’s call it vowels in word.
� For each character char in the word

- if char is a vowel, add it to the string vowels in word.

How do we check whether a character is a vowel? We can create a string of vowels
vowels str and associate it with 'aeiou' and check to see whether each character in
the dictionary entry word is in (is a member of) vowels str.

Here is our algorithm implemented as a function.

Code Listing 6.8

def get vowels in word(word):
""" Return vowels in s t r i n g word−−inc lude r ep ea t s . """
vowel str = "aeiou"
vowels in word = ""
for char in word:

if char in vowel str:
vowels in word += char

return vowels in word

Let’s try the function out in a session to find the vowels in the word 'create'. The
vowels in 'create' in order are 'eae'.

>>> word = "create"
>>> get vowels in word(word)
'eae'

6 . 3 • F L O W O F C O N T R O L W I T H F U N C T I O N S 271

Our function appears to be working. Of course, we need to check it more thoroughly,
but as always we will leave that as an exercise for you to try on your own.

Now that we have a function that extracts the vowels in a word, we can consider our
puzzle again. The puzzle requires a word with exactly the five vowels in order. That is, if
our get vowels in word function returns exactly 'aeiou', we have found our puzzle
answer. Our refined algorithm to solve the puzzle is:

� Open the file.
� For each word in the file

- strip the word.
- if the word is too small, skip it.
- get the vowels in the word.
- if the vowels returned is exactly 'aeiou', print the original word.

Using that algorithm as the main part of our program, let’s put it all together.

Code Listing 6.9

1 # Find a word with a s i n g l e example o f the vowels a , e , i , o , u in that order
2

3 data file = open("dictionary.txt", "r")
4

5 def clean word(word):
6 """ Return word in lowerca s e s t r i pp ed o f white space . """
7 return word.strip().lower()
8

9 def get vowels in word(word):
10 """ Return vowels in s t r i n g word−−inc lude r ep ea t s . """
11 vowel str = "aeiou"
12 vowels in word = ""
13 for char in word:
14 if char in vowel str:
15 vowels in word += char
16 return vowels in word
17

18 # main program
19 print("Find words containing vowels 'aeiou' in that order:")
20 for word in data file: # fo r each word in the f i l e
21 word = clean word(word) # clean the word
22 if len(word) <= 6: # i f word i s too small , sk ip i t
23 continue
24 vowel str = get vowels in word(word) # ge t vowels in word
25 if vowel str == 'aeiou': # check i f you have e xa c t l y a l l

vowels in order
26 print(word)

272 C H A P T E R 6 • F U N C T I O N S --- Q U I C K S T A R T

>>>
Find words containing vowels 'aeiou' in that order:
facetious
>>>

Check Yourself: Function Practice with Strings

1. Give the output provided by the following program on the indicated input values.

def func1 (str1, str2):
if str1 > str2:

result_str = str1[1:]
else:

result_str = str2[:-1]
return result_str

main program}
response1_str = input("Enter a string:")
response2_str = input("Enter a second string:")

print(func1(response1_str, response2_str)) # Line 1
print(func1(response2_str, response1_str)) # Line 2

(a) Given the two input values (in order), abc123 and then bcd456, what output
is produced by Line 1?

(b) Given the two input values (in order), abc123 and then bcd456, what output
is produced by Line 2?

(c) Given the two input values (in order), aaabbc and then aaabbcd, what
output is produced by Line 1?

(d) Given the two input values (in order), aaabbc and then aaabbcd, what
output is produced by Line 2?

The dictionary.txt file we used for the example contained almost 40,000 words,
and our puzzle-solving program found only one that satisfied the criterion of having the
vowels 'aeiou' in that order: facetious. A larger dictionary (we found one with over
234,000 words) returned a longer list, as shown in the following session.

>>>
Find words containing vowels 'aeiou' in that order:
abstemious
abstemiously
abstentious
acheilous
acheirous

6 . 3 • F L O W O F C O N T R O L W I T H F U N C T I O N S 273

acleistous
affectious
annelidous
arsenious
arterious
bacterious
caesious
facetious
facetiously
fracedinous
majestious
>>>

There are a couple of points that are worth noting about the example.

� The use of functions made our problem-solving task easier. The functions allowed us to
consider the problem in smaller pieces—the divide-and-conquer technique introduced
in Chapter 3

� The main program is very readable. Even if we did not know the implementation of
the functions clean word and get vowels in word we could guess what they
(likely) did and understand what the program was trying to do.

� Note the reuse of the identifier vowel str in both the main program and in the
function get vowels in word. Because the function gets its own namespace, these
identifiers are associated with different objects. More on this in Section 8.1.

6.3.5 Functions Calling Functions
There is no limitation to when a function can be called (except that it must be after its
def). It is often the case that a function will call another function. This extension does not
change the process described previously, though it does make the flow of control slightly
more complicated for us to follow. More on this in Chapter 8. In fact, a function can call
itself—a complicated control flow to which we devote Chapter 16.

6.3.6 When to Use a Function
There are no hard or fast rules about when to write something as a function or when to leave
code as part of a larger program. However, here are some guidelines that may prove helpful.

Only one purpose: A function should be the encapsulation of a single, identifiable opera-
tion. A function should do one thing, and of course, do it well. Functions that try to do
too many things are candidates to be broken into multiple functions (i.e., refactored).

Readable: A function should be readable. This is a reiteration of our venerable RULE 2 .
Not too long: A function shouldn’t be too long. What is “too long” depends on many

things, but the idea is that if a function does one thing, a person should be able to

274 C H A P T E R 6 • F U N C T I O N S --- Q U I C K S T A R T

read it easily and understand its purpose. If the function is too long, difficult to follow
somehow, it might need to be broken into multiple functions.

Reusable: A function should be reusable in contexts other than the program it was written
for originally. If possible, the function should be self-contained and not dependent on
some nuance of the calling program. If it has dependencies then those dependencies
should be made clear so that others can use it more easily.

Complete: A function should be complete, in that it works in all potential situations. If you
write a function to perform one thing, you should make sure that all the cases where it
might be used are taken into account. It is often the case that the core of the function is
very straightforward, but handling all the cases it might encounter requires supporting
code.

Able to be refactored: We first mentioned the term refactoring in Section 2.2.9. Again,
refactoring is the process of taking existing code and modifying it such that its structure
is somehow improved but the functionality of the code remains the same. Functions can
play a prominent role in this process, as they allow you to take long, difficult-to-follow
code and break it into smaller, more manageable pieces. If you need to “fix” some code,
consider refactoring it into functions.

The idea that a function should “do one thing” is important enough that we will make it
a rule.

Rule 8: A function should do one thing.

P R O G R A M M I N G T I P

A useful rule of thumb for novices is to keep each function small enough to fit on the screen.
Like all rules of thumb, there are many reasons to break the rule, but you should ask yourself
if there is a good reason to make a function longer than that.

6.3.7 What If There Is No Return Statement?
Sometimes we write functions without a return statement. Functions that do not return a
value are often called procedures.

In that case, what, if anything, is returned? The answer is that a special Python value
None is returned by default if the programmer does not provide a return statement.
None is a kind of odd Python value—a value to represent nothing. Kind of cosmic!

There are some good reasons to use a procedure. One that often comes up is specially
formatted output. Formatting output to look “pretty” can be laborious and potentially
complicated. A print procedure is therefore a good place to do such output. The procedure
isolates all the printing format but does not return a value. Other instances might require a
change of state to the program, something like turning a graphics mode on or off or changing

6 . 3 • F L O W O F C O N T R O L W I T H F U N C T I O N S 275

the network connection to a different mode. Each of these elements is best isolated as a
process, but as a function they do not need to return a value.

To see this process in action, let’s write a trivial function that simply prints its parameter.
We will then assign the result of the function to a variable. When we print the value of the
variable, we see that None was printed.

>>> def formatted output(my str, my int):
print('The result of the processing for',my str, 'was', my int)

no return statement
...
>>> formatted output('Bill',100)
The result of the processing for Bill was 100
>>> result = formatted output('Fred',75) # capture the imp l i c i t return
The result of the processing for Fred was 75
>>> print(result)
None # return value was None
>>>

6.3.8 What if There Are Multiple Return Statements?
If there are multiple return statements, the first return encountered during the operation of
the function stops the function at that point and returns that value. Consider the following
example function, which returns “positive,” “negative,” or “zero,” depending on the value
of the argument.

>>> def positive negative zero(number):
if number > 0:

return "positive"
if number < 0:

return "negative"
else: # number == 0

return "zero"

>>> positive negative zero(5) # t e s t a l l th r e e p o s s i b l e c a s e s
'positive'
>>> positive negative zero(-2.5)
'negative'
>>> positive negative zero(0)
'zero'

Note that the function works correctly whether the argument passed in is an int or
a float. For that reason neither suffix is used in the name. Multiple return values can
make following the flow of control in the function more difficult for the reader to follow.
If possible, it is best to have as few returns as possible so the reader can more clearly follow
the function.

276 C H A P T E R 6 • F U N C T I O N S --- Q U I C K S T A R T

V I S U A L V I G N E T T E

6.4 TURTLE FLAG

The first official United States flag was established by the Continental Congress on
June 14, 1777, with first Flag Act: “Resolved, That the flag of the United States be made
of thirteen stripes, alternate red and white; that the union be thirteen stars, white in a blue
field, representing a new Constellation.” The arrangement of the stars was not specified:
Betsy Ross used a circle, others used rows.

VideoNote 6.2
Problem design
using functions

Drawing a flag is an excellent illustration of the practicality of functions. In abstraction,
the United States flag is a composition of two shapes: stars and stripes (rectangles). It is
impractical to draw the 13 (or 50!) stars individually when a function can encapsulate the
multiple steps required for each star. The same can be said for drawing the 13 stripes—they
are simply rectangles. Even the blue field behind the stars is a rectangle, as is the overall
shape. Therefore, to draw the flag using Python’s Turtle graphics, one will want at least two
functions: draw star and draw rectangle. The program is left as an exercise.

Summary
In this chapter, we introduced the concept of functions in a programming language and
showed how functions work in Python. Of particular importance is that functions aid us in
the divide-and-conquer approach to problem solving. After covering the list data structure
in the next chapter, we revisit functions to examine the complexities of passing mutable
objects to functions.

Functions
� Working with functions requires two elements: a function definition and a function

invocation (call).

� Control transfers from the calling point to the function.

E X E R C I S E S 277

� Caller’s arguments map to the function’s parameters in order left to right.

� A function has its own namespace.

� Parameters are in the function’s namespace.

� A function must be defined before it is called.

� Defining a function puts its name in the caller’s namespace.

� Syntax, function definition:

def function name(parameter list):
statement suite
return # something

Rules
� RULE 1: Think before you program!

� RULE 2: A program is a human-readable essay on problem solving that also happens
to execute on a computer.

� RULE 3: The best way to improve your programming and problem skills is to practice!

� RULE 4: A foolish consistency is the hobgoblin of little minds.

� RULE 5: Test your code, often and thoroughly!

� RULE 6: If it was hard to write, it is probably hard to read. Add a comment.

� RULE 7: All input is evil, until proven otherwise.

� RULE 8: A function should do one thing.

Exercises
1. Draw the parts of a function and label the parts. Write a brief definition for each part.

2. What are three guidelines used to determine whether creating a separate function is the
sensible thing to do?

3. What does this function do? What does it return for num = 5?

def Func(number):
total = 0
while number > 0:

total = total + number*(number-1)
number = number - 1

return total

278 C H A P T E R 6 • F U N C T I O N S --- Q U I C K S T A R T

4. What does this function do? What does it return if x = 5?

def Func(x):
total = 0
for i in range(x):

total += i * (i-1)
return total

5. What does this function do? What number is returned by this function?

def Func():
number = 1.0
total = 0

while number < 100:
total = 1//number
number+=1

return total

6. Write a function that takes mass as input and returns its energy equivalent (E = mc 2).
The units should be in the meter-kilogram-second system.

7. Menu writing:

(a) A common task while writing any software is to display a menu and ask the user
for a choice. One such example is the menu on your cellphone. It has messaging,
contacts, games, settings, media, and web (and possibly others) as options. Write a
function called display menu that displays the menu to the user and allows the
user to make a choice (using input).

(b) Write a function that takes the choice of the user and makes calls to the other
functions that correspond to the operation to be performed. (Give meaningful
names to the functions. You don’t have to write the other function definitions.)

8. Write a function that takes in the final scores of two soccer teams as arguments and
prints either who won the game or whether the game was tied. Refer to the teams as
“Team1” and “Team2.” The function returns nothing.

9. Write a function that takes as input an English sentence (a string) and prints the total
number of vowels and the total number of consonants in the sentence. The function
returns nothing. Note that the sentence could have special characters like dots, dashes,
and so on.

E X E R C I S E S 279

10. The Fibonacci sequence is: 1, 1, 2, 3, 5, 8, 13 . . . You can see that the first and second
numbers are both 1. Thereafter, each number is the sum of the previous two numbers.

(a) Write a function to print the first N numbers of the Fibonacci sequence.
(b) Write a function to print the Nth number of the sequence.

11. Suppose you are purchasing something online on the Internet. At the website, you get
a 10% discount if you are a member. Additionally, you are also getting a discount of
5% on the item because its Father’s Day.

Write a function that takes as input the cost of the item that you are purchasing and
a Boolean variable indicating whether you are a member (or not), applies the discounts
appropriately, and returns the final discounted value of the item.

Note: The cost of the item need not be an integer.

12. A leap year in the Gregorian calendar system is a year that’s divisible by 4 but not by
100, unless it is also divisible by 400. For example, 1896, 1904, and 2000 were leap
years but 1900 was not. Write a function that takes in a year as input and prints whether
it’s a leap year (or not).

13. Error checking with meaningful error messages is an important part of programming.
Consider the following scenario: A customer has to pay his monthly credit card bill.
The credit limit on the card is $1000. The minimum payment due is always $20.
Let the payment on the credit card be $P. Write a function called make payment(P)
that takes as an argument the total payment on the credit card ($P) and prints “Success”
or “Retry.” Try to think of all the errors that should be taken care of and implement
those in the function. One example would be that if the payment is less than $20, the
program should remind the user that it’s less than the minimum payment due.

14. You buy an international calling card to India. The calling card company has some
special offers.

(a) If you charge your card with $5 or $10, you don’t get anything extra.
(b) For a $25 charge, you get $3 of extra phone time.
(c) For a $50 charge, you get $8 of extra phone time.
(d) For a $100 charge, you get $20 of extra phone time.

Write a function that asks the user for the amount he/she wants on the card and returns
the total charge that the user gets. Note: Values other than those mentioned above are
not allowed.

15. Chat:

(a) In certain chat programs or messaging applications, there is a limit on the number
of characters that you can send in a message. Write a function that takes as input
the message (a string) and checks whether the number of characters is less than
160 (or not). If the length of the message is less than 160, the message should be
returned. If the length of the message is greater than 160, a string consisting of only
the first 160 characters should be returned.

280 C H A P T E R 6 • F U N C T I O N S --- Q U I C K S T A R T

(b) How would you check if the restriction is on number of words rather than characters?
Write a function that allows a message with only 20 words.

16. Write a function to print all the common multiples of 6 and 10, less than 100. In
general, the function should take three input parameters: two numbers (X and Y)
whose common mutiples have to be found, and the upper limit Z.

17. (Refactoring) In Chapters 1 and 2, there were exercises to calculate football quarterback
pass ratings and then to output the quality of the quarterback.

(a) Write the pass rating as a function. Have the main program prompt for the five
inputs and then use those inputs as arguments to the function.

(b) Write the quality rating as a function and add it to the existing program.

18. In an exercise in Chapter 2, we presented an odometer puzzle from the Car Talk radio
program that involved numerical palindromes. Refactor your solution by writing a
palindome function and using that in your solution.

19. Write a function that takes as input a string that stores date and time (24-hour clock)
in the following format:
“MM/DD/YYYY HR:MIN:SEC” and prints the following:

� DD/MM/YYYY
� HR:MIN:SEC
� MM/YYYY
� Whether the time is a.m. or p.m.

Validation of the input in the function is necessary. For example, if the user gives
an input of “122/04/1990 13:12:12”, the given string is invalid, as there can be only
12 months in a year. Think of all possible erroneous inputs and write code to handle
them. The function doesn’t return anything.

20. Write a function that takes as input a string that stores date and time in the format
“MM/DD/YYYY HR:MIN:SEC” and prints the number of seconds elapsed since
“01/01/YYYY 00:00:00”.

21. Write a function that prints all numbers in the range A to B (inclusive) that have
all digits belonging to the set {1,3,4,8,9}. Check whether A is less than or equal to
B; otherwise, swap them before proceeding. The function takes two integer arguments:
A and B.

22. Given a string of length three representing a set (i.e., surrounded by curly braces) such as
"{ABC}", write a function that takes the string as an argument and returns a string of its
permutations in comma-separated form, such as "{ABC, ACB, BAC, BCA, CAB,
CBA}". Hint: use multiple for loops.

23. Implement a textual progress bar in Python. In any progress bar, the space occupied
by it is finite. Let’s say the textual progress bar could show only 10 Xs. So you have to

P R O G R A M M I N G P R O J E C T S 281

divide the total time by 10, and after those many seconds, you have to print an X on
the out put.

For example, if the time is 100 seconds:

At 0 secs :
At 10 secs : X
At 20 secs : XX
. . .
At 100 secs : XXXXXXXXXX

Write a function that takes the number of seconds as input and implements the
progress bar. This task is easier if you look up Python’s time module either in the
documentation or online.

Programming Projects
1. U.S. Flag in Turtle Graphics:

Draw the United States flag using at least four functions. The regular polygons in the
US flag are natural candidates for functions.

(a) Draw the flag shown earlier in the chapter with 13 stars arranged in rows. Add
color for maximum effect.

(b) Draw the flag with the 13 stars arranged in a circle. (Hint: Is it really a circle, or is
it some other regular figure?)

(c) Rewrite your program so it takes as input one positive real number that specifies a
scale factor. That is, 0.5 will cause a half-size flag to be drawn and 2.8 will draw a
flag that is 2.8 times larger.

2. DNA Sequencing:
The term DNA sequencing refers to methods for determining the order of the nucleotide
bases, adenine, thymine, cytosine, and guanine in a molecule of DNA. The standard
representation of the bases is to use their first letters, ATCG, so that DNA is represented
as a string using only those four characters. However, DNA strings are millions of bases
(characters) long.

Substring matching is the process of determining whether a shorter string (the
substring) is contained within a longer string. Substring matching plays important
roles in the reconstruction of an unknown DNA string from pieces and in searching
for interesting substrings within a known DNA string.

Python provides a find(substring, start, end) string method that re-
turns the lowest index (integer) where the substring is found in the index range
start ≤ index < end. The start and end arguments are optional, but for this
exercise we will make them required (you will learn later how to handle optional
arguments). If the substring is not found, -1 is returned.

(a) Without using the find string method, write a function that behaves exactly like
the find string method. As your function is not a string method, the string to

282 C H A P T E R 6 • F U N C T I O N S --- Q U I C K S T A R T

search must be an argument—let’s make it the first one. The resulting format of
your function will be:

find(some string, substring, start, end)

(b) Biology researchers frequently want to find all the locations where a substring
is found, not simply the first one. Write a function named multi find
(some string, substring, start, end) that, instead of returning one
integer index, returns a string that contains zero or more indices separated by
commas. In this case, the string will contain digits representing the integer indices.
If the substring is not found, an empty string is returned. You may use the find
method that you wrote earlier.

(c) A nice feature of our multi find function is that if the substring is not found, an
empty string is returned. In particular, if the substring is not found, the returned
empty string resolves to be False in a Boolean expression. The returned value
will be True otherwise. That feature allows one to use multi find in an if
statement, such as: if multi find(S,substring,0,20). The Python find
string method does not share that characteristic (why?). Write a program that
exercises both your find and your multi find functions including their use in
Boolean expressions. Create some strings using only the base letters, ATCG, and
search for substrings within them.

3. Heap of Beans:
We are going to play a game called the heap of beans. You start with a heap of beans
(we will start with 16 beans) and two players. Each player can remove 1, 2, or 3 beans
from the pile of 16. Each player is required to take some number of beans from the pile
during each turn. The players take turns removing beans, and the player who takes the
last bean from the pile is the loser. You can try this game with a partner using 16 pieces
of paper as beans.

Each player is to be represented by a function, so we will have two functions.
Each function takes a single argument, representing the present number of beans, and
returns the number of beans remaining after the player function takes its turn. During
the operation of the player function, the function reports (prints) how many beans
were removed. Note that the function decides how many beans to remove. It takes no
input from the user.

You also need a main program. The main program initializes the heap of beans to
16 and then alternately calls the first player function and the second player function
until one of them gets the last bean. The main then reports who the loser is and exits.

(a) Write a simple player function such as one that always takes exactly one bean. It
isn’t very interesting, but it lets you test your program.

(b) Now for the fun part. Write a “smart player” function and test it against other
students’ functions in your class. A class tournament would be best—who has the
best strategy?

•7C H A P T E R

Lists and Tuples

List, a Scrowl of the Names of several Persons of the same Quality with whom
we have Business

E. Phillips, New World of Words, 1696

7.1 W H A T I S A L I S T ?
PYTHON’S BUILT-IN LIST TYPE IS ALSO A COLLECTION TYPE. IN FACT, LIKE STRINGS,

lists are a sequence type and are an iterable type. They therefore share some of the charac-
teristics of strings. However, a list differs from a string in two fundamental ways:

� A list can contain elements other than characters. In fact, a list can contain a sequence
of elements of any type, even different typed elements mixed together in the same list.

� A list is a mutable type. This means that, unlike a string object, a list object can be
changed after it is initially created.

If we keep these differences in mind, we can use our knowledge of the string type to
work with lists.

Making Python Lists
Lists can be created with the list constructor or with square brackets ([]). This capability
can be a little confusing, as the same square brackets are also used as the index operator.
One way to tell the difference is the presence of the comma character: each element of a list
is separated by a comma. Thus, if you see square brackets with multiple elements separated
by commas, you know it is a list. Otherwise, you will have to use the context to determine
what the brackets mean.

283

284 C H A P T E R 7 • L I S T S A N D T U P L E S

Here are a few examples of making a list in a Python session:

>>> a list = [1,2,'a',3.14159]
>>> week days list = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday']
>>> list of lists = [[1,2,3], ['a','b','c']]
>>> list from collection = list('Hello')
>>> a list
[1, 2, 'a', 3.1415899999999999]
>>> week days list
['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday']
>>> list of lists
[[1, 2, 3], ['a', 'b', 'c']]
>>> list from collection
['H', 'e', 'l', 'l', 'o']
>>> []
[]
>>>

Here are a few things to notice about these lists.

� a list is a sequence of four elements (two integers, a character, and a floating-point
number). Any Python type can be a list element, and different types can be in the same
list. Again, this differs from a string, which requires its elements to all be characters.

� As previously noted, each element of the list is separated from the next by a comma.
The comma indicates elements of a collection, and the square brackets indicate that
collection is a list.

� The list of lists is a list of only two elements. The first element is a list, as is the
second. Again, a list can be a sequence of any typed element—even another list!

� The list from collection is a list built using the constructor list. The result-
ing list is ['H', 'e', 'l', 'l', 'o'], containing five elements, each a single-
character string. This constructor takes a single argument and that argument must be
an iterable. The list constructor takes each element of the argument iterable and adds
that element to the new list. Non-iterable types (integers, floats, Booleans, etc.) cannot
be used as an argument to the list constructor since they do not contain multiple
elements (are not iterable).

� The special list with no elements, designated as [], is called the empty list. Like other
“empty” elements, it is equivalent to a False value in Python.

Note the naming convention for lists. As with other collections, we append the collection
type to the end of the name, “list” for lists. This protocol is similar to the naming convention
we have used for other types. As per RULE 4, we will violate this convention when a more
meaningful name is appropriate, such as the list of lists.

7 . 2 • W H A T Y O U A L R E A D Y K N O W H O W T O D O W I T H L I S T S 285

List of Lists
Lists that contain lists as elements, such as list of lists in the previous session, are
useful for representing many types of data. An organization that has a list within a list is often
called a nested list. Consider a number of two-dimensional data sets, such as a spreadsheet
(rows vs. columns) or the Cartesian plane (x vs. y). These 2-D data sets can be represented
as a list of lists. For a spreadsheet, the elements of the list can be the rows (lists) and the
elements of those nested lists can be the column values. To index an individual element, we
use two pairs of brackets: the first one selects the row list, and the second one selects for the
column value within the list. Here is a session to illustrate that concept:

>>> spreadsheet list = [['Name','Age','GPA'], ['Bill', 25, 3.55], ['Rich', 26 , 4.
00]]
>>> row = spreadsheet list[1]
>>> row
['Bill', 25, 3.55]
>>> column = row[2]
>>> column
3.55
>>> spreadsheet list[1][2]
3.55
>>>

Some observations:
� spreadsheet list[1] selects element 1 of the list (representing the second row)—

and assigns it to the variable row. We then print the value of row, the list ['Bill',
25, 3.55].

� row[2] selects the third column of that row and assigns it to the variable column. We
then print the value of column, 3.55.

� We then show the equivalent single expression to access the value in column,
spreadsheet list[1][2].

This concept generalizes to any level of nesting of lists. For example, to represent the x y z
3-D plane, how would we approach it? This would be a list of lists of lists. The outermost
list would represent a 2-D plane, the list within that list would represent the value of all the
values in a particular row (say x), and then a particular value would be the index into that
row (say y).

7.2 W H A T Y O U A L R E A D Y K N O W H O W T O D O
W I T H L I S T S

Because lists are sequences and iterable, many things that you learned to do with strings also
work for lists. Let’s take a look and refresh your memory.

286 C H A P T E R 7 • L I S T S A N D T U P L E S

7.2.1 Iteration
As with a string, you can iterate through each element of a list using a for loop. Because
a list is also a sequence, the elements are iterated through in the order set by the list. The
following session reminds you of how it works.

>>> for element in ['abc', 12, 3.14159, True]:
print("{:<7} which is type {}".format(element, type(element)))

abc which is type <class 'str'>
12 which is type <class 'int'>
3.14159 which is type <class 'float'>
1 which is type <class 'bool'>
>>>

This session emphasizes that a list is iterable and that the elements can be of any type.
We also print out the results in a slightly more elegant way using string formatting.

7.2.2 Indexing and Slicing
Indexing and slicing work exactly the same with lists and strings. To remind yourself, look
at Figure 7.1.

� Each element of the list has an associated index. The index values begin at 0 on the left
and get larger, or they can begin with -1 on the right and get smaller.

� The index operator is a set of square brackets with either a single integer or a slice. If it
contains a single integer, that integer is the index of the element within the list.

� Accessing an element at an index that does not exist in the list is an error.
� The slice operation is the same as with strings. Within square brackets, you may have

one or two colons (:). The number before the first colon is the start index, the number

myList = [1, 'a', 3.14159, True]

'a' 3.14159 True

myList

21

1

0 3

�4 �3 �2 �1

myList[1] → 'a'
myList[:3] → [1, 'a', 3.14159]

Index forward

Index backward

FIGURE 7.1 The structure of a list.

7 . 2 • W H A T Y O U A L R E A D Y K N O W H O W T O D O W I T H L I S T S 287

after the first colon is the end index, and the number after the second colon is the step.
The defaults for all three are (in order): the beginning of the list, the end of the list,
and a step of 1.

� A slice uses a half-open range, meaning that the end index is not included in the slice.

The following session shows these operations:

>>> my list = [1,'a',3.14159,True]
>>> my list[1]
'a'
>>> my list[-1]
True
>>> my list[:] # copy s l i c e
[1, 'a', 3.1415899999999999, True]
>>> my list[:3:2]
[1, 3.1415899999999999]
>>> my list[::2]
[1, 3.1415899999999999]
>>> my list[2:]
[3.1415899999999999, True]
>>> my list[:3]
[1, 'a', 3.1415899999999999]
>>> my list[10]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

IndexError: list index out of range
>>> [1,2,3,4,5][2] # f i r s t [] i nd i c a t e s a l i s t , second an index
3
>>>

There is nothing here that is new to you except the very last expression. It is a little
ugly to have both a list creation operation and a index operation together, but if you can
understand what it means, you are well on your way to understanding lists. We read the
expression left to right, noting that the first [] is creating a list (notice the commas) and
then, having made the list, we are indexing into that list.

7.2.3 Operators
You can use both the addition (+) and multiplication (*) operators with lists with results
similar to those of strings. The addition operator takes two lists as operands and concatenates
them together, making a new list whose contents are the first list joined at its end to the
beginning of the second list. The multiplication operator takes a list and an integer as
operands. The integer indicates how many times the list is replicated.

288 C H A P T E R 7 • L I S T S A N D T U P L E S

As with strings, the types are fixed for this operation. You can concatenate only two
lists (not a list and a string, not a list and an integer, etc.). You can replicate a list only
in combination with an integer. No other combination of types will do. This is again an
example of addition and multiplication being overloaded. When the addition operator (+)
has two string operands, it makes a string. When it has two list operands, it makes a list.
Two different types, two different operations, one symbol.

Comparison works as it did with strings, so you can use the >,<,==,<=,>=, and != signs
as operators between two list operands. As with strings, comparison begins by compar-
ing the first element of each list. If the first elements are equal, the comparison process
moves to the second element of each list. The process continues in this way, comparing
corresponding elements, until the process finds that two elements are different. At that
point, the comparison between the two different elements determines the result of the
operation. If one list is equal to but shorter than the other list, the longer list is considered
greater.

Finally, the in operator for membership testing works as it did in strings. The expression
'a' in ['a','b','c'] is a query, testing whether the first operand exists in the second
operand. In this case it does, returning True.

The following session demonstrates these operations on lists:

>>> my list = [1,2,3]
>>> your list = ['a','b','c']
>>> concat list = my list + your list # concat l i s t s , operand unchanged
>>> concat list
[1, 2, 3, 'a', 'b', 'c']
>>> my list
[1, 2, 3]
>>> your list
['a', 'b', 'c']
>>> rep list = my list * 3 # rep l i ca t i on , my li s t i s unchanged
>>> rep list
[1, 2, 3, 1, 2, 3, 1, 2, 3]
>>> my list
[1, 2, 3]
>>> [1,2,3,4] < [1,2,3,0] # f i r s t d i f f e r e n c e at index 3
False
>>> [1,2,3,4] < [1,2,3,4,0] # longer l i s t i s always g r ea t e r
True
>>> 1 in my list # membership operat ion
True
>>> 1 in your list
False
>>> [1,2,'one','two'] < [3,4,5,6] # no error , d i f f e r e n c e at 1 and 3
True
>>> [1,2,'one','two'] < [1,2,5,6] # error , comparison o f 5 and ' one '

7 . 2 • W H A T Y O U A L R E A D Y K N O W H O W T O D O W I T H L I S T S 289

Traceback (most recent call last):
File "<pyshell#13>", line 1, in <module>
[1,2,'one','two'] < [1,2,5,6]

TypeError: unorderable types: str() < int()
>>>

P R O G R A M M I N G T I P

Because lists are containers that can hold anything, you will sometimes find that in compar-
ing lists you are comparing elements of different types—effectively comparing something
such as 'a' > 1. You should avoid such comparisons because Python will generate an
error.

Finally, comparisons underly other operations that depend on order, such as the sorting,
maximizing, and minimizing operations discussed later in this chapter.

7.2.4 Functions
There are a number of functions that work with any collection. In particular, you have
seen the len function. With strings, the len function returns the number of characters
in a string. With lists, the len function returns the number of comma-separated elements
in the list. Again, remember that a list can have as an element another list and that list
still counts as one element. Thus, the result of len([1,[1,2,3],3]) is 3. The second
element, the element at index 1, is another list, [1,2,3]. Here are some functions that
work on collections, including lists:

len(C) Return the length of collection C, i.e., the number of elements.
min(C) Return the minimum element in collection C. If the argument is a list of lists,

only the first element in each list is considered for the purposes of comparison.
max(C) Return the maximum element in collection C. If the argument is a list of lists,

only the first element in each list is considered for the purposes of comparison.
sum(L) Return the sum of elements in list L. The particular function requires that the list

elements be numbers.

As we have stated previously, you must be careful when using comparison operators on
lists. Comparing elements of different types generates an error.

A session demonstrating these functions is shown below.

>>> int list = [1,2,3,4,5]
>>> float list = [1.0, 2.0, 3.0, 4.0, 5.0]
>>> str list = ['a', 'b', 'c', 'd', 'e']
>>> nested list = [int list, float list, str list]
>>> len(int list)
5

290 C H A P T E R 7 • L I S T S A N D T U P L E S

>>> len(nested list)
3
>>> min(float list)
1.0
>>> min(str list)
'a'
>>> max(str list)
'e'
>>> sum(int list)
15
>>> sum(str list) # elements must be numbers
Traceback (most recent call last):
File "<pyshell#25>", line 1, in <module>
sum(str list)

TypeError: unsupported operand type(s) for +: 'int' and 'str'
>>> min(nested list) # d i f f e r e n t t y p e s : 1 and 'a '
Traceback (most recent call last):
File "<pyshell#26>", line 1, in <module>
min(nested list)

TypeError: unorderable types: str() < int()
>>>

7.2.5 List Iteration
We can iterate through all the elements of a list, in order, using the for operator. This
action is similar to what we saw for strings.

>>> my list = [1,3,4,8]
>>> for element in my list: # i t e r a t e through l i s t e l ements

print(element ,end=' ') # pr in t s on one l in e

1 3 4 8
>>>

In this example, the variable element is assigned the values 1, 3, 4, and 8, one at a time,
and then the statement(s) in the suite are executed using that value for element. In this
trivial example, the print statement will execute with each value of element and print it.

7.3 L I S T S A R E D I F F E R E N T T H A N S T R I N G S
We’ve seen what’s the same about lists and strings, so let’s look a bit more at what’s different.

7.3.1 Lists Are Mutable
When we covered strings, we emphasized that they are immutable. In particular, we noted
that you could not have a string index operator on the left-hand side of the assignment

7 . 3 • L I S T S A R E D I F F E R E N T T H A N S T R I N G S 291

statement. In other words, you could not change a character of a string at some index within
an existing string to a different character. Once created, the string cannot be changed.

Lists, on the other hand, are mutable; the element at some index in a list can be changed.
This is called index assignment. You can even change an entire slice of the list to be different!
This is called slice assignment. These two operations show both the power and one of the
dangers of mutable objects. They are very flexible and very useful. However, you must take
care in using them because you can accidentally change a list in ways you did not intend.

Let’s see how mutability works in a session:

>>> my list = [1, 2, 'a', 'z']
>>> my list[0]
1
>>> my list[0] = True # change the f i r s t element
>>> my list
[True, 2, 'a', 'z']
>>> my list[-1] = 7 # change the l a s t element
>>> my list
[True, 2, 'a', 7]
>>> my list[:2] = [27] # rep la c e f i r s t two with 27
>>> my list
[27, 'a', 7]
>>> my list[:] = [1,2,3,4] # change the whole l i s t
>>> my list
[1, 2, 3, 4]
>>> my list[2:] = 'abc' # change the l a s t two elements
>>> my list
[1, 2, 'a', 'b', 'c']
>>> my list[:2]=15 # only an i t e r a b l e
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: can only assign an iterable

Let’s note a few things about this session:

� A list in combination with the index operator can occur on the left side of the assignment
statement. This means that, after the assignment occurs, the value at that index is
changed to be the value of the right-hand side of the assignment statement. This is
index assignment.

� As a result of every operation in that session, the list is changed. This means that every
time we perform one of these operations, the changed list is carried forward to the next
line in the session. In other words, the list elements associated with my list at the
end of the session are the cumulative result of all the operations that came before, in
the order they were performed.

� Because the assignment operator does not return a value, we have to type the name of
the variable associated with the list to see what was changed as a result. This is not new,

292 C H A P T E R 7 • L I S T S A N D T U P L E S

but it is useful to note that the change occurred and we were not “notified” in anyway
what the change was until we actively looked.

� You can change not only a single element but also an entire slice of the list (multiple
elements) at a single time. This is slice assignment. The only caveat is that the values
being assigned must be a collection. Each individual element of an assigned collection
is added to the list at the slice indicies. You cannot slice assign an individual value to
a list, though the session shows that assigning a list with a single value is acceptable.
Only assigning a collection makes some sense if you consider it for a moment. A slice
is in fact a collection (a subsequence of the original), so to replace it implies that we
need another collection. The collection replacing the slice can be bigger, smaller, or
the same size.

7.3.2 List Methods
As we mentioned previously, a method is a function that works with a particular type of
Python object. The string type has a large number of methods that can be applied to strings,
but those methods can be applied only to strings. Lists have their own associated methods
that work only with lists. The number of list methods is quite a bit smaller—only nine.
They come in two different categories:

� Those that change the list
� Those that do not change the list

It is important that we keep those two categories straight, so we know whether our list
is changed as a result of using the method.

Non-modifying methods
These methods do not change the list, but they return a value as a result of their processing.

index(x) Return the index of the first element in the list whose value is equal to x.
Python throws an error if there is no such value in the list.

count(x) Return the number of times x appears in the list. Returns 0 if x does not appear
in the list.

Methods that Modify the List
There are two things to note about these methods. First, the list that calls the method will
be modified as a result of the operation of the method. Second, none of the methods except
the pop method returns a value. This fact may seem odd, but taking a closer look may
help. In our previous experience, every string method returned a value: a new string object.
Remember, though, that strings are immutable. They had to return a value, typically a
string, so that the change could be captured. These list methods do not need to return a list
object for the change, as the list itself is changed (it is mutable).

7 . 3 • L I S T S A R E D I F F E R E N T T H A N S T R I N G S 293

append(x) Append an element to the end of the list. The length of the list is increased
by one. The element is appended exactly, so a collection is added as a single element.

pop() Remove the element at the end of the list and return that element. The list is
shortened by one element. If an index is specified, a.pop(an index) removes the
element at that position and returns that item.

extend(C) Requires a collection C as an argument. The list is extended by adding each
individual element of the argument collection C to the end of the list.

insert(i, x) Insert an element at a given position. The first argument is the index
before which to insert in the list. Thus, my list.insert(1, 'a') inserts the 'a'
into position 1 of the list, sliding all the rest of the list elements down one (the element
at index 1 moves to index 2, the element at index 2 moves to index 3, and so on).

remove(x) Remove the first element from the list whose value is x. An error results if
there is no such item. The length of the list is decreased by one if successful.

sort() Sort the elements of the list, in place. If sorting a list of lists, only the first element
in each list is considered in the comparison operations. Only the order of the list
elements is modified (unless already sorted).1

reverse() Reverse the elements of the list, in place. Only the order of the list elements
is modified.

Let’s open a Python shell and demonstrate each method. Remember the dot format for
methods, in which you provide a list object (an object of type list), followed by a dot (.),
followed by the method name:

>>> a list = [1, 12, 5, 8]
>>> a list
[1, 12, 5, 8]
>>> a list.append(17) # append to the end
>>> a list
[1, 12, 5, 8, 17]
>>> a list.append([40,50,60]) # append a l i s t
>>> a list
[20, 17, 12, 5, 4, 1, [40, 50, 60]]
>>> another list = [20, 2]
>>> a list.extend(another list) # append each element to a l i s t
>>> a list
[1, 12, 5, 8, 17, 20, 2]
>>> a list.insert(3,'a') # i n s e r t ' a ' at po s i t i on 3
>>> a list
[1, 12, 5, 'a', 8, 17, 20, 2]
>>> a list.remove(8)
>>> a list
[1, 12, 5, 'a', 17, 20, 2]

1 Contrast this list method with the function sorted, mentioned later, which returns a sorted list while leaving the original
unchanged.

294 C H A P T E R 7 • L I S T S A N D T U P L E S

>>> a list.pop() # pop l a s t element , return i t
2
>>> a list
[1, 12, 5, 'a', 17, 20]
>>> a list.index(17) # return index o f argument
4
>>> a list.count(5)
1
>>> a list.sort() # s o r t the l i s t
>>> a list
[1, 5, 12, 17, 20, 'a']
>>> a list.reverse() # r e v e r s e the l i s t
>>> a list
['a', 20, 17, 12, 5, 1]

Some notes:

� The append and insert methods are similar: append adds to the end of the list;
insert puts an element into an existing list at a particular position that must be
provided. If you append or insert a list as an argument, the list (including brackets)
will be added as a single element to the list.

� If you want to add the contents of another collection to the end, use extend. The
extend method adds each of the individual elements of the argument collection to
the list, one at a time. The addition begins a the end of the list. The argument must be
a collection.

� The removemethod searches for and removes a particular element, but it only removes
the first occurrence of that element. If that element is not in the list, Python throws an
error. Because of this behavior, its use is usually preceded by a check for that element’s
existence using the in operator. The index method, which returns the index of the
first occurrence of an element, throws a similar error if the index is not found. It is also
often used in conjunction with an in check.

� The pop method gets its name from its association with a classic data structure called a
stack. We will talk more about stacks in Chapter 16. Python will throw an error if you
try to pop an empty list.

� The sortmethod must be used with some care. It works best with homogeneous lists—
those containing all elements of the same type—due to difficulties in the comparison
of different types that we have discussed.

P R O G R A M M I N G T I P

Ordering: when dealing with functions, methods, or operations that depend on ordering
(such as sort, sorted, reverse, min, max, <, >, ==) use only homogeneous
elements, e.g., all numbers or all strings. Mixed types do not have a natural ordering and
will generate an error in Python.

7 . 4 • O L D A N D N E W F R I E N D S 295

Check Yourself: Basic Lists Check

1. Answer the following questions using the example program.

str_list = ['hi','mom','dad']
num_list = [1,57,15]

num_list[-1] = 25
print(str_list + num_list) # Line 1
print([str_list[0],num_list[-1]]) # Line 2
print(str_list.append(num_list)) # Line 3
print(str_list) # Line 4
print(str_list.sort()) # Line 5
print(str_list) # Line 6
print(str_list.extend([127,256])) # Line 7
print(str_list) # Line 8
print(str_list.pop()) # Line 9
print(str_list) # Line 10

(a) What output is produced by Line 1 when the program is executed?
(b) What output is produced by Line 2 when the program is executed?
(c) What output is produced by Line 3 when the program is executed?
(d) What output is produced by Line 4 when the program is executed?
(e) What output is produced by Line 5 when the program is executed?
(f) What output is produced by Line 6 when the program is executed?
(g) What output is produced by Line 7 when the program is executed?
(h) What output is produced by Line 8 when the program is executed?
(i) What output is produced by Line 9 when the program is executed?
(j) What output is produced by Line 10 when the program is executed?

7.4 O L D A N D N E W F R I E N D S : S P L I T A N D O T H E R
F U N C T I O N S A N D M E T H O D S

7.4.1 Split and Multiple Assignment
We have used the string method split, but we have done so without talking about it in
the context of lists. In particular, the split method returns a list. We have avoided talking
about this characteristic by using multiple assignment from the returned lists, but now that
we know about lists, you can see how these operations work.

When a string calls split, it creates a list of substrings from the calling string by
splitting the calling string at a specific argument string (such as a comma or blank). As we
have seen, if no such argument string is provided, split uses any whitespace to split the
calling string into substrings.

296 C H A P T E R 7 • L I S T S A N D T U P L E S

If we know the number of substrings that will be split from the string, then we can
use multiple assignment to assign each of the substrings to a variable (as we did in the
name-reversal example in Section 4.6.1). In general, we can assign every element of a list to
a variable using multiple assignment if we know how many elements there are and match
the number of elements and the number of variables.

The following session shows some of this behavior:

>>> result = 'this is a test'.split() # s p l i t on white space
>>> result
['this', 'is', 'a', 'test']
>>> result = 'field1,field2,field3,field4'.split(',') # s p l i t on commas
>>> result
['field1', 'field2', 'field3', 'field4']
>>> element1,element2,element3=[1,2,3] # multiple assignment from a l i s t
>>> element1
1
>>> element2
2
>>> element3
3
multiple assignment from returned l i s t
>>> field1,field2,field3 = 'Python is great'.split()
>>> field1
'Python'
>>> field2
'is'
>>> field3
'great'
>>> element1, element2 = [1, 2, 3] # number o f vars and elements must match
Traceback (most recent call last):
File "<pyshell#36>", line 1, in <module>
element1, element2 = [1, 2, 3]

ValueError: too many values to unpack (expected 2)
>>> element1, element2, element3 = [1, 2]
Traceback (most recent call last):
File "<pyshell#37>", line 1, in <module>
element1, element2, element3 = [1, 2]

ValueError: need more than 2 values to unpack
>>>

7.4.2 List to String and Back Again, Using join
It is sometimes very helpful to convert back and forth between a list and a string. Some
operations are better performed, even only performed, in one type or the other, so you will
find it important to understand how to do this. One useful method for this is the string
join method. The join method takes a list of strings as an argument and concatenates

7 . 4 • O L D A N D N E W F R I E N D S 297

(in order) each of those string into a new string. What is odd about this method is that
the calling string is the string that is placed between each string as they are concatenated
together. That is, the calling string is used as a separator. For example, the call ':'.join
(['a','b','c']) concatenates all the elements of the list together using a colon (:) as
a separator, generating the string 'a:b:c'. Note that join does not use the separator in
front of the first element or behind the last.

You can use join to re-create a string after you have done some processing on string
elements.

The following session takes a string, splits it on whitespace, reverses each string element,
then re-creates the string of reversed elements.

>>> my str = 'This is a test'
>>> string elements = my str.split() # l i s t o f words
>>> string elements
['This', 'is', 'a', 'test']
>>> reversed elements = []
>>> for element in string elements: # fo r each word
... reversed elements.append(element[::-1]) # rev e r s e , append
...
>>> reversed elements
['sihT', 'si', 'a', 'tset']
>>> new str = ' '.join(reversed elements) # jo in with space s epara to r
>>> new str
'sihT si a tset' # each words r ev e r s ed
>>>

When we do the final join, we use a space (two quotes with a space between) to join
the elements back together.

VideoNote 7.1
List Operations

7.4.3 The sorted Function
Unfortunately, the sort method works only with lists. What if we want to sort a string?
We could:

� Turn a string into a list of individual characters using the list constructor.
� Sort the list.
� Use the join method of strings to put the string back together.

While this would work, there is an easier way. The sorted function (not a method, a
function) will sort any collection. It will:

� Separate the collection into individual elements.
� Sort those elements.
� Return the elements in sorted order as a list.

298 C H A P T E R 7 • L I S T S A N D T U P L E S

The argument provided to sorted is not modified by the action of the function. After
using sorted on the string you can use join to reform the string.

The following session demonstrates the sorted function:

>>> my list = [27,56,4,18]
>>> sorted(my list)
[4, 18, 27, 56]
>>> my str = 'Hi mom'
>>> sorted(my str)
[' ', 'H', 'i', 'm', 'm', 'o']
>>> ''.join(sorted(my str))
'Himmo'

Check Yourself: Lists and Strings Check

1. Answer the following questions using this program.

my_list = [1.6, 2.7, 3.8, 4.9]
new_list = []
a_list = []

for val in my_list:
temp = str(val)
a_list.append(temp.split('.'))

for val in a_list:
new_list.append(int(val[0]))

my_str = ':'.join(val)

print(my_list) # Line 1
print(a_list) # Line 2
print(new_list) # Line 3
print(val) # Line 4
print(my_str) # Line 5

(a) What output is produced by Line 1 when the program is executed?
(b) What output is produced by Line 2 when the program is executed?
(c) What output is produced by Line 3 when the program is executed?
(d) What output is produced by Line 4 when the program is executed?
(e) What output is produced by Line 5 when the program is executed?

7 . 5 • W O R K I N G W I T H S O M E E X A M P L E S 299

Note the difference between the function sorted and the list method sort. The
function sorted returns a list, whereas the list method sort changes the list itself (a side
effect). The difference is illustrated in the following session.

>>> my list = [27,56,4,18]
>>> sorted list = sorted(my list) # my lis t i s not changed
>>> sorted list
[4, 18, 27, 56]
>>> my list
[27, 56, 4, 18]
>>> my list.sort() # my lis t IS changed
>>> my list
[4, 18, 27, 56]

7.5 W O R K I N G W I T H S O M E E X A M P L E S
You know a lot about lists now, so let’s see if you can use them to solve a few problems.

7.5.1 Anagrams
Two (or more) words are anagrams if they use a different arrangement of the same set of
letters to form words. For example, cinema and iceman are anagrams, forming different
words by reordering the same set of letters.

In this example, we will design a program that tests two words to check whether they
are anagrams. How to do this? Our approach is to find some common representation that
only two anagram words would share. One canonical representation would be the sorted
letters of a word. Consider our example. If we take the two anagrams, cinema and iceman,
and sort the letters of each word, they both form the string aceimn. Think about what
this means. The sorted list is just another ordering of the same set of letters used to form
both cinema and iceman. Sorting a word gives us a representation that any anagram of a
particular word would share. That is, every anagram should have the same sorted letter
string.

Here are the main steps for our algorithm:

1. Input the two words to examine.
2. Sort the letters of each word into a new string.
3. Compare the resulting sorted strings.

The first step is “input the two words,” so let’s prompt the user for two space-separated
words. If the user does as asked, input will return the two words in one string separated
by a space, e.g., 'cinema' and 'iceman'. Therefore, we can use split to recover each
individual word as an element in a list. Once we have a list of words, we need to extract the
two words. We can do that extraction using indexing—remembering that indexing starts at 0.
Let’s try it out in a Python shell:

300 C H A P T E R 7 • L I S T S A N D T U P L E S

>>> two words = input("Input two space-separated words: ")
Input two words: cinema iceman
>>> two words
'cinema iceman'
>>> two words.split() # l i s t o f words
['cinema', 'iceman']
>>> two words list = two words.split() # a s s i gn l i s t
>>> two words list
['cinema', 'iceman']
>>> word1 = two words list[0] # a s s i gn words
>>> word2 = two words list[1]
>>> word1 # check words
'cinema'
>>> word2
'iceman'

Now that we have two words, word1 and word2, we can move on to sort the elements
of the two strings. We use the sorted function to make a list of single character strings in
sorted order. In our example, word1, which is 'cinema', gets sorted into ['a', 'c',
'e', 'i', 'm', 'n'].

>>> word1
'cinema'
>>> word2
'iceman'
>>> word1 sorted = sorted(word1) # so r t ed re turn s a s o r t ed l i s t
>>> word2 sorted = sorted(word2)
>>> word1 sorted
['a', 'c', 'e', 'i', 'm', 'n']
>>> word2 sorted
['a', 'c', 'e', 'i', 'm', 'n']

The words are sorted; now we need to check to see whether they are identical.

>>> if word1 sorted == word2 sorted:
print("The words are anagrams.")

else:
print("The words are not anagrams.")

The words are anagrams.
>>>

We’ve developed our ideas within the Python shell. Let’s put them together into a
program. First, let’s create a function that checks if two words are anagrams, returning True
if they are anagrams and False if not. Within that function, we will sort the words and
then compare the sorted lists of characters as we did in the sessions. See Code Listing 7.1.

7 . 5 • W O R K I N G W I T H S O M E E X A M P L E S 301

Code Listing 7.1

1 def are anagrams(word1, word2):
2 """ Return True , i f words are anagrams . """
3 #2 . Sort the chara c t e r s in the words
4 word1 sorted = sorted(word1) # so r t ed re turn s a s o r t ed l i s t
5 word2 sorted = sorted(word2)
6

7 #3 . Check that the s o r t ed words are i d en t i c a l .
8 if word1 sorted == word2 sorted: # compare s o r t ed l i s t s
9 return True

10 else:
11 return False

>>> ================================ RESTART ================================
>>>
>>> are anagrams('cinema','iceman')
True
>>> are anagrams('soap','soup')
False

With the are anagrams function in hand, we can take two words from input, use
them as arguments in the are anagrams function, and then print an appropriate message
based on whether the function returns True or False. See Code Listing 7.2.

Code Listing 7.2

1 # Anagram t e s t
2

3 def are anagrams(word1, word2):
4 """ Return True , i f words are anagrams . """
5 #2 . Sort the chara c t e r s o f the words
6 word1 sorted = sorted(word1) # so r t ed re turn s a s o r t ed l i s t
7 word2 sorted = sorted(word2)
8

9 #3 . Check that the s o r t ed words are i d en t i c a l .
10 if word1 sorted == word2 sorted: # compare s o r t ed l i s t s
11 return True
12 else:
13 return False
14

15 print("Anagram Test")
16

17 # 1 . Input two words .

302 C H A P T E R 7 • L I S T S A N D T U P L E S

18 two words = input("Enter two space separated words: ")
19 two word list = two words.split() # s p l i t the input s t r i n g into a l i s t o f

words
20 word1 = two word list[0] # ex t r a c t f i r s t word
21 word2 = two word list[1] # ex t r a c t second word
22

23 if are anagrams(word1, word2): # funct ion returned True or Fal s e
24 print("The words are anagrams.")
25 else:
26 print("The words are not anagrams.")

>>>
Anagram Test
Enter two words: cinema iceman
The words are anagrams.

Refactoring
With a working program in hand, we should look at it to see if we can refactor it, i.e., keep
the functionality but make the program “better.” Three modifications are worth considering
simply to illustrate alternatives.

First, the return statement in the function can directly return the value of the
comparison rather than run an if test at the end. This is because the comparison will
already result in a value of True or False, so let’s simply return that, as in:

return word1 sorted == word2 sorted

A second alternative code sequence is to use multiple assignment when we split
two words into word1 and word2. By using multiple assignment, we can skip the
two word list entirely:

word1, word2 = two words.split()

Let’s incorporate those alternatives into our code. The result (Code Listing 7.3) is terse,
and possibly more readable.

Code Listing 7.3

Anagram t e s t

def are anagrams(word1, word2):
""" Return True , i f words are anagrams . """
#2 . Sort the chara c t e r s o f the words .
word1 sorted = sorted(word1) # so r t ed re turn s a s o r t ed l i s t
word2 sorted = sorted(word2)

7 . 5 • W O R K I N G W I T H S O M E E X A M P L E S 303

#3 . Check that the s o r t ed words are i d en t i c a l .
return word1 sorted == word2 sorted

print("Anagram Test")

1 . Input two words .
two words = input("Enter two space separated words: ")
word1,word2 = two words.split() # s p l i t into a l i s t o f words

if are anagrams(word1, word2): # return True or Fal s e
print("The words are anagrams.")

else:
print("The words are not anagrams.")

Finally, what about errors? Remember RULE 7: we should check the input provided
by the user. What if the user gets the input wrong? Well, what could go wrong? The
problem will likely be in the multiple assignment and split method combination. If more
or less than two space-separated words are provided by the user, we will get an error, a
ValueError.

We can certainly catch such an error when it occurs, but it would be nice to re-ask
the user to fix the mistake so that the program can continue its processing, rather than
just stop. The following is an outline of, in general, how to reprompt the user for a
response.

� Set a Boolean sentinel just before a while loop to False.
� Write the while to loop based on the Boolean sentinel being False. The following

operations are then part of the while loop
- Inside of a try suite prompt the user.
- Perform any required operations on the user response (multiple assignment, split,

len, etc.).
- If the operation is successful (that is, there are no errors), set the Boolean sentinel to
True. This will end the while loop.

- Catch any error using an except suite. Here you can print an error message to
inform the user. If the flow of control gets to the except, then the Boolean sentinel
will remain False and the while loop will continue.

The following program will reprompt the user if they do not provide a response
that can be split into two elements. The except suite catches the ValueError if the
split fails. The error suite prints an error message, and the loop starts again since the
sentinel variable valid input bool remains False. If the split succeeds, the Boolean
valid input bool is set to True and the loop ends. Once the proper input is set, the
rest of the program will run. See Code Listing 7.4.

304 C H A P T E R 7 • L I S T S A N D T U P L E S

Code Listing 7.4

Anagram t e s t

def are anagrams(word1, word2):
""" Return True , i f words are anagrams . """
#2 . Sort the chara c t e r s o f the words .
word1 sorted = sorted(word1) # so r t ed re turn s a s o r t ed l i s t
word2 sorted = sorted(word2)

#3 . Check that the s o r t ed words are i d en t i c a l .
return word1 sorted == word2 sorted

print("Anagram Test")

1 . Input two words , checking f o r e r r o r s now
valid input bool = False
while not valid input bool:

try:
two words = input("Enter two space separated words: ")
word1,word2 = two words.split() # s p l i t the input s t r i n g into a l i s t

o f words
valid input bool = True

except ValueError:
print("Bad Input")

if are anagrams(word1, word2): # funct ion returned True or Fal s e
print("The words {} and {} are anagrams.".format(word1, word2))

else:
print("The words {} and {} are not anagrams.".format(word1, word2))

The next session shows the reprompting in action. As soon as a user response passes
the split without error, the program finishes. Until the user provides such a response, the
program will continue to prompt.

>>>
Anagram Test
Enter two space separated words: fred
Bad Input
Enter two space separated words: fred joe maria
Bad Input
Enter two space separated words: cinema iceman
The words cinema and iceman are anagrams.
>>>

7 . 5 • W O R K I N G W I T H S O M E E X A M P L E S 305

7.5.2 Example: File Analysis
Programmers are often required to take a file of text and analyze it in various ways. Let’s use
our knowledge of lists to analyze a file. Specifically, we will:

� Determine a file’s length, in words.
� Count the number of unique words in the file.

We will use as sample input President Abraham Lincoln’s Gettysburg Address (1863).
This address is famous for many reasons, but in particular, it is very short. Let’s use Python
to do some simple analysis of the address.

Length of Gettysburg Address
You have seen the len function that returns the length of a list, so let’s put all the words of
the address into a list and find the list’s (and therefore the file’s) length.

We downloaded the address from the Internet, put it in a file we named “gettysburg.txt,”
and put that file in the same folder (directory) as our program. We then develop the following
strategy:

1. Open the file for reading.
2. Initialize the speech list to be empty.
3. For each line in the file:

(a) Extract words from the line into a list (split).
(b) Add that list of words onto the speech list (extend).

4. Find the length of the speech list.

Separating a file into a list of individual words sounds like something we can apply
RULE 8 to—having a function do one thing. Let’s call that function make word list
and incorporate it into a main program that opens a file, calls our function, and then prints
the resulting list. See Code Listing 7.5.

Code Listing 7.5

1 # Gettysburg addre s s ana l y s i s
2 # count words , unique words
3

4 def make word list(a file):
5 """ Create a l i s t o f words from a f i l e . """
6 word list = [] # 2 . l i s t o f speech words : i n i t i a l i z e d to be empty
7

8 for line str in a file: # 3 . read f i l e l in e by l in e
9 line list= line str.split() # 3a . s p l i t each l in e to a l i s t o f words

10 word list.extend(line list) # 3b . add words to l i s t o f speech words
11 return word list
12

306 C H A P T E R 7 • L I S T S A N D T U P L E S

13 ################################
14

15 gba file = open("gettysburg.txt", "r") # 1 . open f i l e f o r reading
16 speech list = make word list(gba file)
17

18 # 4. pr int the speech and i t s l eng th s
19 print(speech list)
20 print("Length: ", len(speech list))

['Four', 'score', 'and', 'seven', 'years', 'ago', 'our', 'fathers',
'brought', 'forth', 'on', 'this', 'continent', 'a', 'new', 'nation,'

many l i n e s d e l e t ed

'freedom', '--', 'and', 'that', 'government', 'of', 'the', 'people,', 'by',
'the', 'people,', 'for', 'the', 'people,', 'shall', 'not', 'perish', 'from',
'the', 'earth.']
Length: 278

The output is quite long, so in the session, we cut out the middle and do not show the
entire output.

In the speech list, the list returned by make word list, we see some non-words:
'--' in particular. We should update the function to eliminate that non-word before adding
to the word list, the local variable that stores the list of words. However, that means
that we need to examine words one at a time before adding them to that list. Rather than
using extend to add to the word list, let’s walk through the line list one word at
a time and use the append method to add words one at a time to the word list. The
construct for word in line list: iterates through the words in line list one at
a time and assigns them to word. Then we can append each word to the word list list
one at a time. However, before appending word, we can check whether it is the non-word
'--'. Only if it is not do we append it. Code Listing 7.6 shows the program with the
modified function:

Code Listing 7.6

1 # Gettysburg addre s s ana l y s i s
2 # count words , unique words
3

4 def make word list(a file):
5 """ Create a l i s t o f words from the f i l e . """
6 word list = [] # l i s t o f speech words : i n i t i a l i z e d to be empty
7

8 for line str in a file: # read f i l e l in e by l in e
9 line list = line str.split() # s p l i t each l in e into a l i s t o f words

7 . 5 • W O R K I N G W I T H S O M E E X A M P L E S 307

10 for word in line list: # ge t words one at a time from l i s t
11 if word != "--": # i f the word i s not "−−"
12 word list.append(word) # add the word to the speech l i s t
13 return word list
14

15 ################################
16

17 gba file = open("gettysburg.txt", "r")
18 speech list = make word list(gba file)
19

20 # print the speech and i t s l eng th s
21 print(speech list)
22 print("Speech Length: ", len(speech list))

['Four', 'score', 'and', 'seven', 'years', 'ago', 'our', 'fathers',
'brought', 'forth', 'on', 'this', 'continent', 'a', 'new', 'nation,',

many l i n e s d e l e t ed

'freedom', 'and', 'that', 'government', 'of', 'the', 'people,', 'by',
'the', 'people,', 'for', 'the', 'people,', 'shall', 'not', 'perish', 'from',
'the', 'earth.']
Length: 271

Now when we examine the output (again with many lines deleted), we see that the
'--' non-word is gone, and we have a more accurate count: 271 words.

Unique Words in the Gettysburg Address
The address is known not only for its content but also for its brevity. We now know how many
words, but how many unique words are in it? How might we determine that? Again, it sounds
like RULE 8 applies and a function doing just one thing is in order. Let us call the function
make unique. Since we already have a list of words from the file, we will provide that list
as the argument to the function and have the function return a list of the unique words.

How should the function work? Let’s make a list of unique words and then find the
length of that list. The hard part of that is how do we create a list of only unique words?
The process is fairly similar to what we have already done. We can start with an empty list of
unique words (notice the pattern here!). We will walk through each word of the argument
list, one word at a time, but before we append a word to the unique list, we check whether
it is already in the unique list using the in operator. If it is not there, we append it. Here is
an algorithm:

1. Initialize our unique list to empty.
2. For each word in the argument list:

(a) If a word is not already in the unique list,
(b) Append the word to the unique list.

308 C H A P T E R 7 • L I S T S A N D T U P L E S

Here is the implementation of make unique, along with the updated main code and
corresponding session. The count of words is now 153. Code Listing 7.7.

Code Listing 7.7

Gettysburg addre s s ana l y s i s
count words , unique words

def make word list(a file):
""" Create a l i s t o f words from the f i l e . """
word list = [] # l i s t o f speech words : i n i t i a l i z e d to be empty

for line str in a file: # read f i l e l in e by l in e
line list = line str.split() # s p l i t each l in e into a l i s t o f words
for word in line list: # ge t words one at a time from l i s t

if word != "--": # i f the word i s not "−−"
word list.append(word) # add the word to the speech l i s t

return word list

def make unique(word list):
""" Create a l i s t o f unique words . """
unique list = [] # l i s t o f unique words : i n i t i a l i z e d to be empty

for word in word list: # ge t words one at a time from speech
if word not in unique list: # i f word i s not already in unique l i s t ,

unique list.append(word)# add word to unique l i s t

return unique list

################################

gba file = open("gettysburg.txt", "r")
speech list = make word list(gba file)

print the speech and i t s l eng th s
print(speech list)
print("Speech Length: ", len(speech list))
print("Unique Length: ", len(make unique(speech list)))

>>>
['Four', 'score', 'and', 'seven', 'years', 'ago', 'our', 'fathers',
'brought', 'forth', 'on', 'this', 'continent', 'a', 'new', 'nation,',

many l i n e s d e l e t ed

7 . 5 • W O R K I N G W I T H S O M E E X A M P L E S 309

'freedom', 'and', 'that', 'government', 'of', 'the', 'people,', 'by',
'the', 'people,', 'for', 'the', 'people,', 'shall', 'not', 'perish', 'from',
'the', 'earth.']
Speech Length: 271
Unique Length: 153
>>>

Better Idea of Unique
There are some adjustments we can make based on the idea of “unique word.”

� A word should not be unique if it exists in the provided word list with different types
of capitalization, e.g., we and We.

� A word should not be unique if it exists in the provided word list with different
surrounding punctuation, e.g., here., here,, and here.

We previously described the string method strip, which strips specified characters
from the beginning and end of strings, as well as the lowermethod, which converts a string
to lowercase. These will be useful methods for implementing these changes. The appropriate
place for the adjustments is in the make word list function, where we are already doing
some filtering, i.e., removing the '--' string. The strategy will be to lower every word to
make sure all the letters are lowercase and to strip every word of the punctuation marks
period (.) and comma (,). By filtering words through those functions, we reduce the unique
count from 153 to an accurate 138. Here is the program with both functions. We removed
printing of the original speech and added printing of the list of unique words. See Code
Listing 7.8.

Code Listing 7.8

1 # Gettysburg addre s s ana l y s i s
2 # count words , unique words
3

4 def make word list(a file):
5 """ Create a l i s t o f words from the f i l e . """
6 word list = [] # l i s t o f speech words : i n i t i a l i z e d to be empty
7

8 for line str in a file: # read f i l e l in e by l in e
9 line list = line str.split() # s p l i t each l in e into a l i s t o f words

10 for word in line list: # ge t words one at a time from l i s t
11 word = word.lower() # make words lower ca s e
12 word = word.strip('.,') # s t r i p o f f commas and per iod s
13 if word != "--": # i f the word i s not "−−"
14 word list.append(word) # add the word to the speech l i s t
15 return word list

310 C H A P T E R 7 • L I S T S A N D T U P L E S

16

17 def make unique(word list):
18 """ Create a l i s t o f unique words . """
19 unique list = [] # l i s t o f unique words : i n i t i a l i z e d to be empty
20

21 for word in word list: # ge t words one at a time from speech
22 if word not in unique list: # i f word i s not already in unique l i s t ,
23 unique list.append(word)# add word to unique l i s t
24

25 return unique list
26

27

28 ################################
29

30 gba file = open("gettysburg.txt", "r")
31 speech list = make word list(gba file)
32 print("Speech Length: ", len(speech list))
33 unique list = make unique(speech list)
34 # print the speech and i t s l eng th s
35 print(unique list)
36 print("Unique Length: ", len(make unique(unique list)))

Speech Length: 271
['four', 'score', 'and', 'seven', 'years', 'ago', 'our', 'fathers',

many l i n e s d e l e t ed

'highly', 'resolve', 'shall', 'died', 'vain', 'under', 'god', 'birth',
'freedom', 'government', 'people', 'by', 'perish', 'earth']
Unique Length: 138

As before, we removed some of the output to save space. Now we have an accurate
count of the length of the speech (271 words) and the unique words in the speech (138
unique words).

What an accomplishment to create such a noteworthy speech from only 138 different
words!

7.6 M U T A B L E O B J E C T S A N D R E F E R E N C E S
Lists are mutable—the values in a list can be changed. We briefly considered mutability
earlier, but it is worth closer examination. To understand what mutable means in the context
of Python, we need to review how variables and their values are structured. In Chapter 1
we discussed how variables work in Python. Let’s review a few facts:

7 . 6 • M U T A B L E O B J E C T S A N D R E F E R E N C E S 311

� A variable name comes into existence when it is associated with a value, e.g., x = 5.
� A variable name has no specific type associated with it.
� Once made, a variable is associated with a particular Python object (and that object has

a type).
� Python maintains a namespace that keeps track of variables and the objects they are

associated with.

Computer scientists often refer to this association as a reference. That is, a variable name
“references” an object. Programming languages handle referencing in different ways. In
Python, references are maintained in the namespace. A namespace maintains the association
or reference between a variable name and an object.

We diagram some examples to review those concepts and then examine mutability in
detail. The code in Figure 7.2 creates an initial set of associations.

my_int

your_int 27

NameList Values

my_int = 27
your_int = my_int

FIGURE 7.2 Namespace snapshot #1.

312 C H A P T E R 7 • L I S T S A N D T U P L E S

my_int

your_int 27

28

NameList Values

my_int = 27
your_int = my_int
your_int = your_int + 1

FIGURE 7.3 Modification of a reference to an immutable object.

Let’s modify one of the variables, your int. Notice how the association changes.
Figure 7.3 shows the effect. Remember that your int is referencing an int, which is
immutable.

Every operation on an immutable object creates a reference to a new object, as shown
in Figure 7.3. Let’s consider some similar operations on lists. We’ll begin with an initial
association, as shown in Figure 7.4.

When two names reference the same mutable object, there are some interesting con-
sequences. The key issue is this: If two or more variables reference the same object, and
through one variable the object is modified (because it is mutable), then all variables that
reference that object will reflect that change.

Let’s look at it in a Python session so we can perhaps see this concept a little more clearly.

>>> a list = [1,2,3]
>>> a list
[1, 2, 3]
>>> b list = a list

7 . 6 • M U T A B L E O B J E C T S A N D R E F E R E N C E S 313

a_list

b_list

[1, 2, 3]

NameList Values

a_list = [1,2,3]
b_list = a_list

FIGURE 7.4 Namespace snapshot after assigning mutable objects.

>>> b list # b l i s t r e f e r e n c e s the same ob j e c t as a l i s t
[1, 2, 3]
>>> a list is b list # both names r e f e r en c e the same ob j e c t ? True .
True
>>> a list.append(27) # append to a l i s t
>>> a list
[1, 2, 3, 27]
>>> b list # the append to a l i s t r e f l e c t in b l i s t
[1, 2, 3, 27]

There are two key points in this session. First, by assigning b list to a list, we
create two variables that reference the same object, a list. This is reflected in Figure 7.5—
both names reference the same object. To confirm this, we can use the is operator, which
is True if the variables reference the same object.

Second, if we perform an operation such as append to the referenced list through one
of the variables, in this case a list, then the list is modified. Again, this is because the
list is mutable and append is a method that modifies the list. However, b list references
the same object, so when we print b list, we see that the associated list is changed even
though we did not directly modify b list.

There are ways to copy a list before assigning it to a variable. For example, we could make
a copy slice ([:]) (from beginning to end) that we introduced with strings in Section 4.1.5.
The copy slice creates a new list and copies the elements in the first list to the copied list.

314 C H A P T E R 7 • L I S T S A N D T U P L E S

a_list

b_list

[1, 2, 3, 27]

NameList Values

a_list = [1,2,3]
b_list = a_list
a_list.append(27)

FIGURE 7.5 Modification of shared, mutable objects.

Since the result is a new list, that list is different from the old. As a result, application of
the is operator shows that the variables do not reference the same object. This situation is
shown in the session below and in Figure 7.6. While a copy slice is a simple way to copy a
list, it too has its drawbacks, which we discuss in Section 7.6.1.

>>> a list = [1,2,3]
>>> a list
[1, 2, 3]
>>> b list = a list[:] # e x p l i c i t l y make a d i s t i n c t copy
>>> a list is b list # Both names r e f e r en c e same ob j e c t ? Fa l s e .
False
>>> b list
[1, 2, 3]
>>> a list.append(27) # append now only modi f i e s a l i s t
>>> a list
[1, 2, 3, 27]
>>> b list # b l i s t i s unchanged
[1, 2, 3]

Figure 7.6 illustrates the creation of a distinct copy of a mutable object using slicing.
What happens when you do the following?

>>> a list = [1,2,3]
>>> a list.append(a list)
>>> a list
[1, 2, 3, [...]]

7 . 6 • M U T A B L E O B J E C T S A N D R E F E R E N C E S 315

a_list

b_list

[1, 2, 3, 27]

NameList Values

a_list = [1,2,3]
b_list = a_list[:] # explicitly make a distinct copy
a_list.append(27)

[1, 2, 3]

FIGURE 7.6 Making a distinct copy of a mutable object.

When a list appends itself as an element, an infinite regress occurs. That is, the list has as
an element itself, which has as its element itself, which has as an element itself . . . To avoid any
issues, a new reference is inserted into the list, as shown in Figure 7.7. When the list is printed,
an element that has square brackets containing . . . is printed, indicating a self-reference.

a_list [1, 2, 3,]

NameList Values

a_list = [1,2,3]
a_list.append(a_list)
print(a_list) [1, 2, 3, [...]]

FIGURE 7.7 Self-referencing.

316 C H A P T E R 7 • L I S T S A N D T U P L E S

7.6.1 Shallow vs. Deep Copy
What does it mean to make a copy? In Python, it is important to understand what elements
are stored in a list, particularly when one of the list elements is itself a list. To see how this
works, consider this session:

>>> a list = [1,2,3]
>>> b list = [5,6,7]
>>> a list.append(b list)
>>> a list # append b l i s t to a l i s t
[1, 2, 3, [5, 6, 7]]
>>> c list = b list # give ob j e c t another name
>>> c list
[5, 6, 7]
>>> b list is c list # Both names r e f e r en c e same ob j e c t
True
>>> c list[2] = 88
>>> c list # change index 2 to 88
[5, 6, 88]
>>> b list # b l i s t a l s o changed
[5, 6, 88]
>>> a list # whoa ! what happened here ?
[1, 2, 3, [5, 6, 88]]

To aid in understanding what is going on, let’s draw some pictures. Figure 7.8 shows
the layout after we create a list and b list.

a_list

b_list

[1, 2, 3]

NameList Values

a_list = [1,2,3]
b_list = [5,6,7]

[5, 6, 7]

FIGURE 7.8 Simple lists before append.

7 . 6 • M U T A B L E O B J E C T S A N D R E F E R E N C E S 317

a_list

b_list

[1, 2, 3,]

NameList
Values

a_list = [1,2,3]
b_list = [5,6,7]
a_list.append(b_list)

[5, 6, 7]

FIGURE 7.9 Lists after append.

Figure 7.9 illustrates the namespace after the a list.append(b list) call. Notice
how a list now has a reference to the object b list named as an element, not a copy
of that object. That point is worth emphasizing. Variable a list has four elements: three
integers and a reference to a list. This is not unexpected given that we have seen the same
behavior when assigning a list object to another variable. What is assigned is the reference.
As a result, we get similar, perhaps unexpected, results. When we change b list, we expect
to see the change reflected in a list. However, a change to c list also changes the last
element of a list, since they both refer to the same object. Figure 7.10 shows the effect
of c list[2] = 88.

Can’t we just make a copy using the copy slice operation? The answer is yes, but it again
raises the question as to what gets copied. There was a key phrase we used when we talked
about using copy slice. We said that it “copies the elements” from one list to the new list.
However, as we just saw, sometimes the elements are themselves references. Let’s take a look
at an example.

>>> a list = [1, 2, 3]
>>> b list = [5, 6, 7]
>>> a list.append(b list)
>>> a list
[1, 2, 3, [5, 6, 7]]
>>> c list = a list[:] # c l i s t i s a copy s l i c e o f a l i s t
>>> c list

318 C H A P T E R 7 • L I S T S A N D T U P L E S

a_list

b_list

[1, 2, 3,]

NameList

Values

a_list = [1,2,3]
b_list = [5,6,7]
a_list.append(b_list)
c_list = b_list
c_list[2] = 88

[5, 6, 88]c_list

FIGURE 7.10 Final state of copying example.

[1, 2, 3, [5, 6, 7]]
>>> b list[0]=1000 # t h i s should a f f e c t a l i s t
>>> a list
[1, 2, 3, [1000, 6, 7]] # i t does a f f e c t a l i s t
>>> c list
[1, 2, 3, [1000, 6, 7]] # i t a f f e c t s c l i s t as wel l
>>>

Figure 7.11 shows the situation.
We create the same situation we had before: a list has as an element a reference

to b list. We then create a copy of a list using copy slice and store it in c list.
However, that phrase “copy the elements” is shown clearly in Figure 7.11. A new list was
created for c list, but it was created by copying the elements of a list. Because a list
had as an element a reference, the reference (not a new copy of the object) was copied. Thus,
a change to b list was still reflected in c list even though we made a copy!

The case in which only the references, not the objects themselves, are copied is called
a shallow copy. By now it should be clear that a copy slice is just a shallow copy. It copies
the elements in a list, even if the elements are references. If what you desire is to copy the
contents rather than simply the reference, you need to perform what is called a deep copy. A

7 . 6 • M U T A B L E O B J E C T S A N D R E F E R E N C E S 319

a_list

b_list

[1, 2, 3,]

NameList

Values

a_list = [1,2,3]
b_list = [5,6,7]
a_list.append(b_list)
c_list = a_list[:]
b_list[0] = 1000

[1000, 6, 7]

c_list

[1, 2, 3,]

FIGURE 7.11 Effects of copy slice (a shallow copy).

deep copy will copy any object, even it if means it must follow a reference to find the object.
Such a copy could be very slow if there are many references, but it will provide a true copy
of the object.

There is a copy module that has a deepcopy function that is guaranteed to follow
all references and create a true copy. The next session shows the use of deepcopy and
Figure 7.12 shows the result of a deep copy operation.

>>> a list = [1, 2, 3]
>>> b list = [5, 6, 7]
>>> a list.append(b list)
>>> import copy
>>> c list = copy.deepcopy(a list)
>>> b list[0]=1000
>>> a list
[1, 2, 3, [1000, 6, 7]]
>>> c list
[1, 2, 3, [5, 6, 7]]
>>>

320 C H A P T E R 7 • L I S T S A N D T U P L E S

a_list

b_list

[1, 2, 3,]

NameList

Values

a_list = [1,2,3]
b_list = [5,6,7]
a_list.append(b_list)
c_list = copy.deepcopy(a_list)
b_list[0] = 1000

[1000, 6, 7]

c_list

[1, 2, 3,]

[5 , 6, 7]

FIGURE 7.12 Using the copy module for a deep copy.

Even though the last element of a list was a reference, the deepcopy function
created a copy of the referenced object and then placed the reference as the last element of
c list. Now c list is truly a copy, a deep copy.

VideoNote 7.2
List Application

7.6.2 Mutable vs. Immutable
It is worth taking a moment to revisit the consequences of working with mutable objects.
When a variable references an immutable object, any operation that uses that object (con-
catenation, replace, strip, and so on) creates a new object; it does not change the referenced
object. In contrast, a variable that references a mutable object can either create a new object
or change the referenced object itself, depending on the operation.

7 . 7 • T U P L E S 321

P R O G R A M M I N G T I P

Operations on variables that reference a mutable object may change the object itself or
create a new object. When making a copy of a mutable object, be sure you know what you
are getting. If you are in doubt, do a deep copy using deepcopy from the copy module.

Check Yourself: Mutable List Check

1. Show the output for the following program. To make it easier, draw a diagram similar
to the ones above to keep straight the connections between the three lists.

str_list = ['hi','mom','dad',['grandma','grandpa']]
new_list = str_list
copy_list = str_list[:]

str_list[0] = 'bye'
new_list[1] = 'mother'
copy_list[2] = 'father'
copy_list[-1][0] = 'nanna'

print(str_list) # Line 1
print(new_list) # Line 2
print(copy_list) # Line 3

(a) What output is produced by Line 1 when the program is executed?
(b) What output is produced by Line 2 when the program is executed?
(c) What output is produced by Line 3 when the program is executed?

7.7 T U P L E S
Here is the quick definition of a tuple. Tuples are essentially immutable lists. A tuple shares
all the characteristics of a list except those that violate immutability. That is, any function
or method that can change a list is not available for tuples.

Because it is immutable, a tuple has some similarity to a string. However, as with its
cousin the list, a tuple can contain elements of any type. Tuples are delimited by parentheses
when printed, and like lists their elements are separated by commas. To make a tuple, use
this syntax:

my tuple = (1,2,3)

It is important to note that the comma, not the parentheses, is the operator that creates
the tuple. The expression 1,2,3, no parentheses, yields the tuple (1,2,3). To create a

322 C H A P T E R 7 • L I S T S A N D T U P L E S

single-element tuple, one cannot create it with the expression (1), which simply yields 1
in the interpreter. The expression (1,) does create a single-element tuple. The confusion
is due to the overloaded nature of the parentheses. In most situations, parentheses indicate
grouping and Python will interpret them as such. The inclusion of the comma indicates
that the parentheses are being used as part of tuple creation, not grouping. The bottom line
is that commas are the operators that make a tuple. The following session emphasizes these
facts:

>>> 10,12 # Python c r e a t s a tup l e
(10, 12)
>>> tup = 2,3 # a s s i gn ing a tup le to a var iab l e
>>> tup
(2, 3)
>>> (1) # not a tuple , a grouping
1
>>> (1,) # comma makes i t a tup l e
(1,)
>>> x,y = 'a',3.14159 # from on right , mult ip le as s ignments
>>> x
'a'
>>> y
3.14159
>>> x,y # c r ea t e a tup l e
('a', 3.14159)

The operations familiar from other sequences (lists and strings) are available, except, of
course, those operators that violate immutability.

� Operators such as + (concatenate) and * (repeat) work as before.
� Slicing also works as before.
� Membership (in) and for iteration also work on tuples.
� len, min, max, greater than (>), less than (<), sum , and others work the same way. In

particular, any comparison operation has the same restrictions for mixed types.

None of the operations that change lists are available for tuples. For example, append,
extend, insert, remove, pop, reverse, and sort do not work on tuples. Here is a
session demonstrating the various operators working with tuples:

>>> my tuple = 1,2,3,4,5
>>> my tuple
(1, 2, 3, 4, 5)
>>> my tuple + my tuple # concatenation (addition)
(1, 2, 3, 4, 5, 1, 2, 3, 4, 5)
>>> my tuple * 3 # mul t ip l i ca t ion
(1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5)

7 . 7 • T U P L E S 323

>>> my tuple[1] # indexing
2
>>> my tuple[:3] # s l i c i n g
(1, 2, 3)
>>> my tuple[1:3]
(2, 3)
>>> my tuple[-1]
5
>>> 2 in my tuple # membership (in)
True
>>> 10 in my tuple
False
>>> for x in my tuple: # fo r

print(x,end=' ')

1 2 3 4 5
>>> len(my tuple) # length
5
>>> min(my tuple) # min and max
1
>>> max(my tuple)
5
>>> sum(my tuple)
15
>>> 1,2,3 > 3,2,1
False
>>>

7.7.1 Tuples from Lists
It is easy to convert a list to a tuple and vice versa using the available constructors. That is,
you can convert a tuple to a list using the list constructor and a list to a tuple using the
tuple constructor. In the following session, we show how you might sort a tuple. First, we
turn a list into a tuple using the tuple constructor. Second, we try to sort the tuple with
the sort method, but that approach fails because of the immutability of the tuple. We then
apply the sorted function to the tuple, which returns a new, sorted list. We confirm the
returned object is in fact a list with the type function. Finally, we turn the sorted list into
a tuple using the tuple constructor.

Here is a session that illustrates these points:

>>> a list = [6,1,3,4]
>>> a tuple = tuple(a list) # convert l i s t to tup l e
>>> a tuple
(6, 1, 3, 4) # parenthe s e s ind i ca t e a tup l e
>>> a tuple.sort() # cannot s o r t immutable ob j e c t

324 C H A P T E R 7 • L I S T S A N D T U P L E S

Traceback (most recent call last):
File "<pyshell#37>", line 1, in <module>
a tuple.sort()

AttributeError: 'tuple' object has no attribute 'sort'
>>> sorted list = sorted(a tuple) # so r t ed c r e a t e s new l i s t
>>> type(sorted list)
<class 'list'>
>>> sorted list
[1, 3, 4, 6]
>>> new tuple = tuple(sorted list)
>>> new tuple
(1, 3, 4, 6)
>>>

7.7.2 Why Tuples?
The question is, why have an immutable list, a tuple, as a separate type? The reason is that
an immutable list provides a data structure with some integrity and some persistence. It is
not possible to accidentally change a tuple.

Also, because tuples are immutable, they can be used in a few places where mutable
objects are not allowed.

7.8 L I S T S : T H E D A T A S T R U C T U R E
Python comes with a number of built-in data structures. So far we have looked at strings,
lists, and tuples.

What is a data structure? In Section 1.6, we covered the type of an object and what
that entailed. We observed that a type described what was stored in an object of a particular
type and the operations we can perform on an object of that particular type. More generally,
we consider the concept of a data structure. A data structure is related to a data type, in
that a data type is the realization (implementation) of a data structure in a program. Thus,
a data structure is a more abstract concept, indicating what a programmer would like to
be done as opposed to how the programmer actually implements the concept in code
(the data type). In particular, a data structure focuses on the organization of data and the
operations that can act on the data—often with an emphasis on efficiency. For example,
a Google search potentially examines the content of the whole Internet. How must one
organize this vast amount of data so that searches can be both accurate and fast? Part of
the answer is in how the data are organized and manipulated, i.e., what data structures are
used. The company founders, Larry Page and Sergey Brin, became very rich by coming up
with a more efficient data structure and algorithm for Internet data search (they named it
MapReduce).

7 . 8 • L I S T S : T H E D A T A S T R U C T U R E 325

When we speak of efficiency, we could mean one of a few things:

1. Efficient with respect to an algorithm. Data structures are tightly linked with the
algorithms that work on them. Thus, it might be efficient to perform some operation
(sorting, storing, inserting) on a particular organization of the data. However, making
one operation efficient might make another operation inefficient on the same data
structure.

2. Efficient with respect to space. One way to organize the data is to be efficient in
memory usage. If the data being stored are very large (say, all the text in the Library
of Congress), storage efficiency might be very important. Again, how data get stored
might well affect what we can efficiently do with the data.

3. Efficient with respect to time. Another important consideration is time. If our al-
gorithm is tasked with controlling flaps on an airplane in flight, then determining
proper settings quickly is crucial. Many variables come to play in that decision, and
data organization (the data structure) is critical.

Not surprisingly, those three meanings of efficiency are not necessarily independent.
For example, Google’s data organization is tightly tied to their algorithm, storage is critical
because of the immense amount of data, and time is important because a slow search is
not useful to people. Entire courses are devoted to the theory of data structures and the
algorithms that work well with them.

We have seen that algorithms can be described abstractly, and the same is true for
data structures. The abstract data structure is an abstraction of the data organization and
that organization’s implications toward efficiency, however defined. When we define a data
structure, we will also define a set of operations that can be done on the data structure.
Various trade-offs will result: some algorithms may run slowly, certain data examples will
occupy too much space, and so on. We design the data structure to solve the main problems
at hand. For example, Google provides a search operation to search the Internet, but it
would be odd to provide a print operation that printed the Internet.

7.8.1 Example Data Structure
You have already seen three Python data types: strings, lists, and tuples. Let’s consider a
string as a data structure. We first learned that a string was a sequence of characters. A
sequence is a way of organizing data—characters, in the case of strings; anything, in the case
of lists. One of the properties of a sequence is that it has an order. Other data structures
do not share such a property; for example, a set is a data structure that is an unordered
collection of items (covered in Chapter 9). We chose a sequence for strings because the
order of characters is important. It wouldn’t be useful if the characters of English (or any
language) words were rearranged to some arbitrary order just to be more “efficient.”

As a data structure, we saw that strings had a set of operations. There were functions
(len), methods (split), and operators (addition), all with specific meanings for a string.

326 C H A P T E R 7 • L I S T S A N D T U P L E S

There were also things missing from strings: no way to sort a string, no way to index assign
in a string.

As an abstraction, there are implementation details that are hidden from you, the
user. We conceive of the string as a sequence but don’t really know (or care) about its
implementation details, e.g., how it is stored and manipulated in memory. We manipulate
a string using the methods and operations provided. The details don’t matter as long as the
methods and operators work correctly (and efficiently).

Like most data structures, a string data structure does some things efficiently and other
things inefficiently (or not at all).

What does a string do efficiently?

� Holds a sequence of characters efficiently in memory
� Maintains information about the size of the string
� Allows quick access to any individual element

What does a string not do efficiently (or not do at all)?

� Cannot modify a string element: strings are immutable, so you must make a copy to
change anything

� Cannot efficiently manipulate elements for tasks such as, among others you will see
shortly:
- Find the largest element (have to look at all the elements).
- Store elements other than characters.

7.8.2 Other Example Data Structures
We can imagine some other data structures that might be handy to have around. In fact,
the possibilities are endless. Here is a sampling of some common data structures:

� A queue is a sequence of data elements that “stand in a line,” in which the data can
only be removed from the front of the line and new elements can only be added to
the back of the line (as in the British English: “queue up for the bus”). Elements enter
the queue and wait, typically in order, until they come to the front of the queue for
removal. Queues are useful for modeling how cars move through intersections or data
flows through nodes on the Internet. Associated operations check to see if the queue is
empty, add to the back, and remove from the front.

� A dictionary data structure is one in which we can look up a key (like a word in the
dictionary) and access some value (like the definition of the word). A phone book could
be implemented as a dictionary. Operations would include the following: look up a
value associated with key, add key-value pairs, remove key-value pairs, etc.

� A set of unordered elements allows us to access and modify individual elements. Oper-
ations would include insertion, removal, union, intersection, etc.

7 . 9 • A L G O R I T H M E X A M P L E 327

� A matrix of numbers is a common mathematical data structure that is extensively used
in science and engineering. Associated operations would include multiplication, find
determinant, invert, transpose, etc.

Some data structures are built into languages (Python has dictionaries and sets); others
must be created by the programmer (Python does not have built-in matrix or queue data
structures, though they are available in modules). Ideally, it will be good to define our own
data structures to solve special problems. You will learn later how to combine the data
structures provided by Python into structures tailored to our needs.

7.9 A L G O R I T H M E X A M P L E : U . S . E P A
A U T O M O B I L E M I L E A G E D A T A

The U.S. Environmental Protection Agency (EPA) gathers data on cars and trucks. It is
best known for its mileage data, but EPA also gathers information on car type (van, pickup,
sports car, etc.), engine type, luggage capacity, seating, etc. These data are available online2

in CSV-format (CSV = comma-separated values). We can download the data file and analyze
it to answer any questions we might have. For instance, if we are interested in mileage data,
we must sift through the data and extract those values. Take a look at the data file to get a
feel for what is there.

Here are some questions we might ask:

� What are the maximum and minimum mileage ratings for cars in this file?
� Which cars get the maximum mileage in this file?
� Which cars get the minimum mileage in this file?

As is often the case when working with real data, we might have to refine the question
we are asking. Which year are we interested in? The website organizes its data by year. For
this program, we choose to download the file for 2008 and store it in the same directory
as our program. We named the file “epaData.csv.” What defines a car? It turns out that the
file contains data for vehicles other than cars, including pickup trucks and vans. We will
choose to eliminate the van and pickup classes from our consideration. The file records two
different types of mileage: city mileage and highway mileage. We choose to use highway
mileage.

Given our refined question, here is our general algorithm:

1. Open the EPA data file.
2. Extract from the file the highway mileage data of 2008 cars and store those values in a

list.
3. Find the minimum and maximum values in the list.

2 http://www.fueleconomy.gov/FEG/download.shtml

http://www.fueleconomy.gov/FEG/download.shtml

328 C H A P T E R 7 • L I S T S A N D T U P L E S

The EPA website has a file describing how the data are arranged (bottom of the web
page, downloads as a Readme.txt). Each line in the file represents a vehicle, and each line
contains 31 different pieces of data. Though somewhat cryptic, the top of each of the years
has a “header” line that describes the data associated with each column.

Here are the first few column labels of that first header line of the 2008 data file:

CLASS,MFR,CAR LINE,DISPLACEMENT,NUMB CYL,TRANS,DRIVE SYS,INDEX
NUMB,CITY MPG,HWY MPG

The first thing to notice is that “HWY MPG” is the 10th element in the header. Also,
the manufacturer (“MFR”) is second element and and type (“CAR LINE”) is the third.
Finally, “CLASS” indicates the class of vehicle, e.g., “SUBCOMPACT,” “VAN,” which will
be useful to eliminate “VAN” and “PICKUP” from consideration. Note that there are a
number of classifications.

Now that we understand how the data in the file are structured, let’s begin the process
of developing a program. First, let’s begin by opening the file and printing some information
from it. As a first cut at working with these data, let’s print out every line that mentions
“FERRARI.” Because each line in the file is very long, we’ll print out only the first characters.
See Code Listing 7.9.

Code Listing 7.9

1 # highe s t mileage data
2 # from http : / /www. fueleconomy . gov /FEG/ download . shtml
3

4 # 1 . open EPA data f i l e
5 epa file = open("epaData.csv", "r")
6

7 for line in epa file: # ge t each l in e one at a time from the f i l e
8 if 'FERRARI' in line: # i f 'FERRARI ' i s anywhere in the l in e print i t
9 print(line[:75]) # only pr int f i r s t 75 chara c t e r s

>>>
TWO SEATERS,FERRARI,F430,4.3,8,Auto(A6),R,1,11,16,13,13.7498,22.4,16.6417,P
TWO SEATERS,FERRARI,F430,4.3,8,Manual(M6),R,1,11,16,13,13.8,22.2,16.6319,P,
TWO SEATERS,FERRARI,FERRARI 599 GTB FIORANO,5.9,12,Auto(A6),R,2,11,15,12,12
TWO SEATERS,FERRARI,FERRARI 599 GTB FIORANO,5.9,12,Manual(M6),R,2,11,15,12,
MIDSIZE CARS,FERRARI,FERRARI 612 SCAGLIETTI,5.7,12,Auto(A6),R,2,9,16,11,11.
MIDSIZE CARS,FERRARI,FERRARI 612 SCAGLIETTI,5.7,12,Manual(M6),R,2,10,15,12,

The output isn’t very interesting, but we demonstrated that we can open and read data
from the data file we had downloaded and look for particular data within that file.

7 . 9 • A L G O R I T H M E X A M P L E 329

The next step in the algorithm is to gather the highway mileage data and store them in
a way that we can more easily examine and manipulate. Our first cut at the program reads
lines one at a time from the file, so for each of those lines we need to extract the highway
data. Already we’ve noted that the highway mileage data is in column 9 (10th element but
now counting from 0). Since each line has its data separated by commas (remember the file
is in comma-separated value format), we can gather the highway mileage data from each
line using the split(',') method. From the list generated by split, we can extract
the highway mileage data by indexing column 9. We need to store all the highway mileage
values, so we choose to append each value into a list.

Here are those steps in algorithmic form. Note that this algorithmic segment expands
the detail of step 2 in the previous algorithm:

1. Initialize a mileage list to be empty.
2. For each line in the file:

(a) Split the line at commas into a list.
(b) Append list element 9 onto a list of mileage values.

The processing of each line is definitely a “do one thing” operation, so following
RULE 8, create a function named create mileage list to process the file information
and return a list of mileage values. The main program will open the file, call function
create mileage list, and print the results. Because the list is long, we show an
abbreviated printout of the 1248 mileage values. See Code Listing 7.10.

Code Listing 7.10

1 # highe s t mileage data
2 # from http : / /www. fueleconomy . gov /FEG/ download . shtml
3

4 def create mileage list(epa file):
5 """ Create a l i s t o f ca r s and mileage from epa f i l e . """
6 # 2a c r ea t e a mileage l i s t and i n i t i a l i z e i t to empty
7 mileage list = []
8

9 for line in epa file: # 2b . g e t each l in e from the f i l e
10 line list = line.split(',') # 2bI . c s v => s p l i t on comma
11 mileage list.append(line list[9]) # 2bII . append highway mileage
12 return mileage list
13

14 #################################
15

16 # 1 . open EPA data f i l e
17 epa file = open("epaData.csv", "r")
18 mileage list = create mileage list(epa file)
19

20 print(mileage list)

330 C H A P T E R 7 • L I S T S A N D T U P L E S

>>>
['HWY MPG (GUIDE)', '20', '19', '19', '20', '29', '24', '24', '28', '28',...

The first element of the list is the header text information for column 10 (index 9), and
the remainder of the list contains the highway miles for all the vehicles in the file. The good
news is that, as a confirmation of getting the right thing, the header is “HWY MPG,” which
is exactly the column we want. The bad news is that the header information is not an integer
string, which is what we are looking for. We can safely ignore that header value, giving us
a uniform list of mileage values that we can more easily convert to integer numbers. Let’s
clean up our code to reflect these two changes: ignore the header and convert the integer
strings to integer numbers.

We want to clean up our code with the following:
� Ignore the header line.
� Convert mileage data to integers before appending to mileage list.

Converting the mileage data is easy. We apply the int constructor on the highway
mileage string before appending:

mileage list.append(int(line list[9]))

There are a number of ways to ignore a line, but one way is to use the continue control
construct. Remember how a continue works. When executed, it ends that particular
iteration of a loop, ignoring any code that comes after the continue and continues with
subsequent iterations. From our description of the header line, we know that the header
line begins with “CLASS” so we know that we are looking at the header line if the first five
characters are “CLASS.” If so, we should skip processing that line as shown:

if line[0:5] =='CLASS': continue

Let’s add that code to our program and see what we have. Again, the output shown is
only the beginning of the mileage list output. See Code Listing 7.11.

Code Listing 7.11

1 # highe s t mileage data
2 # from http : / /www. fueleconomy . gov /FEG/ download . shtml
3

4 def create mileage list(epa file):
5 """ Create a l i s t o f ca r s and mileage from epa f i l e . """
6 # 2a c r ea t e a mileage l i s t and i n i t i a l i z e i t to empty
7 mileage list = []
8

9 for line in epa file: # 2b . g e t each l in e from the f i l e
10 if line[0:5] == 'CLASS':
11 continue # skip header l in e

7 . 9 • A L G O R I T H M E X A M P L E 331

12 line list = line.split(',') # 2bI . c s v => s p l i t on comma
13 mileage list.append(int(line list[9])) # 2bII . append highway mileage
14 return mileage list
15

16 #################################
17

18 # 1 . open EPA data f i l e
19 epa file = open("epaData.csv", "r")
20 mileage list = create mileage list(epa file)
21

22 print(mileage list)

>>>
[20, 19, 19, 20, 29, 24, 24, 28, 28, 28, 28, 28, 28, 23,...

Now we have a list of integers from the highway mileage column. Let’s find the
minimum and maximum. Conveniently, Python has built-in functions for just those two
problems: max and min (we leave writing your own max or min function as an exercise).
We can apply those to mileage list. If there is more than one maximum or minimum,
then only one will be selected.

While we are at it, we specified that we didn’t want to include vans and pickups, so let’s
ignore those lines. We can look at the raw data and see that vans and pickups are called just
that so we can ignore lines with “VAN” and “PICKUP” by using the Boolean or operation.
Does this do what we want? Depends on whether you define a “MINIVAN” as a car or a
van. What have we assumed in this code? See Code Listing 7.12.

Code Listing 7.12

1 # highe s t mileage data
2 # from http : / /www. fueleconomy . gov /FEG/ download . shtml
3

4 def create mileage list(epa file):
5 """ Create a l i s t o f ca r s and mileage from epa f i l e . """
6 # 2a c r ea t e a mileage l i s t and i n i t i a l i z e i t to empty
7 mileage list = []
8

9 for line in epa file: # 2b . g e t each l in e from the f i l e
10 if line[0:5] == 'CLASS' or 'VAN' in line or 'PICKUP' in line:
11 continue # skip header , vans and pickups
12 line list = line.split(',') # 2bI . c s v => s p l i t on comma
13 mileage list.append(int(line list[9])) # 2bII . append highway mileage
14 return mileage list

332 C H A P T E R 7 • L I S T S A N D T U P L E S

15

16 #################################
17

18 # 1 . open EPA data f i l e
19 epa file = open("epaData.csv", "rU")
20 mileage list = create mileage list(epa file)
21

22 # 3 . find max and min mileage
23 max mileage = max(mileage list)
24 min mileage = min(mileage list)
25

26 print("Max and Min Mileage: ", max mileage, min mileage)

>>>
Max and Min Mileage: 45 12

We now have the maximum and minimum mileage for cars. That prompts the question:
which cars are those?

There are many ways to find out which cars have the max or min mileage, but here are
two. Currently, the first pass through the file finds that the maximum mileage is 45. To find
all the cars with that mileage, we would have to make a second pass through the file from
the beginning, looking for cars with that value and print them out.

Here is another approach. Instead of appending only mileage, let’s also append the
name of the car so we have a name with each data point. We can group name and
mileage together by placing them in a list. Better still, since such a list will never change,
we could wrap the two values in a tuple. Now our mileage list will no longer be
a list of integers; instead, it will be a list of tuples. Each tuple will have a name and a
mileage.

Here it is in algorithmic form:

1. Get mileage data.
2. Get name (make and model, e.g., 'CHEVROLET' 'MALIBU').
3. Put mileage and name in a tuple, e.g., (30, 'CHEVROLET', 'MALIBU').
4. Append tuple to mileage list.

From the description of the data, we can see that the make of the car is in element 1
and that the model is in element 2. Both are probably important for determining the type
of car, so we should record both. We also need to record the mileage. What order should
these values come in the tuple? Mileage should come first because of the way Python does
comparisons of collections. Both max and min use the first element to compare collections.
If we want to organize by mileage, then mileage must come first in each tuple we record.

7 . 9 • A L G O R I T H M E X A M P L E 333

The make and model can be placed at index 1 and index 2 in the tuple. Let’s see what this
looks like in Code Listing 7.13.

Code Listing 7.13

1 # highe s t mileage data
2 # from http : / /www. fueleconomy . gov /FEG/ download . shtml
3

4 def create mileage list(epa file):
5 """ Create a l i s t o f ca r s and mileage from epa f i l e . """
6 # 2a c r ea t e a mileage l i s t and i n i t i a l i z e i t to empty
7 mileage list = []
8

9 for line in epa file: # 2b . g e t each l in e from the f i l e
10 if line[0:5] == 'CLASS' or 'VAN' in line or 'PICKUP' in line:
11 continue # skip header , vans and pickups
12 line list = line.split(',') # 2bI . c s v => s p l i t on comma
13 # tup l e (mileage , make , model)
14 car tuple = (int(line list[9]), line list[1], line list[2])
15 mileage list.append(car tuple) # 2bII . append tup l e
16 return mileage list
17

18 #################################
19

20 # 1 . open EPA data f i l e
21 epa file = open("epaData.csv", "r")
22 mileage list = create mileage list(epa file)
23

24 # 3 . find max and min mileage
25 max mileage = max(mileage list)
26 min mileage = min(mileage list)
27

28 print("Max and Min Mileage: ", max mileage, min mileage)

>>>
Max and Min Mileage: (45, 'TOYOTA', 'PRIUS') (12, 'CHRYSLER', 'ASPEN 2WD')

That is a better solution, but it is not yet as nice as we’d like. There is only one name
associated with the minimum and maximum mileage values. What if multiple cars have the
same mileage values? As we have said, min (and similarly max) returns the first minimum
value, not all minimum values. In this case, we want all. How can we do that?

Observe that our mileage list has the information we want—all cars with max-
imum and minimum mileage values. That is, let’s create a list of maximum mileage cars

334 C H A P T E R 7 • L I S T S A N D T U P L E S

and a separate list of minimum mileage cars. Here is an algorithm that can create those
lists:

1. Create and initialize separate lists for minimum and maximum mileage cars.
2. Find the min and max mileage.
3. For each car in mileage list:

(a) If a car has maximum mileage, append it to the maximum mileage list.
(b) If a car has minimum mileage, append it to the minimum mileage list.

In step 2, let’s return to having max mileage and min mileage only be the in-
teger for mileage, not the car tuple. We can do that by extracting the mileage from the
tuple that min(mileage list) returns. Since mileage is the first item in the tuple,
we can use the following: min(mileage list)[0]. This expression works because
min (mileage list) is a tuple, and we can directly index that tuple with [0]. In the
example above we saw that min(mileage list) was the tuple (12, 'CHRYSLER',
'ASPEN 2WD') so using the index min(mileage list)[0] yields the integer 12. Here
are the two lines to find the max and min:

max mileage = max(mileage list)[0]
min mileage = min(mileage list)[0]

Steps 1 and 3 can be placed in a function named find max min mileage that
returns lists of all the maximum and minimum mileage cars. Let’s add that code to our
program. Code Listing 7.14 shows the function and the program output:

Code Listing 7.14

1 def find max min mileage(mileage list, max mileage, min mileage):
2 """Make a l i s t o f ca r s with max and min mileage : l i s t o f car tup l e s . """
3 max mileage list = []
4 min mileage list = []
5

6 # 5 . find max and min mileage ca r s ; append them to the appropriate l i s t
7 # car tuple [0] i s item 0 of the tup l e which i s the mileage
8 for car tuple in mileage list:
9 if car tuple[0] == max mileage:

10 max mileage list.append(car tuple)
11 if car tuple[0] == min mileage:
12 min mileage list.append(car tuple)
13

14 return max mileage list, min mileage list

>>>
Max and Min Mileage: 45 12

Maximum Mileage Cars:[(45, 'HONDA', 'CIVIC HYBRID'), (45, 'TOYOTA', 'PRIUS')]

7 . 9 • A L G O R I T H M E X A M P L E 335

Minimum Mileage Cars:[(12, 'CHRYSLER', 'ASPEN 2WD'), (12, 'DODGE', 'DURANGO 2WD'),
(12, 'CHRYSLER', 'ASPEN 4WD'), (12, 'DODGE', 'DURANGO 4WD'), (12, 'JEEP',
'COMMANDER 4WD'), (12, 'JEEP', 'GRAND CHEROKEE 4WD')]

The output is not pretty, so let’s walk through the list of tuples and print only the make
and model. With that modification and a few more comments, Code Listing 7.15 shows
the final program and output:

Code Listing 7.15

1 # highe s t mileage data
2 # from http : / /www. fueleconomy . gov /FEG/ download . shtml
3

4 def create mileage list(epa file):
5 """ Create a l i s t o f ca r s and mileage from epa f i l e . """
6 # 2a c r ea t e a mileage l i s t and i n i t i a l i z e i t to empty
7 mileage list = []
8

9 for line in epa file: # 2b . g e t each l in e from the f i l e
10 if line[0:5] == 'CLASS' or\
11 'VAN' in line or\
12 'PICKUP' in line:
13 continue # skip pickups , vans and the header l in e
14 line list = line.split(',') # 2bI . c s v => s p l i t on comma
15 # c r ea t e tup l e : (mileage , make , model)
16 car tuple = (int(line list[9]), line list[1], line list[2])
17 mileage list.append(car tuple) # 2bII . append tup l e
18 return mileage list
19

20 def find max min mileage(mileage list, max mileage, min mileage):
21 """Make a l i s t o f ca r s with max and min mileage : l i s t o f car tup l e s . """
22 max mileage list = []
23 min mileage list = []
24

25 # 5 . find max and min mileage ca r s ; append them to the appropriate l i s t
26 # car tuple [0] i s item 0 of the tup l e which i s the mileage
27 for car tuple in mileage list:
28 if car tuple[0] == max mileage:
29 max mileage list.append(car tuple)
30 if car tuple[0] == min mileage:
31 min mileage list.append(car tuple)
32

33 return max mileage list, min mileage list
34

35 ##
36 # 1 . open EPA data f i l e
37 epa file = open("epaData.csv", "r")

336 C H A P T E R 7 • L I S T S A N D T U P L E S

38

39 print("EPA Car Mileage")
40 print() # blank l in e
41

42 # 2a c r ea t e a mileage l i s t
43 mileage list = create mileage list(epa file)
44

45 # 3 . find max and min mileage
46 # mi l eag e l i s t i s a l i s t o f t up l e s (mileage , make , model)
47 # max(mi l eag e l i s t) [0] f ind s the max mileage tup l e and e x t r a c t s the mileage
48 max mileage = max(mileage list)[0]
49 min mileage = min(mileage list)[0]
50

51 print("Max and Min Mileage: ", max mileage, min mileage)
52 print() # print blank l in e
53

54 #4. c r e a t e a l i s t o f a l l c a r s with max and min mileage : l i s t o f car tup l e s
55 max mileage list, min mileage list = \
56 find max min mileage(mileage list,max mileage,min mileage)
57

58 print("Maximum Mileage Cars:")
59 for car tuple in max mileage list:
60 print(" ", car tuple[1], car tuple[2])
61 print("Minimum Mileage Cars: ")
62 for car tuple in min mileage list:
63 print(" ", car tuple[1], car tuple[2])

>>>
EPA Car Mileage

Max and Min Mileage: 45 12

Maximum Mileage Cars:
HONDA CIVIC HYBRID
TOYOTA PRIUS

Minimum Mileage Cars:
CHRYSLER ASPEN 2WD
DODGE DURANGO 2WD
CHRYSLER ASPEN 4WD
DODGE DURANGO 4WD
JEEP COMMANDER 4WD
JEEP GRAND CHEROKEE 4WD

Notice how we developed this program incrementally, especially that we tested the code
as we developed it. Also notice how we developed the algorithm in stages.

7 . 1 0 • P Y T H O N D I V E R S I O N : L I S T C O M P R E H E N S I O N 337

One final step: does the output make sense? We see that two small hybrid cars had
the highest mileage and sport-utility vehicles (SUVs) had the lowest mileage. However,
what happened to those high-performance Ferraris? If you look at where we printed out the
Ferrari values earlier, you can count over nine elements and see that their highway mileage
is 15 or greater. Why? At highway speeds, aerodynamic design has a dramatic impact on
mileage. Therefore, our results look reasonable.

7.10 P Y T H O N D I V E R S I O N : L I S T C O M P R E H E N S I O N
Let’s take a diversion into an interesting Python operation: the comprehension. A comprehen-
sion is a compact way to construct a new collection by performing some simple operations
on some or all of the elements of another collection. Its origins lie in mathematical set
notation. There is nothing unique about a comprehension. It is simply a shortcut for ex-
pressing a way to create a new collection from an old collection. Any comprehension could
be implemented using a regular for loop. Shortcuts are nice and have their place. Use them
when you are comfortable with them.

A way to think about a comprehension is to think of it as a transformation. By using a
comprehension, we take a collection and transform its elements into a new collection. In
Python there are a number of different kinds of comprehensions depending on the type of
the result collection being generated. What they have in common are the following:

� They are surrounded by either square brackets or braces, which indicates the type of
the comprehension and thus the type of the resulting collection.

� They have as their first element an expression. This expression is run on every element of
the collection being processing, and the result of that expression is added as an element
to the new collection.

� They have as their second element a for expression that indicates the collection being
processed.

� They have an optional third element that indicates a condition under which an element
from the collection being processed should be run through the expression. If the
condition is False for a particular element, it is not processed and not added to the
result collection. The default is that all elements should be processed.

A list comprehension looks like the following:

[expression for-clause condition]

Let’s take a look at an example.

>>> [i for i in range(20) if i%2 == 0]
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

This is a list comprehension. It is surrounded by square brackets, indicating it will
generate a list. The many uses of square brackets in Python can be a bit confusing, but the

338 C H A P T E R 7 • L I S T S A N D T U P L E S

context of its contents should help to make it clear. Here, we have the three elements of a
comprehension:

� The first element, the expression, in this case is the variable i. We will collect i and
place it in a new list whenever the condition (third element) is true.

� The second element, the for clause, is for i in range(20). This will iterate
through the integers from 0 to 19 and each time set i to that value. This is the
old collection.

� The third element, the condition, is if i%2 == 0. We will only collect i if it is even.

What does this comprehension do? It creates a list of all the even numbers between
0 and 19. Note that the variable of the for loop is used in both the expression and the
condition of the comprehension. This must be true since we need to create each new element
based on each old element and we determine when to collect an element based on some
condition of the old element.

One can write more complicated expressions to transform the numbers. Look at the
next session:

>>> [(i, i**2, i**3) for i in range(20) if i%2 == 0]
[(0, 0, 0), (2, 4, 8), (4, 16, 64), (6, 36, 216), (8, 64, 512), (10, 100, 1000),
(12, 144, 1728), (14, 196, 2744), (16, 256, 4096), (18, 324, 5832)]
>>>

Here we collect a tuple of each even number that contains the number, the square of
the number, and the cube of the number. The result is a list of tuples.

Of course, the technique isn’t limited to numbers. Let’s process a string (a collection)
and create a list of all the vowels in the string.

>>> word = "solidarity"
>>> vowels = "aeiou"
>>> [v for v in word if v in vowels]
['o', 'i', 'a', 'i']

One can work from multiple sequences and can have complicated conditionals. For
example, suppose you wanted to generate pairs of numbers (think of Cartesian coordinate
pairs) with x in the range from 0 up to 3 and y in the range from 0 up to 4. Notice, however,
that this multiple sequence is nested. That is, when x has the value 0, y iterates through all
the values 0–4. Then when x has the value 1, y again iterates through all the values 0–4.
Comprehensions on multiple sequences are nested from left to right. One could limit the
pairs by requiring x to be even and x > y .

>>> [(x,y) for x in range(3) for y in range(4)]
[(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (1, 3), (2, 0), (2, 1),
(2, 2), (2, 3)]
>>> [(x,y) for x in range(3) for y in range(4) if x > y and x%2 == 0]
[(2, 0), (2, 1)]

7 . 1 0 • P Y T H O N D I V E R S I O N : L I S T C O M P R E H E N S I O N 339

List comprehension is also useful for doing conversions. For example, consider a string
of letters and digits. In this example we extract only the digits and convert them to ints.

>>> some string="John Doe, 874 Main St., East Lansing, MI, 48823"
>>> [int(c) for c in some string if c.isdigit()]
[8, 7, 4, 4, 8, 8, 2, 3]

For those who enjoy puzzles, comprehension can be addicting. Once you get a feel for
them, you will frequently use them for creating readable, compact code. Fortunately, they
often execute quickly, so they are efficient to use.

7.10.1 Comprehensions, Expressions, and
the Ternary Operator

One of the restrictions on the expression part of the comprehension is that it must, indeed,
be an expression. It must return a value. One cannot use a statement such as if, while,
or other control statements as the first part of a comprehension. You can write your own
function as the expression, as long as it takes the for-clause variable as an argument and
returns a value.

There is, however, an interesting statement we have not discussed yet called the ternary
operator, which works well in comprehensions. The ternary operator is a kind of abbreviated
if statement that returns one of two values depending on some condition. It is called ternary
(“composed of three parts”) because it has those three parts: the two potential return values
and a condition. A ternary operator has the following general form:

True-expression if condition else False-expression

The meaning is: “Return the result of the True expression if the condition is True, else
return the result of the False expression.”

The ternary operator allows the return of only the True-expression or the False-
expression, hence its description as a limited if statement. The session below shows an
example

>>> age = 20
>>> 'Hi Mommy' if age < 10 else 'Hi Mother'
'Hi Mother'
>>> [i**2 if i%2 else i**3 for i in range(10)]
[0, 1, 8, 9, 64, 25, 216, 49, 512, 81]
>>>

The first part of the example returns either the string “Hi Mommy” or “Hi Mother”
depending on the value of the variable age. The second uses a ternary operator in a list
comprehension. It squares every odd number and cubes every even number. What does the
condition i % 2 represent? It is a test of being odd as it returns 1 (stand-in for True) when
a number is odd, 0 (stand-in for False) when it is even.

When a simple binary choice is desired, a ternary operator can be very useful.

340 C H A P T E R 7 • L I S T S A N D T U P L E S

V I S U A L V I G N E T T E

7.11 MORE PLOTTING
You saw in Section 2.3 that most of the plotting done with matplotlib is done using
lists. You were not familiar with lists then, but you are now. Let’s do some more plotting
now that you know about lists.

As we said, the plot command imported from the pylab module takes as a minimum
a single list, the list of y -values to be plotted. If two lists are provided, the first is assumed
to be a list of x -values, the second the list of y -values. It is required that the length of the
two lists be the same: one x -value for each y -value and vice versa.

7.11.1 NumPy Arrays
We mentioned briefly during the install process that matplotlib relies on another Python
module called numpy, short for “numeric Python.” The numpy module provides, in a
single module, the following capabilities:

� A new data type, the array object
� Support for floating-point data types
� Support functions for floating-point values

The array data type and its associated methods and functions are particularly useful. In fact,
matplotlib works not with lists but numpy arrays. If you provide a list as an argument,
matplotlib converts it to an array.

Arrays and range
An array is similar to a list. It is a sequence data structure with indexing and slicing. It is
also a mutable data structure and responds to index assignment. The big difference is that
a numpy array can contain only the same data type, by default a floating-point number.
It is type-restricted so that floating-point operations can be done more efficiently on the
array. There are a number of ways to make an array. The array constructor can take a list
object and convert it to an array. The elements of the list must consist only of numbers.
The resulting array object will consist of numbers all of the same type. If mixed types exist
(floats and ints), then all numbers will be converted to floats. When printed, an
array has the string “array” printed as part of the object. One can append onto the end of
an existing array using the numpy function append.

Very much like the range function, the numpy arange function generates a range
of values. The difference is that the values are floating-point values instead of integers. The
arange takes three arguments: the begin value (float), the end value (float), and an in-
crement (float). The following session demonstrates the use of numpy arrays and arange.

>>> import numpy
>>> my array = numpy.array([1,2,3,4])
>>> my array
array([1, 2, 3, 4]) # a l l i n t e g e r s

7 . 1 1 • V I S U A L V I G N E T T E : M O R E P L O T T I N G 341

>>> numpy.append(my array,50.0)
array([1., 2., 3., 4., 50.]) # append a f l oa t , now a l l f l o a t s
>>> new array = numpy.arange(0,2,0.1) # new array using arange
>>> new array
array([0., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.,

1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9])

Broadcasting
One of the best features of using arrays is the ability to perform operations between two
arrays using standard arithmetic operators. This means that the operators are overloaded for
arrays. For example, if you were to multiply an array by a floating-point number, then every
element of the array would be multiplied by that number, yielding a new array. The same
will occur if you apply a function to an array. Every element of the array has the function
applied, yielding a new array.

>>> import numpy
>>> my array = numpy.arange(0,6.3,0.1)
>>> my array
array([0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. ,

1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2. , 2.1,
2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3. , 3.1, 3.2,
3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4. , 4.1, 4.2, 4.3,
4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5. , 5.1, 5.2, 5.3, 5.4,
5.5, 5.6, 5.7, 5.8, 5.9, 6. , 6.1, 6.2])

>>> new array = my array * 2
>>> new array
array([0. , 0.2, 0.4, 0.6, 0.8, 1. , 1.2, 1.4, 1.6,

1.8, 2. , 2.2, 2.4, 2.6, 2.8, 3. , 3.2, 3.4,
3.6, 3.8, 4. , 4.2, 4.4, 4.6, 4.8, 5. , 5.2,
5.4, 5.6, 5.8, 6. , 6.2, 6.4, 6.6, 6.8, 7. ,
7.2, 7.4, 7.6, 7.8, 8. , 8.2, 8.4, 8.6, 8.8,
9. , 9.2, 9.4, 9.6, 9.8, 10. , 10.2, 10.4, 10.6,
10.8, 11. , 11.2, 11.4, 11.6, 11.8, 12. , 12.2, 12.4])

>>> new array = numpy.sin(my array)
>>> new array
array([0. , 0.09983342, 0.19866933, 0.29552021, 0.38941834,

0.47942554, 0.56464247, 0.64421769, 0.71735609, 0.78332691,
0.84147098, 0.89120736, 0.93203909, 0.96355819, 0.98544973,
0.99749499, 0.9995736 , 0.99166481, 0.97384763, 0.94630009,
0.90929743, 0.86320937, 0.8084964 , 0.74570521, 0.67546318,
0.59847214, 0.51550137, 0.42737988, 0.33498815, 0.23924933,
0.14112001, 0.04158066, -0.05837414, -0.15774569, -0.2555411 ,
-0.35078323, -0.44252044, -0.52983614, -0.61185789, -0.68776616,
-0.7568025 , -0.81827711, -0.87157577, -0.91616594, -0.95160207,
-0.97753012, -0.993691 , -0.99992326, -0.99616461, -0.98245261,
-0.95892427, -0.92581468, -0.88345466, -0.83226744, -0.77276449,
-0.70554033, -0.63126664, -0.55068554, -0.46460218, -0.37387666,
-0.2794155 , -0.1821625 , -0.0830894])

342 C H A P T E R 7 • L I S T S A N D T U P L E S

7.11.2 Plotting Trigonometric Functions
Knowing about numpy arrays makes it a lot easier to create graphs. Consider Code Listing
7.16 below, which generates sine and cosine curves in the same graph; the plot is shown in
Figure 7.13.

FIGURE 7.13 A graph of sine and cosine from 0 to about 4π .

Code Listing 7.16

import numpy
import pylab

Generate l i s t s o f po in t s f o r both s in e and co s in e
x values = numpy.arange(0, 4*numpy.pi, 0.1)
y1 values = numpy.sin(x values)
y2 values = numpy.cos(x values)

S U M M A R Y 343

Plot two curve s on the same graph
pylab.title('Sine and Cosine Plot')
pylab.plot(x values,y1 values,'b')
pylab.plot(x values,y2 values, 'r')
pylab.show()

Notice that we can place as many plots as we like in the figure before we show it.

Summary
In this chapter, we developed the list data structure in detail and introduced tuples. Our final
example showed the incremental development of a program—an important problem-solving
technique.

Lists and Tuples
� Lists are mutable; tuples are immutable.

� Lists and tuples are sequences.

� Lists allow assignment: L[3] = 7
Tuples do not.

� Standard operations:

- length function: len(L)
- membership: in
- max and min: max(L) and min(L)
- sum: sum(L)

Indexing and Slicing
Given: L = ['a', 7, 6, 5,[2,9,1],3.4]
Tuples work the same with indexing and slicing.

� Indexing starts at 0: L[0] is ‘a’.

� Negative indices work backward from the end: L[-1] is 3.4.

� Slicing selects a subset up to but not including the final index: L[1:4] is [7,6,5].

� Slicing default start is the beginning, so L[:3] is ['a', 7, 6].

� Slicing default end is the end, so L[4:] is [[2, 9, 1], 3.4].

344 C H A P T E R 7 • L I S T S A N D T U P L E S

� Using both defaults makes a copy: L[:].

� Slicing’s optional third argument indicates step: L[:6:2] is ['a', 6, [2, 9, 1]].

� The idiom to reverse a list: L[::-1] is [3.4, [2, 9, 1], 5, 6, 7, 'a'].

List Methods (partial list)
Given: L1 = [1,3,2] and L2 = [7,8]

� L1.append(0) changes L1 to be [1,3,2,0].

� L1.append(L2) changes L1 to be [1,3,2,[7,8]].

� L1.extend(L2) changes L1 to be [1,3,2,7,8].

� L1.sort() changes L1 to be [1,2,3].

� L1.insert(2,11) inserts 11 before index 2, so L1 becomes [1,3,11,2].

� L1.remove(3) removes 3, so L1 becomes [1,2].

� L1.reverse() changes L1 to be [2,3,1].

� L1.pop() pops 2 off, so L1 becomes [1,3] and returns 2.

Methods Shared by Lists and Tuples (partial list)
Given: L1 = [1,3,2] and L2 = [7,8]

� L1.index(3) returns the index of item 3, which is 1.

� L1.count(1) counts the number of 1’s in L1: 1 in this case.

Iteration: for, enumerate
� for walks through each item in a list or tuple:
for i in L1:

� enumerate generates both the index and the item:
for index, value in enumerate(L1):

Rules
� RULE 1: Think before you program!

� RULE 2: A program is a human-readable essay on problem solving that also happens
to execute on a computer.

� RULE 3: The best way to improve your programming and problem skills is to practice!

� RULE 4: A foolish consistency is the hobgoblin of little minds.

E X E R C I S E S 345

� RULE 5: Test your code, often and thoroughly!

� RULE 6: If it was hard to write, it is probably hard to read. Add a comment.

� RULE 7: All input is evil, until proven otherwise.

� RULE 8: A function should do one thing.

Exercises
1. Compare and contrast strings, lists, and tuples. For example, consider what they can

hold and what operations can be done on the data structures.

2. Create a list containing 100 zeros. Can you find at least three different ways to do it?

3. Create a list of 100 integers whose value and index are the same, e.g., L[5]=5.

4. A list shares characteristics with string, but there are some things that can be done with
a list that cannot be done with a string. Describe them.

5. What does the strip method do? What are its limitations?

6. Consider the following code:

list1=[1,2,99]
list2=list1
list3=list2
list1=list1.remove(1)
print(list3)

(a) What is printed?
(b) How can you change the code so list3 is unchanged?

7. Consider:

ListA = [1,2,3,4,5]
ListB = ListA
ListA[2] = 10

What is the value of ListB[2]?

8. Consider:

ListA = [1,2,3,4,5]
ListB = []
for num in ListA:

ListB.append(num)
ListA[2] = 10

(a) What is the value of ListB[2]?
(b) What is the value of ListB?

346 C H A P T E R 7 • L I S T S A N D T U P L E S

9. Given a = [1,2,3] and b = [1,2,3], what is the result of:

(a) a == b
(b) a is b

10. Consider the following code:

my list = []
for i in range(0,6,2):

for k in range(4):
my list.append(i+k)

print(i) # Line 1
print(k) # Line 2
print(my list) # Line 3

(a) What is printed by Line 1?
(b) What is printed by Line 2?
(c) What is printed by Line 3?

11. Given x = [1,2,3], write the Python code to:

(a) Create a list y such that changing x also changes y.
(b) Create a list y such that changing x does not change y.

12. Given the following program, what will be printed?

numList = [1,2,3]
x = 'Hello There!'

for i in x:
print(numList)
x.append(numList)

13. Transform the string 'abcde' into the list [1,'b','hello',15,'e',2]. (Note
that there are many possible different answers.)

14. Given a list L = [1,2,3,4], we want to convert the list to the string '1234'. We
tried ''.join([i for i in L]), but it doesn’t work. Fix it.

15. Come up with three different ways to create a list of 25 ones without simply typing the
25 ones.

16. Tuples and lists (try this in the Python shell).

(a) Is is possible to have a tuple in a list? Why or why not?
(b) Is it possible to have a list in a tuple? Why or why not?

17. What differentiates a tuple from a list? Be specific.

18. Create examples to illustrate three different methods to combine two lists. The resulting
lists need not be the same.

E X E R C I S E S 347

19. If a tuple is immutable, why are we able to modify x=[1,(2,3),4] into
x=[1,(5,6),4]? Are we changing the tuple or changing the list?

20. What is the result of this expression: sorted(['7','q','e','3','m',
'n'])? Explain.

21. What does the command len do to the following inputs? Try counting it by hand,
and then input it into your Python shell. It is important to understand how the len
function deals with different inputs.

(a) List1 = ["this", "is", "just", "an", "example",1,2,3,4]

(b) X = "I know that sometimes things look difficult, but don't

worry you'll get it"

(c) Y = "I", "know", "that", "sometimes", "things", "look",

"difficult", "but", "don't", "worry", "you'll",

"get", "it"

(d) Z = "I know you can do it!"

22. Given a list of integers, write Python code to create a new list with same number of
elements as the original list such that each integer in the new list is the sum of its
neighbors and itself in the original list. For example, if listA = [10,20,30,40,50],
listB = [30,60,90,120,90].

23. Given the list L = [1,3,5,7,9] use slicing to create a new list without the value 3.
That is, L2 = [1,5,7,9].

24. Make a list of the words in a sentence. No punctuation should be attached to a “word”
in your list, e.g., “end.” is not a correct word, but “end” is.

(a) Use a while loop.
(b) Use a for loop.

25. Make a list of the unique letters used in a sentence. That is, if the letter x is used
twice in a sentence, it should only appear once in your list. No punctuation should
appear in your list. For the purpose of simplicity, consider the following characters as
punctuation: . , ; ? ! -

(a) Use a while loop.
(b) Use a for loop.

26. Create a list of 20 even numbers without using if.

(a) Use a loop.
(b) Use list comprehension.

27. Given the code:
myList = ['1','2','3','4','5']
for z in range(0,len(myList)):

text = ' '.join(myList[z])
text.center(10)

348 C H A P T E R 7 • L I S T S A N D T U P L E S

(a) If this code is run in the shell, what is the output?
(b) If this code is a program that is then run in the shell, what is the output?
(c) Why is the output different?
(d) Fix the program to run the same in both environments.

28. Given a list of items, write a program that generates a list of lists of the following form:
[a,b,c,...,z] ⇒ [[z], [y,z], [x,y,z], ... , [a,b, ... ,y,z]]

Hint: Slicing is your friend.

29. Indexable and iterable:

(a) Give two examples of types that are indexable.
(b) Give two examples of types that are iterable.
(c) Does membership in one category imply membership in the other? Explain.

30. Consider two lists, A and B, such that A returns [1,2,3] and B returns [1,2,3].

(a) Create A and B so A is B returns True.
(b) Create A and B so A is B returns False.

31. How will these lists be sorted by the sorted(L) function? Hint: Consider their ASCII
values.

(a) L = ['1','2','3','h','E','l','L','o','W','o','R','l','d']

(b) L = ['A','a','B','b','1','2','3']

32. sort vs. sorted:

(a) What is the difference between sort and sorted?
(b) Which built-in data types of Python can use each?

33. Write a function that takes a tuple as an argument and returns the tuple sorted.

34. Given a list[4,8,9,6,5,4,8,7,8] and using thelen andsum functions, determine
the average value of the integers in the list.

35. Write a function using a for loop that takes a string S as an argument and returns S in
reversed order. For example, if S=“stressed”, it should return “desserts”.

36. Write a function using a for loop that takes a sentence S as an argument and returns
the words in S in reversed order. For example, if S=“What is your quest”, it should
return “quest your is What”.

37. Given a list L of words such as the following and assignment to List1:

L = ['Always', 'look', 'on', 'the', 'bright', 'side', 'of', 'life.']

List1=[[i.upper(), i.lower(), len(i)] for i in L]

(a) What is the value of List1?
(b) Write a list comprehension that uses List1 to create a list of words of length 4.

E X E R C I S E S 349

38. Using list comprehension create an expression that sums up all the factors of a number
that you input. (Hint: If you input 6, it should print 12 (i.e., 1 + 2 + 3 + 6 = 12).)

39. Given a list of integers L, use list comprehension to:

(a) find the sum of the even integers in list L
(b) find the sum of the odd integers in list L.

40. What will the following list return?
[(n*n) for n in range(13) if (n*n)%2==0]

41. Given x='January 1, 2000':

(a) Using list comprehension, create a list of all the letters used in x.
(b) In one line, add to your list comprehension so the resulting list is sorted.

42. Tuples resemble lists in many ways. However, as an immutable type, the ways in which
they can be interacted with are limited. Take the following statements. What will
happen if you try to add to the tuple in the manner shown? How can you rewrite the
code to achieve the intended result?

Tuple = ()
for i in range (10):

Tuple += i

43. Write a function that takes a string as an argument, converts the string to a list of
characters, sorts the list, converts the list back to a string, and returns the resulting string.

44. Write a function that takes a string as an argument and returns a list of the words in
the string.

45. Print the interesting words in the Gettysburg Address in order from most used to least
used.

46. Modify the EPA mileage example to list the cars with the maximum and minimum
city mileage.

47. Write your own versions of the Python built-in functions min and max. They should
take a list as an argument and return the minimum or maximum element. Hint: Pick
the first element as the minimum (maximum) and then loop through the elements to
find a smaller (larger) element. Each time you find a smaller (larger) element, update
your minimum (maximum).

48. Create a program that uses the Gettysburg Address as input and outputs a list
of tuples for every two words. For example: [('Four', 'score'),('and',
'seven'), ...].

350 C H A P T E R 7 • L I S T S A N D T U P L E S

49. Fractions:
You can express a fraction as a tuple: (numerator, denominator).

(a) Write a function that adds two fractions that are passed as tuples.
(b) Write a function that multiplies two fractions that are passed as tuples.

50. It is oftentimes advantageous to be able to transfer data between multiple lists while
rearranging their order. For instance, say that list1 = [1,2,3,4,5,6,7,8,9]
and you wish to add the numbers in the index range 4:7 of list1 to another
list, list2, in reverse order while simultaneously removing them from list1. If
list2 = [100,200], the result will be list2 = [100,200,7,6,5]. Write a
function named transform that takes as arguments list1, list2, r1, and r2,
that removes items from list1 in the slice r1:r2, appends them onto list2 in
reverse order, and returns the resulting list. For example, in this case, the function call
will be transform(list1, list2, 4,7).

51. Given a list of numbers, create a new list of numbers such that the first and last
numbers are added and stored as the first number, the second and second-to-last
numbers are stored as the second number, and so on. Note that you need to check
for even and odd length of lists. In case of an odd number of integers, leave the central
integer in the original list as it is.

52. Given a list of N numbers, write a function to shift the numbers circularly by some
integer k (where k < N). The function should take a list and k as a arguments and
return the shifted list.

(a) Write a function that assumes shifting is to the left.
(b) Write a function that takes a third argument that specifies shifting left or right.

53. The letters a, b, d, e, g, o, p, and q all have something in common: a hole. If you
imagine that the letters were made of stretchy material such as rubber, you could
transform one letter into another while preserving the hole. If tearing or gluing are
not allowed, no other letter (without a hole) could be transformed by stretching into
one of these letters with holes. Mathemeticans say that these letters are topologically
similar: one set has a hole, the rest do not.

(a) Write a function that takes as an argument a lowercase string and finds the counts
of letters in the string with holes and the count of letters without holes.

(b) Write a function that searches a word list and prints all the words that have two
or more letters with holes.

(c) The set of uppercase letters with holes is different than the set of lowercase letters,
e.g., lowercase E belongs to the set of letters with a hole, but its capital E does not.
Refactor your functions to consider uppercase letters.

54. Sally invited 17 guests to a dance party. She assigned each guest a number from 2
to 18, keeping 1 for herself. The sum of each couple’s numbers was a perfect square.
Write a program to find the number of Sally’s partner.

E X E R C I S E S 351

55. Using the Python int operators +, -, *, /, ** (not %), and the numbers, 2, 3, 4, and
5, find an expression using all four numbers exactly once and any three of the operators
exactly once that evaluates to 26. Hint: Build strings and then use the Python eval
function, which takes a string as an argument, evaluates the string, and returns its
value, e.g., eval('2*3+4') returns the integer 10.

56. 123456789 = 100. Of course, it doesn’t, but:

(a) Using only the addition operator +, can you insert some addition operators
between those successive digits so that it does sum to 99?

(b) Similarly, but more complicated: using the four standard integer arithmetic
operators +, -, *, and / (not %), how many different solutions can you find (there
are more than 100)?

57. Jim Loy (http://www.jimloy.com) poses this puzzle: I have before me three numeric
palindromes (numbers that read the same backward and forward, like 838). The
first is two digits long, the second is three digits long, and when we add those two
numbers together, we get the third number, which is four digits long. What are the
three numbers? (Hint 1: Numeric palidromes can be easily created by making strings
of digits first. Hint 2: There is a reason that this exercise is in the lists chapter.)

58. Program: Work with Census Data
Use this file: http://www.census.gov/population/www/censusdata/files/urpop0090.txt
The census file is a text file with data for the 10-year census from 1900 to 1990 (e.g.,
1900, 1910, 1920, . . .). It has population data for each state as well as regional and
overall data. Each state is on its own line, but the data are grouped so that only three
decades of data are on each line—complicating the task of extracting the data. In
addition, the data are further broken down into total, urban, rural, and percentages.

Write a program that for any census year input (e.g., 1970) the program will print
the state and its total population with the minimum and maximum. For example:

Enter census year 1900 to 1990: 1970
Minimum: (302853, 'Alaska')
Maximum: (19971069, 'California')

We had the output display a tuple as a hint to assist with solving the problem rather
than illustrating readable output. Some points to consider:

(a) Begin by generating clean data: there are footnotes that need to be eliminated,
numbers contain commas, some rows (lines) have data you are not interested in
(e.g., region data), you are not interested in all columns (e.g., percentages), and so
on. Simply printing the lines with extraneous data removed is a good start.

(b) You will likely want to combine multiple state name strings into one, e.g., “New”
“York” becomes “New York.”

http://www.jimloy.com
http://www.census.gov/population/www/censusdata/files/urpop0090.txt

352 C H A P T E R 7 • L I S T S A N D T U P L E S

(c) A tuple (population, state) provides a way to tag population data with a state in a
way that allows a list of tuples to be sorted (remember that by default, sorting uses
the first value).

Programming Projects
1. Word Puzzles

Will Shortz is a noted puzzlemaster for the New York Times and National Public Radio
who frequently posts challenging word puzzles. Many word puzzles can be solved by
iterating through a list of words while checking for characteristics specified by the
puzzle. Many word lists exist on the web, and we provide one on the text’s website—
any sufficiently large one will suffice. We have not covered file reading in detail yet,
so here we provide a function that reads a file named wordList.txt and returns a list of
words in lowercase. The file has one word per line. For each puzzle, copy this program
and write your solution as the puzzle function. Note that the puzzle function has
one parameter—the wordList.

Code Listing 7.17

Word puzzle dr iver
Assumes word li s t . t x t f i l e o f one word per l in e

def get word list():
""" Return a l i s t o f words from a word li s t . t x t f i l e . """
data file = open("word list.txt","r")
word list = [] # s t a r t with an empty word l i s t
for word in data file: # fo r every word (l in e) in the f i l e

s t r i p o f f end−of−l i n e cha ra c t e r s and make each word lowerca s e
then append the word to the word li s t
word list.append(word.strip().lower())

return word list

def puzzle(word list):
""" Puzzle s o lu t i on goe s here . """
pass # f i l l e r that does nothing excep t put something in the s u i t e

word list = get word list()
puzzle(word list)

(a) The comparative form of the adjective big is bigger, and the superlative form is
biggest. All three forms (big, bigger, and biggest) are related. However, there exists a
root word that is not an adjective that when “er” is appended and “est” is appended,

P R O G R A M M I N G P R O J E C T S 353

the result is a set of three words whose meanings are unrelated. Write a puzzle
function that prints out all such triples (root, root + “er”, root + “est”). Scan
through your list to find a set of triples that are unrelated to each other.

(b) Find an uncapitalized, unhyphenated word that contains all but one of the letters
of the alphabet from l to v (“lmnopqrstuv”).

(c) What word consists of two consecutive pronouns? This list of pronouns will be
helpful.

pronouns = ['thou', 'thee', 'thine', 'thy', 'i', 'me',

'mine', 'my', 'we', 'us', 'ours', 'our', 'you', 'yours',

'your','he','him','his', 'she', 'her', 'hers', 'it',

'its', 'they', 'them', 'theirs', 'their']

(d) What six-letter word has its meaning reversed when its first letter is changed from
c to h ? Print out the candidates and then select by hand.

(e) Find an uncapitalized, seven-letter word, containing just a single vowel that does
not have the letter s anywhere within it.

(f) The word mimeographs contains all the letters of memphis at least once. Find other
words that also contain all the letters of memphis.

(g) Find a word that contains the string “tantan.”
(h) The word marine consists of five consecutive, overlapping state postal abbrevia-

tions: Massachusetts (MA), Arkansas (AR), Rhode Island (RI), Indiana (IN), and
Nebraska (NE). Find a seven-letter word that has the same property.

(i) When you are writing in script, there are four letters of the alphabet that cannot be
completed in one stroke: i and j (which require dots) and t and x (which require
crosses). Find a word that uses each of these letters exactly once.

(j) There are four words that contain the consecutive letters “nacl.” Find them.
(k) Find a word that contains the vowels a, e, i, o, and u in that order.
(l) Consider the word sure. If we asked you to add two pairs of doubled letters to it

to make an eight-letter word, you would add p’s and s’s to make suppress. Find an
eight-letter word resulting from adding two pairs of doubled letters to rate.

(m) Find three words that are spelled the same except for their first two letters, which
can be sw, tw, or wh.

(n) Two U.S. state capitals have a prefix that is the name of a month. Find them.

2. Pascal’s Triangle
Pascal’s triangle is a geometric arrangement of sums that have interesting mathematical
properties—most famously, the binomial coefficients.

The rows of Pascal’s triangle are conventionally enumerated starting with row 0, and
the numbers in each row are usually staggered relative to the numbers in the adjacent
rows. A simple construction of the triangle proceeds in the following manner. On
row 0, write only the number 1. Then, to construct the elements of following rows,
add the number directly above and to the left with the number directly above and to
the right to find the new value. If either the number to the right or left is not present,

354 C H A P T E R 7 • L I S T S A N D T U P L E S

substitute a 0 in its place. For example, the first number in the first row is 0 + 1 = 1,
whereas the numbers 1 and 3 in the third row are added to produce the number 4 in
the fourth row. Here are the first six rows of Pascal’s triangle:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

Write a program that prompts for the height of Pascal’s triangle and then generates the
triangle in the same style as above example.
Hint: Use a list for each row, and use a list of row lists to hold the whole triangle.

3. Scrambled English
Read the following paragraph as quickly as you can and see if you encounter any
difficulties.

Aoccdrnig to rscheearch at an Elingsh uinervtisy, it deosn’t mttaer in waht oredr
the ltteers in a wrod are, the olny iprmoetnt tihng is taht the frist and lsat ltteer
is at the rghit pclae. The rset can be a toatl mses and you can sitll raed it
wouthit a porbelm. Tihs is bcuseae we do not raed ervey lteter by itslef but the
wrod as a wlohe.

This paragraph was published as an example of a principle of human reading
comprehension. If you keep the first letter and the last letter of a word in their correct
positions and scramble the letters in between, the word is still quite readable in the
context of a surrounding paragraph. However, it seems that this is a bit of a myth and
not truly based on solid research. It turns out that for longer words, the task is much
more difficult. Nonetheless, we are going to imitate the process on some English text.

Handling punctuation is tricky. You need to deal with punctuation that comes at
the end of a word: comma, period, question mark, exclamation, etc. For example, in
the previous sample, the word university ends with a comma, so you need to ensure
that you do not treat the comma as the “last letter of the word” when you scramble all
but the first and last letters.

Hints:
� Don’t bother trying to scramble words fewer than four characters long.
� The string split method is useful to create a list of words from a string of words.
� The string strip method is useful to remove end-of-line characters and other

whitespace.

P R O G R A M M I N G P R O J E C T S 355

� To scramble a string, convert it to a list, use random.shuffle from the random
module to scramble the string, and then use the join string method to convert back
to a string: ".join(list)

(a) A simple way to get some text to work with is to simply put it in a long string.
(Note the backslash continuation character: \)

text = "Four score and seven years ago \

our fathers brought forth \

on this continent a new nation,"

(b) Alternatively, you could use a modification of the word-list driver from the word
puzzle programming project above to read a file. To read a file named someFile.txt
into one long string:

def getWordString():
dataFile = open("someFile.txt","r")
wordString = '' # start with an empty string of words
for line in dataFile:

wordString += line # add each line of words to the word string
return wordString

(c) Optionally, add the capability to handle punctuation in the middle of words, e.g.,
a hyphen in a word. Scramble on either side of the hyphen.

4. Code Breaking
In this exercise we will break the code of an encrypted message using the technique
of frequency analysis. If a substitution cipher such as the well-known Caesar cipher is
used, it can be broken using that technique. First, you need to make a program that
can encrypt and decrypt Caesar ciphers. Then we’ll see how to break them.

(a) The Caesar cipher is named after Julius Caesar, who used this type of encryption to
keep his military communications secret. A Caesar cipher replaces each plain-text
letter with one that is a fixed number of places down the alphabet. The plain text is
your original message; the cipher text is the encrypted message. The following exam-
ple employs a shift of three so that B in the plain text becomes E in the cipher text, a
C becomes F, and so on. The mapping wraps around so that X maps to A and so on.
Here is the complete mapping for a shift of three:

Plain: ABCDEFGHIJKLMNOPQRSTUVWXYZ

Cipher: DEFGHIJKLMNOPQRSTUVWXYZABC

To encrypt a message, substitute the plain-text letters with the corresponding
cipher-text letters. For example, here is an encryption of “the quick brown fox
jumps over the lazy dog” using our shift-three cipher (case is ignored):

Plain text: the quick brown fox jumps over the lazy dog

Cipher text: WKH TXLFN EURZQ IRA MXPSV RYHU WKH ODCB GRJ

356 C H A P T E R 7 • L I S T S A N D T U P L E S

To decrypt the message, reverse the process.
Write a program that prompts for a shift value (such as the three in our

example) and then prompts for plain text to encode. Output the encrypted cipher
text, and then decrypt the cipher text and output that. If your program is correct,
the decrypted ciper text should match the original plain text.

Hints:
i. Create the cipher by starting with an alphabet string. Use slicing and

concatenating to accomplish the shift.
ii. If you plan to allow spaces in your plain text, you need to add a space character

into your “plain” alphabet string.
iii. If you have two strings like the Plain and Cipher shown earlier, notice that

the letter to substitute is at the same index in both strings. You can use that fact
for both encryption and decryption.

iv. Use pencil and paper to encrypt and decrypt before designing your algorithm.
v. Optional: One way to find indices is with modular arithmetic:

cipherTextIndex = (plainTextIndex + 3) % 26

(b) Now the fun part—code breaking. If we know that we are breaking a Caesar
cipher, our goal is to find the shift. From the program in the previous exercise,
we can see that if we know the shift, we can decrypt the message. One fact is
important: to make code breaking more difficult, neither spaces nor capitalization
is used. Frequency analysis is based on the concept that some letters are used more
often than others. For example, in English the most common letter is e, which
occurs nearly 13% of the time. Knowing that we are dealing with a simple Caesar
cipher, we need to find only the most common letter, guess that it encodes to e,
and figure out the appropriate shift. However, we need a large message to have
confidence that we have actually found the most frequent letter. Note that, in
general, if spaces are allowed, that will always be the most frequent character, by
a lot—allowing spaces makes code breaking too easy.

Write a program that takes in a cipher text, determines the shift, decodes it,
and outputs the decoded message.

Hints:
i. Make a list of counters, one for each letter.

ii. There is a maximum function for lists: max(someList).
iii. An easy way to input a large cipher text is to use the getWordString function

from the previous exercise.
iv. You can create a cipher text by using the encrpytion program you created.
v. Remember, no spaces.

•8C H A P T E R

More on Functions

We are thinking beings, and we cannot exclude the intellect from participating
in any of our functions.

William James, psychologist/philosopher

WE INTRODUCED FUNCTIONS IN CHAPTER 6 AND SHOWED YOU HOW THEY ARE

important for the divide-and-conquer problem solving introduced in Chapter 3. In this
chapter, we introduce more capabilities of functions and some subtleties involved in their
use. For example, now that you know the difference between mutable and immutable
objects, we can observe how these two types of objects behave differently when passed as
arguments to functions. To understand this process, we first investigate the concept of scope.

8.1 S C O P E : A F I R S T C U T
The details of how arguments’ values are passed to function parameters can be confusing,
so we will examine the process in more detail here. An important concept in programming
languages is scope. We will examine the concept of scope in more detail in Section 9.6, but
for now, know that scope means:

The set of program statements over which a variable exists, i.e. can be referred to.

We bring up scope here because a function is the first place where we can easily see the
effect of different scopes. As we noted earlier, when a function is executed, it creates its
own namespace. Any variable that comes into existence (e.g., when a variable gets assigned
a value) within the suite of that function gets entered in the function’s namespace. We say
that a function’s variables are local to the scope of the function. Local scope means that
the variable can only be referenced, its associated object accessed, within the suite of the
function, because that is the active namespace. Variables defined locally within a function

357

358 C H A P T E R 8 • M O R E O N F U N C T I O N S

(within the scope of the function) are not accessible outside of the function, because when
a call to a function ends, its namespace is hidden.

Every program and function has a namespace that defines a scope within which variables
are defined and are available for use. Only variables within the current, active namespaces
(note the plural), can be referred to during execution. Consider Code Listing 8.1.

Code Listing 8.1

a funct ion with a l o c a l var iab l e
def scope function (a int):

new int = a int # l o c a l var iab l e c r ea t ed
print('new int value (in function) is: ',new int)

main program
scope function(27)
print('new int value is:',new int) # ERROR! (s cope)

>>>
new int value (in function) is: 27
Traceback (most recent call last):
File "program8.1.py", line 8, in <module>
print('new int value is:',new int) # ERROR! (s cope)

NameError: name 'new int' is not defined
>>>

This program generates an error, because new int is defined in the local scope of
scope function so it cannot be referenced outside of the suite of the function.

The scope determined by scope function is the function’s suite (indented under
the def statement). Besides the suite, the namespace also includes the function’s parameters
as part of the function’s local scope. The function’s namespace becomes active when function
execution begins and ends when function execution ends. The function’s namespace doesn’t
exist outside of the function’s execution of the suite, so the request in the main program for
the object associated with new int cannot be found. Literally, the variable does not exist,
as the namespace that defines it is not presently active.

P R O G R A M M I N G T I P

A function name is just another name in the namespace. As we have mentioned, the
def statement creates an entry in the namespace, associating the function name with the
executable code of the function. You can reassign a function name to be associated with
a different value. For example, the predefined len is initially associated with a function
object. However, we are free to reassign it and associate it with anything we like, for example,

8 . 1 • S C O P E : A F I R S T C U T 359

len = 12. At this point, len can no longer be called as a function because the name len
is now associated with the integer 12.

Don’t worry. If you restart Python, everything will go back to normal. However, be
careful with your variable names! Don’t step on existing names or odd things can happen.

8.1.1 Arguments, Parameters, and Namespaces
Let’s take a closer look at passing information from arguments to parameters and the role
of namespaces.

Before we begin, remember that a namespace contains a set of pairs: a name and a
Python object associated with that name. The association is called a reference, and we can
say that the name references the object. Also, from the scope discussion earlier, remember
that the main program and function each have their own separate namespaces.

Here’s the big question: when we call a function, what gets copied between the argument
and its corresponding parameter? The answer is that the association, the reference, is what
gets copied and not a new copy of the object itself. That is worth saying again. The
association (reference) is copied, not the object itself. This means that, after passing the
argument to the parameter, both the parameter and argument will now be associated with
the same object, as shown in Figure 8.1. The argument name in the calling namespace is
arg, the parameter name in the function namespace is param, and they both are associated
with the same object, 25. Figure 8.1 shows the situation as the function begins execution.

Following is the example from Figure 8.1 in the Python shell. We begin by defining
the function. Within the function, we print param and its id. Remember, the id function
prints a unique identification number for each object. No two objects have the same ID.
When we executed the def statement, the function is created and made available for

arg param

25

main
namespace

my_function
namespace

Python
objects

arg = 25
my_function(arg)
print(arg) def my_function(param):

 print(param)

FIGURE 8.1 Function namespace: at function start.

360 C H A P T E R 8 • M O R E O N F U N C T I O N S

invocation. We create the variable arg by assigning it the value 25. We also print the ID of
the integer 25. We then use arg as an argument in a function call. Within the function we
print the value and id of the parameter param. In this case, both arg and param have an
association with the same object.

>>> def my function(param): # print value and id
... print('parameter value is:{}, its id is:{}'.format(param,id(param)))
...
>>> arg = 25
>>> id(arg) # id o f int ob j e c t 25
4296849472
>>> my function(arg)
parameter value is:25, its id is:4296849472 # arg and param o b j e c t s the same
>>>

What if my function now changes the value associated with param? Let’s add a line
to my function: param = 32. The change is diagrammed in Figure 8.2.

arg param25

32

main
namespace

my_function
namespace

Python
objects

arg = 25
my_function(arg)
print(arg)

def my_function(param):
 param = 32
 print(param)

FIGURE 8.2 Function namespace modified.

With the addition of param = 32, the param reference is updated in the
my function namespace to reference 32, a different object. Notice that arg is unaf-
fected in the main program, so now arg and param reference different values. The results
of the id calls reflect that. While param initially references the same object as arg as shown
in Figure 8.1, the assignment changes the reference to a different object, namely, the integer 32,
as shown in Figure 8.2. This change is illustrated in the following session.

>>> def my function(param):
... param = 32
... print('parameter value is:{}, its id is:{}'.format(param,id(param)))
...
>>> arg = 25

8 . 1 • S C O P E : A F I R S T C U T 361

>>> id(arg)
4296849472
>>> my function(arg)
parameter value is:32, its id is:4296849696
>>> arg
25
>>> id(arg)
4296849472 # arg ob j e c t i s unchanged
>>>

8.1.2 Passing Mutable Objects
We discussed the concept of a shallow copy of mutable objects in Section 7.6.1. A similar
problem arises when passing mutable arguments.

In the previous example, the argument and parameter of the function make reference
to an immutable object. If the object being referenced is immutable, such as a number,
string, or tuple, it is not possible to change anything about that object. Whenever we assign
a new object to a parameter, we break the association of both argument and parameter to
the same object.

What about mutable objects? We can change the value(s) of a mutable object. How
does that affect parameter passing?

In Figure 8.3 we pass a list—a mutable object. As with the previous example, an
argument reference (to arg list in this example) is passed to the parameter name
(param list), so both become associated with that object. The figure shows the state of
the namespaces before the statement param list[0] = 100 is executed. Note the sim-
ilarity to Figure 8.1.

The assignment statement param list[0] = 100 in the function does not assign
a new object to param list; it changes the object itself. Remember, index assignment is

arg_list param_list

main
namespace

my_function
namespace

Python
objects

def my_function(param_list):
 param_list [0] = 100
 print(param_list)

[1, 2, 3]

arg_list = [1, 2, 3]
my_function(arg_list)
print(arg_list)

FIGURE 8.3 Function namespace with mutable objects: at function start.

362 C H A P T E R 8 • M O R E O N F U N C T I O N S

a modification to an existing object. The variable param list remains associated with
the same list object, but that object’s contents are changed to [100,2,3], as shown in
Figure 8.4. Because arg list references the same object, arg list also reflects the
modification. Such a change to the object would not be possible with an immutable object
since we cannot change an immutable object.

arg_list param_list

main
namespace

my_function
namespace

Python
objects

def my_function(param_list):
 param_list [0] = 100
 print(param_list)

[100, 2, 3]

arg_list = [1, 2, 3]
my_function(arg_list)
print(arg_list)

FIGURE 8.4 Function namespace with mutable objects after param list[0]=100.

Here is the example from Figures 8.3 and 8.4 shown in the Python shell. An addi-
tional print statement is added to the function so we can see the object associated with
param list before and after it is modified. Note how arg list, associated with the
same object, reflects the change to that object.

>>> def my function(param list):
print ob j e c t as pas s ed in
print("param list before modification:", param list)

modify param list
param list[0] = 100

print modified ob j e c t
print("param list after modification:", param list)

>>> arg list = [1,2,3]
>>> my function(arg list)
param list before modification: [1, 2, 3]
param list after modification: [100, 2, 3]
>>> arg list # a r g l i s t i s changed too !
[100, 2, 3]

P R O G R A M M I N G T I P

Passing mutable objects allows a function to change values in the calling program.

8 . 1 • S C O P E : A F I R S T C U T 363

Handling mutable vs. immutable parameters is complicated by the fact that Python
doesn’t specify parameter types. Remember that we cannot tell the type of a variable unless
we examine what object is associated with that variable. Python allows flexibility on this
point, but the flexibility affects readability. Having the type as part of the name improves
that readability.

8.1.3 Returning a Complex Object
As we mentioned previously, a function returns one object. However, now that we know
about collections (e.g., lists), we can now return a single object, such as a collection, that has
multiple parts. The following is an example of returning a list. The session defines a function
evens. The function takes a single integer argument n, indicating the quantity of even
numbers to generate, constructs a list of the first n even numbers, and then returns those
numbers as a list. In the first part of the session, we invoke evens and the returned value is
printed by Python. In the second part of the session, we invoked evens and assigned the
returned value to a variable num list. A single object is returned by evens, but that single
list object contains multiple objects. Note that this function does not check the validity of
its input. Checking is left as an exercise at the end of the chapter.

>>> def evens(n):
evens list = [] # i n i t i a l i z e l i s t to empty

to g e t "n" numbers s t a r t i n g at 1 , range must go to "n+1"
for i in range(1,n+1):

evens list.append(2*i) # 2∗ i i s always even ; add i t to the l i s t
return evens list # return the l i s t o f evens

>>> evens(5) # execut ing the funct ion (return i s printed)
[2, 4, 6, 8, 10]
>>> num list = evens(3) # execut ing the funct ion with assignment to num list
>>> num list # l e t ' s s e e the value o f num list
[2, 4, 6]

If you return a series of results separated by commas, Python will build a single tuple
containing those values (in order) and return the tuple. Consider the function mirror in
the following session. The function takes a single collection argument with at least two
elements and returns the first two elements as a tuple in reverse order. In the first invocation
of mirror, we pass a tuple of two integers and a tuple of those two integers is returned and
printed by Python. In the second invocation, we do multiple assignment on the returned
value and the elements of the returned tuple are assigned in order to the variables first
and second. If single assignment is used, then the assigned object is a tuple, as shown,
associated with the variable a tuple.

>>> def mirror(pair):
' ' ' r e v e r s e s f i r s t two elements ;

assumes " pair " i s as a c o l l e c t i o n with at l e a s t two elements ' ' '
return pair[1], pair[0]

364 C H A P T E R 8 • M O R E O N F U N C T I O N S

>>> mirror((2,3))
(3, 2) # the return was comma separated : i m p l i c i t l y handled as a tup l e
>>> first,second = mirror((2,3)) # comma separated works on the l e f t−hand−s i d e a l s o
>>> first
3
>>> second
2
>>> first,second # r e c on s t ru c t the tup l e
(3, 2)
>>> a tuple = mirror((2,3)) # i f we return and a s s i gn to one name, we g e t a tup l e !
>>> a tuple
(3, 2)

An astute reader will notice that the mirror function is not very robust. That is, one
can pass it a variety of values that will cause an error. Enter the function into a Python shell
and try to break it (cause errors) in multiple ways. We leave as an exercise modifying this
function to avoid such errors.

Check Yourself: Passing Mutables Check

1. Give the output indicated for the following program. It will be helpful to draw dia-
grams to indicate the relationships among arguments, parameters, and their objects.
Think about which arguments are mutable and which are immutable.

def func1 (list1, list2, str1):
if len(list1) > 3:

list1 = list1[:3]
list2[0] = 'goodbye'
str1 = ''.join(list2)

arg1_list = ['a','b','c','d']
arg2_list = ['hello','mother','and','father']
arg_str = 'sister'

func1(arg1_list, arg2_list, arg_str)

print(arg1_list) # Line 1
print(arg2_list) # Line 2
print(arg_str) # Line 3

(a) What output is produced by Line 1 when the program is executed?
(b) What output is produced by Line 2 when the program is executed?
(c) What output is produced by Line 3 when the program is executed?

8 . 2 • D E F A U L T V A L U E S A N D P A R A M E T E R S 365

8.1.4 Refactoring evens
The evens function offers an opportunity to illustrate refactoring. In Section 7.10 we
introduced list comprehension as a way to build lists. Because evens builds a list, let’s
refactor the function using a list comprehension. In fact, the whole suite of the function can
be replaced with one line:

return [2*i for i in range(1, n+1)]

Note how the for header is the same and that the expression from the append appears just
after the left bracket. The exercises ask for yet another refactoring of the function by using
the step argument of range.

When refactoring you should ask yourself two questions: (1) is the code more readable
and (2) is the code “better”—usually more efficient? It turns out that a list comprehension
is very efficient, so this version is certainly more efficient. Whether list comprehension is
more readable is in the eyes of the reader.

8.2 D E F A U L T V A L U E S A N D P A R A M E T E R S
Two additional characteristics of parameter passing we will now examine are the ability to
have default values and the ability to pass parameters by name.

A default parameter value is pretty much just that: a value assigned to a function
parameter by default in the event that the user did not provide a value. We have seen
defaults before—for example, in slicing; there is a default for each of the three values in a
slice if the user does not provide one. However, when the user does provide a value, that
provided value always overrides the default value.

A default parameter is created in the parameter list of a function definition. A de-
fault parameter looks like an assignment statement in the parameter list, something like
param name = value. The value on the right-handside of the assignment is the default
value for parameter param name. The user of the function is free not to provide a value for
that parameter, and the default will be used. If a parameter is listed without the assignment,
it is a required parameter. The user must provide an argument for the parameter or Python
will signal an error.

Arguments are mapped to parameters as before in a left-to-right positional matching.
That is, the leftmost argument maps to the leftmost parameter, then the next leftmost
argument is mapped to the next leftmost parameter, and so on. If there are more parameters
then arguments, any unmatched parameters get their default values. Therefore, default
values can only be used on the rightmost parameters.

Consider an example function func1, shown as follows, where the rightmost param-
eter, param default, is assigned a default value. When the function is called with two
arguments, the arguments are matched to parameters, from left to right as before, and the

366 C H A P T E R 8 • M O R E O N F U N C T I O N S

default value is ignored. However, when only one argument is used, func1(5), the 5 is
mapped to the leftmost parameter, param required, and as there is no second argument,
the parameter param default gets its default value of 2.

>>> def func1(param required, param default = 2): # note de fau l t value
print(param required, param default)

>>> func1(5,6) # both s p e c i f i e d so de fau l t i s ignored
5 6
>>> func1(5) # only param required , de fau l t used f o r param default
5 2

Python also allows you to use the names of the parameters as keywords in the function
invocation. That is, in the invocation you may also use an assignment statement of the
form param name = value. This feature means that you wish to provide value as the
argument value for the parameter named param name. In this way you can, with some
care, ignore the standard order of argument-to-parameter names by specifically indicating
which argument-to-parameter match you wish. For example, using the same functionfunc1
from the session above, we change the function invocation to indicate which argument value
should go with which parameter name using the invocation func1(param default=4,
param required=3).

>>> def func1(param required, param default = 2):
print(param required, param default)

arg order doesn ' t matter : pa s s ing by name
>>> func1(param default = 4, param required = 3)
3 4

Use of parameter names as keywords in a function invocation is particularly useful
when there are many parameters and many have default values. The programmer can then
easily specify a few desired arguments he or she wishes to change, without regard to order,
and accept the default values for the rest.

VideoNote 8.1
More on
Parameters

8.2.1 Example: Default Values and Parameter Keywords
Let’s create a simple function that uses default values and parameter names as keywords.
The rhyme function prints variations of the classic “Roses are red” poem. Let’s parameterize
the flower and color from the first two lines and leave the closing lines unchanged. We
will assign each parameter a default value so that if no parameters are specified, the original

8 . 2 • D E F A U L T V A L U E S A N D P A R A M E T E R S 367

poem is printed. In the second invocation, we specify the first two arguments and leave the
remaining two to the default values. In the final invocation, we name the parameters so that
the second flower and color are specified, leaving the first two to their default values. Here
is the session:

>>> def rhyme(flower1="Roses",color1="red",flower2="Violets",color2="blue"):
print(flower1, "are", color1)
print(flower2, "are", color2)
print("Sugar is sweet")
print("And so are you")

>>> rhyme() # use a l l d e f au l t s
Roses are red
Violets are blue
Sugar is sweet
And so are you
>>> rhyme("Daises", "white") # use de fau l t va lue s f o r r ight−most parameters
Daises are white
Violets are blue
Sugar is sweet
And so are you
>>> rhyme(flower2="Irises") # pas s 1 parameter by name, the r e s t by de fau l t
Roses are red
Irises are blue
Sugar is sweet
And so are you

P R O G R A M M I N G T I P

Because any parameter name can be used as a keyword during function invocation, you
should name your parameters in a meaningful way. In a sense, the parameter names you use
provide more documentation about the function. Sensible naming allows the function user
to assign non-default values to known parameters more easily.

Issues with Default Values
Argument-to-parameter order can be a bit tricky when mixing standard invocation (i.e.,
without parameter keyword names) and parameter keywords. In general, you should stick
with one style or the other (either invoke with all the parameters named or no parameters
named), but if you do mix, make sure that:

� No argument is provided twice—for example, first as a normal argument and second
as a parameter-named argument.

� All the required arguments are provided.

368 C H A P T E R 8 • M O R E O N F U N C T I O N S

A nastier problem can arise if you use a parameter default value that is mutable, such
as a list. Don’t do it, but let’s explain why. Default parameter values are only evaluated
once, when def is evaluated, and that association is preserved between invocations. This
persistence means that changes to the default object associated with the parameter name
persists between calls. We illustrate this phenomenon in the following example. We create
a function func2 whose parameter param list has as a default value the empty list.
The default value is evaluated when the function is defined and the association between
param list and its object is created in the function’s local namespace. The first invocation
func2(1) uses the default for param list and appends a 1 onto the default list: [1]
is returned. That is worth repeating. The value 1 is appended onto the default list. When
we make a second call, again using a default argument for param list, func2(2), the
2 gets appended onto the default object as well. However, since that object was modified
in the previous call, that change remains and the returned value is now [1, 2]. Any
change to the default object, if that object is mutable and modified, will be preserved
across invocations. At the end of the session we make a final call that doesn’t use defaults.
This shows that 4 is appended to the end of the provided list argument [7,8,9] as
expected.

>>> def func2(element, param list=[]):
param list.append(element)
return param list

>>> func2(1) # u s e s the de fau l t f o r param list
[1]
>>> func2(2) # again u s e s de faul t , but that ob j e c t was modified p r ev i ou s l y
[1, 2]
>>> func2(3) # again , the de fau l t ob j e c t a s s o c i a t e d with param list p e r s i s t s
[1, 2, 3]
>>> func2(4,[7,8,9]) # no de fau l t s , works as expec t ed
[7, 8, 9, 4]
>>> func2(5) # use d e f au l t s ; d e fau l t modi f i ca t ions s t i l l p e r s i s t
[1, 2, 3, 5]

Such problems do not occur with immutable defaults, because those objects cannot be
modified.

P R O G R A M M I N G T I P

You should never use a default value that is mutable. If a default mutable is required, it is
better to provide a value such as None as the default value in the function definition and
then check for that default value in the function code itself. At that point in the code, you
can make a new object and perform the required task.

8 . 3 • F U N C T I O N S A S O B J E C T S 369

Check Yourself: More on Functions Check

1. Answer the questions for the following program.

def func1(multiplier=5,reps=3):
result_list=[]
for i in range(1,reps+1):

result_list.append(i*multiplier)
return multiplier,result_list

print(func1(10)) # Line 1
print(func1(reps=4)) # Line 2
print(func1(multiplier=3))# Line 3
print(func1(7,5)) # Line 4

(a) What output is produced by Line 1?
(b) What output is produced by Line 2?
(c) What output is produced by Line 3?
(d) What output is produced by Line 4?
(e) What is the length of every returned value from func1?

8.3 F U N C T I O N S A S O B J E C T S
As we observed earlier, defining a function creates an object in Python. As with any other
object, there are methods and variables associated with function objects. To see what those
methods and variables are, you can type in a known function name, followed by a dot (.) and
the Tab character in the Python shell to see what the associated methods and variables are.

Of particular interest are those properties that begin and end with double underscores
(). These are names reserved by Python and serve special purposes. Some of the names
associated with functions include:

name The name associated with the function.
str The function used to construct a string from the function. This is the function
that print uses to represent a function.
dict The namespace of the function (it is a dictionary—see Chapter 9).
doc The docstring, which contains information about the function provided by the
programmer.

We will cover some of these (and other) methods and properties when we investigate
objects, but annotations and docstrings are particularly interesting, so we cover them in
more detail next.

370 C H A P T E R 8 • M O R E O N F U N C T I O N S

8.3.1 Function Annotations
Python allows you to indicate an annotation for both the parameters of a function and the
return value of the function. An annotation is an arbitrary piece of information that can be
associated with a parameter or return value that can be used by either the function writer or
user as they see fit (including ignoring that information). That is, the function writer can
associate any kind of information with some or all of the parameters or the return value of
the function, but Python does nothing with this annotation. It is up to the user or writer to
take advantage of that information.

Annotations are associated as pairs in the parameter list, in the form param name :
annotation. Annotations on the return value are done using the special symbols -> after
the parameter list but before the “:” symbol, in the form: def fn name(param name)->
annotation :.

The session below shows such an example

def my func (param1 : int, param2 : float) -> None :
print('Result is:', param1 + param2)

>>> my func(1, 2.0)
Result is: 3.0
>>> my func(1, 2)
Result is: 3
>>> my func('a', 'b')
Result is: ab
>>>

In this session, param1 is associated with the type int, param2 is associated with the
type float, and the return value is associated with None. However, these values are not
used in the function itself and are ignored.

So what is the point then? The function writer can provide annotations as suggestions to
the function user. In this case, the suggestion is the types that are expected for the parameters
and return value, even if the expectations are not enforced. Note that we passed in str
type parameters without a problem in the previous session. However, these annotations are
available within the function if the writer wishes to use them. The annotations are made into
a Python data structure (a dictionary) at function definition time and provided in a special
variable as part of the function object called annotations . This data structure is
part of the function object itself and so is accessed by func name. annotations .

The following session shows this dictionary.

def my func (param1 : int, param2 : float) -> None :
print('Result is:', param1 + param2)

>>> my func. annotations
{'return': None, 'param2': <class 'float'>, 'param1': <class 'int'>}
>>>

8 . 4 • E X A M P L E : D E T E R M I N I N G A F I N A L G R A D E 371

In Chapter 9 we will learn how to make use of dictionaries. For now it suffices to observe
that a record of the annotations is available in a Python data structure. The function writer
could choose to use this information in the function or just use it as “more documentation”
for the user.

If you are interested in more uses for annotations, please see the Python documentation.

8.3.2 Docstrings
Python has a nice feature for documenting functions that can be accessed by other Python
tools. By following this convention it is possible for a user to retrieve information about a
function—for example, how to invoke it, what is returned, its purpose.

Suppose you wanted to know what was in the math module. There is a dir function
that lists the names in the module. If you want to know more about a particular function,
you can use doc with double underscores to inquire about a function. For example,
after using dir to get the names in the math module, you might wonder what the ceil
and pow functions do. Here is a session in the Python shell illustrating these concepts:

>>> import math
>>> dir(math)
[' doc ', ' file ', ' name ', 'acos', 'asin', 'atan', 'atan2', 'ceil', 'cos',
'cosh', 'degrees', 'e', 'exp', 'fabs', 'floor', 'fmod', 'frexp', 'hypot', 'ldexp',
'log', 'log10', 'modf', 'pi', 'pow', 'radians', 'sin', 'sinh', 'sqrt', 'tan', '
tanh']
>>> math.ceil. doc
'ceil(x)\n\nReturn the ceiling of x as a float.\nThis is the smallest integral
value >= x.'
>>> math.pow. doc
'pow(x,y)\n\nReturn x**y (x to the power of y).'

Minimal information about each function is returned in the docstring, but if the
protocol is followed, something useful can always be found. In addition, development
environments (such as IDLE) automatically display the docstring when you type the function
name into the shell.

A docstring is included in a function using triple quotes to delimit the string. It must
appear after the header line (just after the def). A docstring should either be one brief line
or a brief line followed by a blank line, followed by a lengthier description. We include
one-line docstrings in most of our function examples. It is good practice.

8.4 E X A M P L E : D E T E R M I N I N G A F I N A L G R A D E
For this example, we want to process a file that contains a list of scores and the owner of
those scores and determine the final grade. The scores will be weighted: that is, some scores
are worth more to the overall final grade than others. In the end, our program will nicely
print out the name, in order: first name, last name, and the final grade.

372 C H A P T E R 8 • M O R E O N F U N C T I O N S

8.4.1 The Data
We make some assumptions about the file of scores:

� Each line of the file contains five comma-separated fields.
- The first field is the last name.
- The second field is the first name.
- The last three fields are the exam1, exam2, and final exam scores.

� Each score is an integer between 0 and 100.
� There are no empty fields.

Those are very specific assumptions, and it would take some work to ensure that the
code we write enforces those assumptions. For this example, we will assume all files are in
the correct format. Developing a properly error-checked version is left as an exercise.

8.4.2 The Design
Here is a first pass at an outline of our algorithm design:

1. Read each line of the file.
2. For each line, extract the name and scores, then calculate that grade based on provided

weights.
3. Create a nice printout of the form: first name last name final grade.

We can refine that design as follows:

1. Prompt for a file to open.
2. For each line in the file:

(a) Extract the name and scores.
(b) Calculate the grade.
(c) Print out each grade in a nice format.

Remember that each function should “do one thing.” The three actions taken on each
line are good candidates for functions. However, printing can be done in one line, so we
have chosen to not make it a function.

� parse line: Parse the line to extract names and scores.
� weighted grade: Calculate the weighted grade.
� Print out each name and grade in a nice format.

A third function could be a main driving function. Let’s tackle them one at a time.

8.4.3 Function: weighted grade
This function needs to take in a list of scores (ints or floats) and return a weighted grade
(float). As part of the calculation we need a list of weights. We could fix them within the
function or take them as a parameter. To illustrate use of defaults we will take them in as

8 . 4 • E X A M P L E : D E T E R M I N I N G A F I N A L G R A D E 373

a parameter. Because the weights are usually fixed by the course, we will give them default
values. To avoid issues with mutable data structures as defaults, we will use a tuple as a
default with three weights. See, tuples really are handy!

The processing then is to multiply each score by its weight and to sum those products
together into a final grade. We then return that value. The code is below.

Code Listing 8.2

1 def weighted grade(score list, weights tuple=(0.3,0.3,0.4)):
2 ' ' ' Expect s 3 e lements in s c o r e l i s t . Multiple s each grade
3 by i t s weight . Returns the sum. ' ' '
4 grade float = \
5 (score list[0]*weights tuple[0]) +\
6 (score list[1]*weights tuple[1]) +\
7 (score list[2]*weights tuple[2])
8 return grade float

The continuations on lines 4–7, as well as the parentheses, are not necessary but make
the process more readable. Note that there is a docstring for the function on lines 2–3.

8.4.4 Function: parse line
The parse line function receives a single parameter, a line from the file of scores. It
should extract the two name parts, reverse the order of the names, and then collect the
scores into a list. The reordered name and the score list are returned as a tuple (implicitly).
The code is in the listing below.

Code Listing 8.3

1 def parse line(line str):
2 ' ' ' Expect s a l in e o f form la s t , f i r s t , exam1 , exam2 , f ina l .
3 r e turn s a tup l e containing f i r s t + l a s t and l i s t o f s c o r e s . ' ' '
4 field list = line str.strip().split(',')
5 name str = field list[1] + ' ' + field list[0]
6 score list = []
7 # gather the s c o r e s , now s t r i n g s , as a l i s t o f i n t s
8 for element in field list[2:]:
9 score list.append(int(element))

10 return name str,score list

Lines 2–3: Docstring description of the function.
Line 4: Extracts the five fields by splitting on the comma, creating a list of five strings. We

first strip off any whitespace characters such as carriage returns.

374 C H A P T E R 8 • M O R E O N F U N C T I O N S

Line 5: Takes the first two fields (last name is field 0, first name is field 1) and
concatenates them together into first name last name with a space in between.

Lines 8–9: Create a list of scores from the remaining three fields.
Lines 10: Returns the new name and score list as a tuple. Note that the comma is enough

to create a tuple on the return.

8.4.5 Function: main
The main program itself can be made into a function as well. This has some advantages.
When the program is loaded, it does not begin running until the user invokes the function
directly. It is also useful for creating stand-alone scripts in Python. In any event, we will
create the function main to process the file. The code is in Code Listing 8.4.

Code Listing 8.4

1 def main ():
2 ' ' ' Get a l i n e s t r from the f i l e , pr int the f ina l grade n i c e l y . ' ' '
3 file name = input('Open what file:')
4 grade file = open(file name, 'r')
5 print('{:>13s} {:>15s}'.format('Name','Grade'))
6 print('-'*30)
7 for line str in grade file:
8 name str,score list = parse line(line str)
9 grade float = weighted grade(score list)

10 print('{:>15s} {:14.2f} '.format(name str, grade float))

Line 2: Docstring.
Lines 3–4: Prompt for a file name and open the file for reading.
Lines 5–6: Print a header for our output. Note the use of the replication operator on line 6.
Lines 7–10: For each line, call a function to parse the line into a name and a list of scores.

Next call another function to calculate the weighted grade. Finally, print out the name
and grade. Note the multiple assignment of line 8, which implicitly is a tuple.

8.4.6 Example Use
Given a file such as:

Smith, John, 100,0,0
CableGuy, Larry, 0,100,0
Harder, Try, 0,0,100
Python, Monty, 100,100,100
Frost, Jack, 50,50,50
Jones, Terry, 75,75,75

S U M M A R Y 375

An example of using our program on that file is shown in the session below.

>>> main()
Open what file:grades.txt

Name Grade

John Smith 30.00
Larry CableGuy 30.00

Try Harder 40.00
Monty Python 100.00
Jack Frost 50.00
Terry Jones 75.00

>>>

8.5 E S O T E R I C A : ‘ ‘ B Y V A L U E ’ ’ O R ‘ ‘ B Y
R E F E R E N C E ’ ’

Languages that trace their roots to procedural languages such as C++, Java, and C# differen-
tiate between parameters that are passed “by value” vs. “by reference.” A common question
is, which does Python use? The useful answer for novice programmers is neither, in the
sense that the concept applies to those languages. It would take too long to both define
those concepts precisely and to explain why “neither” is the useful answer, but if you go on
to study one of those languages, it is useful to know that Python programmers do not need
to think in those terms.

The best answer is to say that Python passes object references. Everything in Python is an
object, so every value passed is a reference to an object. Therefore, an object is not copied
in this process. Python passes a reference to that object, as illustrated in Figures 8.1–8.4. If
the object is mutable, then a change made in the function is reflected in the outer scope of
the object—e.g., where function was called. If it is not mutable, a new object is referenced
when the reference is updated.

Summary
In this chapter, we further developed the concept of functions in a programming language
and showed how functions work in Python. As you will see in later chapters, functions aid
us in the divide-and-conquer approach to problem solving. Finally, we examined the role of
refactoring with respect to functions.

Functions
� Scope is the set of program statements over which an object exists.

� Passing mutable objects allows a function to change values in the calling program.

� Default paramaters are specified with assignment (=), e.g., param = value.

376 C H A P T E R 8 • M O R E O N F U N C T I O N S

� Don’t use a mutable object as a default parameter value.

� Optionally, parameters can be specified in an invocation using the name of the param-
eter, e.g., fun(param=4).

� Docstrings describe a function’s purpose and appear in the line after the function header.

Rules
� RULE 1: Think before you program!

� RULE 2: A program is a human-readable essay on problem solving that also happens
to execute on a computer.

� RULE 3: The best way to improve your programming and problem skills is to practice!

� RULE 4: A foolish consistency is the hobgoblin of little minds.

� RULE 5: Test your code, often and thoroughly!

� RULE 6: If it was hard to write, it is probably hard to read. Add a comment.

� RULE 7: All input is evil, until proven otherwise.

� RULE 8: A function should do one thing.

Exercises
1. What is the difference between an argument and a parameter?

2. What does the following code print? Explain.

def my function(b list):
b list[0] = 100
a list = [1,2,3]

a list = [5,6,7]
my function(a list)
print(a list)

3. What does the following code print? Explain.

def f(a, b=2):
pass

f(a = 3, b = 4)
print(a,b)

4. Consider the following code. The “print(x)” statement generates an error. Provide two
different ways to print “x” properly. You will need to make assumptions about what is
reasonable to print.

E X E R C I S E S 377

def add one(number):
x=1
number = number + x
print(number)

add one(3)
print(x)

5. Create a function that takes as an argument a string and returns the string in reverse
order (i.e., if the string is “stressed,” your function should return “desserts”).

6. Understanding scope is important when working with functions. The value of x was
defined to be 1 (below), so why do we get an error when we inquired about its value?

def add one(number):
x=1
number=number+x
print(number)

>>> add one(5)
6

>>> x
NameError: name 'x' not defined

7. In Section 8.1.3 we defined a function called evens(n) that generated a list of n even
numbers. The range() function takes a third argument that is the “step”—the step
between numbers in the range. Rewrite the function using the third argument in the
range. Note that you will also need to change the second argument so that the correct
number of even numbers is generated.

8. The mirror() function example is not robust.

(a) Determine function arguments that will generate errors.
(b) Rewrite the function so those errors will be checked and avoided.

9. Anagrams. In an earlier chapter we created a program that tested whether two strings
were anagrams. (We sorted the strings and then compared them.)

(a) Write a function that returns True, if two strings are anagrams, and False other-
wise. (Starting hint: How many parameters do you need?)

(b) Write a program that uses your function. The program should prompt for the two
strings, call the function, and then print results (something other than True or
False).

10. Palindromes. A palindrome is a word that is the same backward as forward. The word
rotor is an example of a palindrome.

378 C H A P T E R 8 • M O R E O N F U N C T I O N S

(a) Write a function that returns True if two strings are palindromes. (Hints: You can
create a list from a string using the list() function. Lists are handy, because there
is a reverse() method.)

(b) Write a program that uses your function. The program should prompt for the two
strings, call the function, and then print results (something other than True or
False).

(c) Some palindrome rules ignore spaces and capitalization, so “Never odd or even” is an
acceptable palindrome. Improve your function to ignore spaces and capitalization.
(Hints: Lists have a remove() method, and strings have a lower() method.)

11. Write a function that takes a list as an argument and verifies whether the list is sorted.
Return True if sorted; False if not.

12. Remove odds or evens:

(a) Write a function that takes a list of integers as an argument, removes even numbers
from the list, and returns the modified list.

(b) Write a function that takes a list of integers as an argument, removes odd numbers
from the list, and returns the modified list.

(c) Write a function that takes a list of integers and a Boolean as arguments. If the
Boolean is True, the function removes odd numbers from the list; otherwise, evens
are removed. The function returns the modified list.

13. Starting in 1999 the U.S. government mint released state-specific quarters at a rate of five
states per year. Find the release year for each state’s quarters online, e.g., www.usmint.gov.
Copy that information into a Python program (as a string, or a list, or tuples, or list of
lists, etc.) Write functions that do the following:

(a) Print the names of the states in the order of release of their quarters. Also, print the
years, along with the names.

(b) Print the names of the states in increasing order of the length of their names. Also
print the years along with the names.

(c) Prompt for a year and print all the quarters issued that year.

14. In the earlier chapter on functions there was an exercise based on DNA searching
to make a multi find() function. That function had two constraints that we can
now remove: (i) it returned the indices in a string, and (ii) it couldn’t handle default
arguments. In this exercise we will fix both.

(a) Write a string function multi find(some string, sub string [,start]
[,end]) where start and end are optional arguments with default values for the
start and end of some string. The start and end are interpreted as they are in slicing,
that is:

0 = start ≤ index < end = len(some string)

The function should return a list of indices of occurrences of sub string in
some string. If the substring is not found, return an empty list.

www.usmint.gov

P R O G R A M M I N G P R O J E C T S 379

(b) Demonstrate that your string function works and that you can use it in a Boolean
expression.

15. In the chapter on strings there was an example that counted poker hands. Refactor that
program with two goals: (i) break the program down into functions, and (ii) use a list
of counters rather than individual counter variables.

Programming Projects
1. Data mining stock prices

Data mining is the process of sorting through large amounts of data and picking out
relevant information. It is usually used by business intelligence organizations and finan-
cial analysts but is increasingly being used in the sciences to extract information from
the enormous data sets generated by modern experimental and observational methods.

In this project, we want to do some preliminary data mining to the prices of some
company’s stock. So that we can speak in specifics, let’s look at Google. Your program
will calculate the monthly average prices of Google stock from 2004 to 2008 and tell
us the six best and six worst months for Google. We provide the data reading function;
you write the next two and a main that calls the functions.

(a) First you need a history of stock prices. Go to finance.yahoo.com, enter Google in
the search field, select “Historical Prices” (currently on the left of the page), and
find the “download to spreadsheet” option. Choose to save the file in the folder
where your Python program will be saved. The default name is “table.csv” so we
will use that name. The file format is indicated by the first few lines:

Date,Open,High,Low,Close,Volume,Adj Close
2008-09-19,461.00,462.07,443.28,449.15,10006000,449.15
2008-09-18,422.64,439.18,410.50,439.08,8589400,439.08

(b) get data list(file name)
The csv file is a comma-separated file, so we can split the data on commas. The
following function will read a file, split the lines in the file on commas, and put
the data into a list that is returned. The result is a list of lists where each line
is a list. Also, every item is a string. To read our file, call it using our file name:
get data list('table.csv'). Experiment with this function in the shell
to get a sense of what is returned.

>def get data list(file name):
data file = open(file name,"r")
data list = [] # start with an empty list
for line str in data file:

strip end-of-line, split on commas, and append items
to list data list.append(line str.strip().split(','))

return data list

380 C H A P T E R 8 • M O R E O N F U N C T I O N S

(c) get monthly averages(data list)
In this function, you will use the data list generated by the get data list function as
the parameter. Use the Date, Volume, and Adj Close fields to calculate the average
monthly prices. Here is a formula for the average price for a month, where Vi is
the volume and Ci is the day’s adjusted close price (Adj Close).

average price = (V 1 ∗ C1 + V 2 ∗ C2 + . . . + V n ∗ Cn)/(V 1 + V 2 + . . . + V n)

For each month create a tuple with two items: the average for that month and the
date (you need only the month and year). Append the tuple for each month to
a list (e.g., monthly averages list), and after calculating all the monthly averages,
return this list. We use tuples here because once these values are calculated we don’t
want to accidentally change them!

(d) print info(monthly averages list)
In this function, you need to use the list of monthly averages calculated in the
get monthly averages function. Here you will need to find and print the six best
(highest average price) and six worst (lowest average price) months for Google’s
stock. Print them in order from highest to lowest and print to two decimal places.
Format the output so that it looks good and include informative headers. This
function does not return anything.

(e) If you don’t call these functions, they are useless. Thus, you should write code to
call them.

Hints:

(a) The list sort() and reverse() methods will be useful. Experiment with how
they sort a list of tuples—notice how they sort on the first item.

(b) To create a tuple, put items in a comma-separated list with parentheses: (x,y).
(c) When working with a list of lists (or a list of tuples), the first item in the first list

is some list[0][0] and the second item in that same first list is someList [0][1].

2. Who was the best NBA basketball player?
The National Basketball Association (NBA) is North America’s professional men’s
basketball league. You are going to write a program to find the best players in NBA
history. You are to get the raw NBA stats from the web, compute the efficiency of
nearly 4000 players, and output the 50 most efficient players, as well as some other
interesting statistics.

Efficiency
How do many NBA coaches quickly evaluate a player’s game performance? They
check his efficiency. NBA.com evaluates all players based on the efficiency formula
indicated below (and shown on the aboutstats.htm page), In this project, we will use
this efficiency formula. Since we are not evaluating a player based on one game, we

P R O G R A M M I N G P R O J E C T S 381

need to divide the total efficiency by the number of games the player played. So the
formula is:

Efficiency =
(pts + reb + asts + stl + blk) − ((fga − fgm) + (fta − ftm) + turnover)

gp

The abbreviations are described as below:
Other stats
Besides efficiency, also collect:
� The player who played the most minutes
� The player who played the most games
� The player who scored the most points
� The player who got the most rebounds
� The player who got the most penalties
� The player who made the most free throws

(a) Get Data
Go to http://www.databasebasketball.com/stats_download.htm
and download the database (currently named databaseBasketball2.1.zip).
Double-click on the file to unpack the zip file. We will use the file
“player regular season career.txt” so move that file into the folder where
you will be writing your Python program. The first line of the file has headers for
the columns, but they are abbreviated. At the bottom of the stats page is a link
to a page describing the abbreviations (http://www.databasebasketball.
com/about/aboutstats.htm).

(b) Read Data
To read the data we can use the get data list() function from the previous
problem, but we need to make one important modification. Since the basketball
data file separates the fields using vertical bars ('|'), we must replace the comma
in the split function with a vertical bar: split('|'). The function will return
a list of lists that has one list for each player.

(c) Process Data
Calculate the statistics mentioned above, and then output them. For the efficiency,
find the top 50 and then order them from best to worst. For calculating the “other”
statistics, you could write one function for each, but you should notice a pattern
after writing one or two that will indicate how to write one function that you can
call for each statistic.

(d) Output
Format your output to make it readable and good-looking. Remember to print
the top 50 in efficiency in order from best to worst. Printing should be a function.

http://www.databasebasketball.com/stats_download.htm
http://www.databasebasketball.com/about/aboutstats.htm
http://www.databasebasketball.com/about/aboutstats.htm

This page intentionally left blank

•9C H A P T E R

Dictionaries and Sets

A set is a gathering together into a whole of definite, distinct objects of our
perception and of our thought—which are called elements of the set.

Georg Cantor, the founder of set theory, 1884

WHEN WE INTRODUCED LISTS, WE ALSO INTRODUCED THE CONCEPT OF A DATA

structure and the important role that data structures play in computer science. Under-
standing data structures means understanding how data are organized and the kind of
algorithms that can work on data organized in that fashion. Lists and strings were examples
of data structures that come with Python. In this chapter, we add dictionaries and sets, data
structures also included in Python. Dictionaries in particular are very powerful data struc-
tures that are useful for solving many problems. In fact, Python relies heavily on dictionaries
in its underlying organization.

9.1 D I C T I O N A R I E S
What is the dictionary data structure? A dictionary is a collection, but it is not a sequence.
A dictionary is often referred to as a map collection, also sometimes as an associative array.
You can think of a dictionary as a list of pairs, where the first element of each pair is the key
and the second element of each pair is the value. A dictionary is designed so that a search
for a key, and subsequently its associated value, is very efficient. The word map comes from
this association: the key maps to the value.

All operations on dictionaries are built to work through keys. The data structure is
called a dictionary because of its similarity to a real dictionary, such as Webster’s dictionary.
Think of the keys as the words in Webster’s dictionary. It is easy to look up a word (the key)
because of the organization of Webster’s dictionary (alphabetical). Once the key is found,
the associated value, the definition, is clearly indicated. Note that the opposite search, a
search for the the value (i.e., the definition), is not easily done. Imagine trying to find

383

384 C H A P T E R 9 • D I C T I O N A R I E S A N D S E T S

a definition without the associated word (key) in Webster’s dictionary. It is only possible
by examining every definition in the whole dictionary from beginning to end—not very
efficient!1 Dictionaries, both the data structure and Webster’s, are optimized to work with
keys. However, the dictionary data structure and Webster’s are different in one important
way: Webster’s key organization is based on an alphabetical (sequential) ordering of the
keys. In a Python dictionary, keys are arranged to make searching go quickly, not necessarily
sequentially. Furthermore, the arrangement is hidden from the user. As a result, you cannot
print a dictionary collection and count on a particular order. As new key-value pairs are
added, the dictionary is modified to make key searching efficient for Python.

9.1.1 Dictionary Example
A contact list such as is found in a cell phone could be implemented as a Python dictionary.
Imagine that we have three people in our phone contact list, “bill,” “rich,” and “jane,” and
assume that we have a phone number for each one. Figure 9.1 diagrams the data structure.
Each name is a key, and for each key there is an associated value, a phone number as a
string. If you want the phone number for “bill,” you simply look up his name (the key) in
the contacts and get the associated phone number (the value). Note that order of the names
(keys) does not matter; only the association between a key and its value matters.

You will notice that the figure for the dictionary looks just like the figures for namespaces.
That is not by accident: namespaces are implemented as dictionaries in Python. When
Python wants the value of a variable it refers to the namespace dictionary using the variable
name as the key and the associated object as the value.

‘bill’

‘rich’

‘353-1234’

Contacts Phone numbers

‘jane’

‘269-1234’

‘352-1234’

FIGURE 9.1 Phone contact list: names and phone numbers.

1 Such an approach is often called a brute force approach, as it requires examining all possibilities.

9 . 1 • D I C T I O N A R I E S 385

9.1.2 Python Dictionaries
Let’s implement the dictionary of “contacts” shown in Figure 9.1. As we have seen, a list
can be created by either the constructor list or a shortcut, the square brackets ([]).
Dictionaries also have a constructor, called dict , and have a shortcut, curly braces: { }.
Like lists, curly braces are often used, although, as with lists, there are applications for the
dict constructor. When designating the contents of a dictionary, the individual key-value
pairs are separated by a colon (:). Values may be anything, but keys can only be immutable
objects such as integers, strings, or tuples. In this session, we create a contacts dictionary,
display it, get a number for “bill,” and add a contact for “barb.” Note the unordered nature
of a dictionary when printed: it is not kept in any apparent order—not even the order of
the key-value pair’s creation.

c r ea t e c on ta c t s
>>> contacts={'bill': '353-1234', 'rich': '269-1234', 'jane':'352-1234'}
>>> contacts # di sp l a y c on ta c t s : note order
{'jane': '352-1234', 'bill': '353-1234', 'rich': '269-1234'}
>>> contacts['bill'] # ge t contac t in fo f o r " b i l l "
'353-1234'
>>> contacts['barb']='271-1234' # add contac t in fo f o r "barb"
>>> contacts # observe change in con ta c t s
{'jane':'352-1234', 'bill':'353-1234', 'barb':'271-1234', 'rich':'269-1234'}
>>>

9.1.3 Dictionary Indexing and Assignment
Dictionaries are collections that respond to the index operator: []. However, we do not
use a sequence number (0 for the first element, -1 for the last, etc.) as we did with other
collections. Instead, we use the key as the index value. Thus,contacts['bill'] is an index
into the dictionary, using the key 'bill' to retrieve its associated value, '353-1234'.
If no such key presently exists in the dictionary, Python throws an error, a KeyError. To
add a key-value pair to a dictionary, we can do so by index assignment. That is, contacts
['barb']='271-1234' is an assignment of '271-1234' to the key 'barb' in the
dictionary contacts. If the key does not yet exist, it is created and then associated with
the value. If the key already exists, the new value is associated with the key.

Dictionaries Are Mutable
Because we can do index assignment in a dictionary, a dictionary is our second example of
a mutable data structure (the first was a list). In addition to index assignment, dictionaries
have a number of methods that change the dictionary in place. As with lists, there are
potential consequences to passing a mutable object to functions. If a dictionary is modified
in a function, it is modified in the calling program. You will see examples of mutable
methods later in this chapter.

386 C H A P T E R 9 • D I C T I O N A R I E S A N D S E T S

Dictionaries with Different Key Types
The power of dictionaries is a combination of its indexing speed and the fact that the value
can be any data structure, even another dictionary. Furthermore, different types of keys can
be used in the same dictionary as long as they are immutable types. In the next session, we
create a dictionary with keys that are ints, tuples, strs. Of particular note is that the
values are lists, ints, and dicts. We then show access using each key, followed at the
end by accessing an element of the dictionary value contained in our dictionary. As with
previous chained expressions, they proceed from left to right.

value s as l i s t , int , d i c t
>>> demo = {2:['a','b','c'], (2,4): 27, 'x':{1:2.5, 'a':3}}
>>> demo # kept in " arb i t ra ry " order
{'x': {'a': 3, 1: 2.5}, 2: ['a', 'b', 'c'], (2, 4): 27}
>>> demo[2] # a c c e s s key 2 value
['a', 'b', 'c']
>>> demo[(2,4)] # key i s a tup l e !
27
>>> demo['x'] # value i s a d i c t i onary
{'a': 3, 1: 2.5}
>>> demo['x'][1] # key ' x ' then key 1
2.5

The expression demo['x'] yields a dictionary as a value, and that yielded dictionary
is further referenced by the index [1], yielding the value 2.5.

As with other data structures we have used, such as strings and lists, we often want
to initialize a dictionary to be empty. A pair of curly brackets creates an empty dictionary.
Alternately, one can use dict with no argument.

some dict = {}

another dict = dict()

9.1.4 Operators

Familiar Collection Operations
Most of the collection operations you have become familiar with work with dictionaries.
However, keep two things in mind: dictionaries are optimized for operations on keys, and
dictionaries are mutable.

[]: indexing using the key as the index value
len(): the “length” is the number of key-value pairs in the dictionary
in: Boolean test of membership; is the key in the dictionary (not the value)?
for: iteration through keys in the dictionary

9 . 1 • D I C T I O N A R I E S 387

In the following session, we illustrate the use of the standard operations. Things to
note, especially given the focus of dictionary operations on keys:

� The length operator measures the number of key-value pairs (or, if you prefer, the
number of keys).

� The membership operation is an operation on keys, not values.
� Iteration yields the keys in the dictionary.

To discover the values associated with the keys, we must index the dictionary with that
key (or use one of the iterators in the next section).

>>> my dict = {'a':2, 3:['x','y'], 'joe': 'smith'} # a dic t i onary
>>> my dict # di sp la y i t
{'a': 2, 3: ['x', 'y'], 'joe': 'smith'}
>>> my dict['a'] # use square bracke t s to index
2
>>> len(my dict) # number o f key : value pa i r s
3
>>> 'a' in my dict # membership f o r key s
True
>>> 2 in my dict # " in" only l ook s at key s
False
>>> for key in my dict: # i t e r a t i on i s through key s

print(key)

a
3
joe
>>> for key in my dict: # print key and value

print(key, my dict[key])

a 2
3 ['x', 'y']
joe smith

Given the above description, it should not be surprising that in the context of a
dictionary, the functions min, max, and sum are also operations on keys.

Some Dictionary Methods
Given the default behavior of dictionary iteration on keys, Python provides a number of
other methods that allow the programmer to iterate through other dictionary elements:

items(): all the key-value pairs as a list of tuples
keys(): all the keys as a list
values(): all the values as a list

388 C H A P T E R 9 • D I C T I O N A R I E S A N D S E T S

Check out their use in a session:

>>> my dict = {'a':2, 3:['x','y'], 'joe':'smith'}
>>> for key,val in my dict.items(): # pair i t e r a t i on

print("Key: {:<7}, Value:{}".format(key,val))

Key: a , Value:2
Key: 3 , Value:['x', 'y']
Key: joe , Value:smith
>>> for key in my dict.keys(): # key i t e r a t i on

print(key)

a
3
joe
>>> dict value view = my dict.values()
>>> dict value view # a view
dict values([2, ['x', 'y'], 'smith'])
>>> type(dict value view) # view type
<class 'dict values'>
>>> for val in dict value view: # view i t e r a t i on

print(val)

2
['x', 'y']
smith
>>> my dict['new key'] = 'new value'
>>> dict value view # view updated
dict values([2, 'new value', ['x', 'y'], 'smith'])
>>> dict key view = my dict.keys()
dict keys(['a', 'new key', 3, 'joe'])
>>> dict value view
dict values([2, 'new value', ['x', 'y'], 'smith']) # same order
>>>

These three methods allow us to iterate through the dictionary, yielding keys-value pairs
(each as a separate item), only keys, or only values. As with ranges, if you type an invocation
of one of those methods you get an “odd” type back. Not a list, but one of dict values,
dict keys. Python calls these types view objects. View objects have a couple of interesting
properties.

� A view object is iterable. Thus we can use them in a for loop.
� Though the order of keys and values in a dictionary cannot be determined, views of

keys and values will correspond. That is, whatever the order of the key view is, the value

9 . 1 • D I C T I O N A R I E S 389

view will have the same order (the elements of the key view and the value view match
as found in the dictionary).

� View objects are dynamic. Once assigned, if the dictionary is updated in some way, the
view object reflects that update.

Because the items iterator generates tuples, we can assign two values for every iteration
of the for loop: the first element is the key of the pair and the second is the value (similar
to enumerate).

Dictionaries have a copy method. The copy method makes a shallow copy of the
dictionary values. This means that keys are copied properly (as they must be immutable),
but if the values are mutable, problems such as we have seen before can arise. See the
following session.

>>> my dict = {'a':2, 3:['x','y'], 'joe':'smith'}
>>> new dict = my dict.copy() # shallow copy
>>> new dict['a']='new value'
>>> my dict
{'a': 2, 3: ['x', 'y'], 'joe': 'smith'}
>>> new dict
{'a': 'new value', 3: ['x', 'y'], 'joe': 'smith'} # my dict unchanged
>>> a value = new dict[3] # a mutable l i s t
>>> a value
['x', 'y']
>>> a value[0] = 'new element' # update l i s t
>>> new dict # copy changed
{'a': 'new value', 3: ['new element', 'y'], 'joe': 'smith'}
>>> my dict # or i g ina l changed
{'a': 2, 3: ['new element', 'y'], 'joe': 'smith'}
>>>

When a copy of my dict is created and assigned to my dict, copies of all the
references are made, a shallow copy (see Section 7.6.1). If index assignment is made to the
list value in new dict, the change is also shown in my dict.

Dictionaries are very powerful data structures that are useful for many tasks. Here is a
simple example. Imagine you are trying to count the frequency of word occurrence in a list
of words (perhaps gathered from a text file). We can represent those data using a dictionary,
with the words as the keys and the values as the frequency of occurrence. There are two
operations you need to perform in the process of updating a dictionary with a word from
the list. You can add a word to the dictionary if it doesn’t exist (with a frequency of one in
that case) or you can add one to the frequency of an existing word already in the dictionary.
The first technique is shown below. It uses the in method to check for the existence of the
word in the dictionary. Remember, this membership is a check of keys, so this is a check to

390 C H A P T E R 9 • D I C T I O N A R I E S A N D S E T S

see if the word is already in the dictionary. If so, then one is added to the frequency (the
value associated with the word is updated by one). If not, the word is assigned as a key to
the dictionary with a frequency of one.

count dict = {}
for word in word list:

if word in count dict:
count dict[word] += 1

else:
count dict[word] = 1

An alternative to membership checking is to use exceptions. In this case, the try suite
assumes that the key exists in the dictionary (the word is already a key) and tries to add one
to its frequency value. If this assumption is incorrect (the word is not a key), the KeyError
exception is raised. The KeyError exception suite then adds the key to the dictionary
(solves the exception condition) with a frequency value of 1. Here is the same code with
exceptions.

count dict = {}
for word in word list:

try:
count dict[word] += 1

except KeyError:
count dict[word] = 1

It is an interesting question as to which is the “better” way. From an efficiency (faster
running times) standpoint, no difference would be noticed until the dictionaries got very
large, at which point the membership test is probably faster. Which is more readable is
somewhat debatable, though the exception does focus on “what you wanted to do” and
leaves the error problems to a different clause entirely.

Since we are playing this game, there is indeed a third approach that uses a dictionary
method, the get method. This method takes two arguments: a key and a default value.
The behavior of get is to provide normal dictionary operations when the key exists (return
the associated value), but if the key does not exists, it returns the default as the value for
that key (no error). Here is the same code using get:

count dict = {}
for word in word list:

count dict[word] = count dict.get(word,0) + 1

The get approach is the most concise, but possibly the least readable.

9 . 2 • W O R D C O U N T E X A M P L E 391

Check Yourself: Dictionary Check

1. Indicate the requested output for the following program:

def f1 (my_dict):
temp = 0
for value in my_dict.values():

temp = temp + value
return temp

def f2 (my_dict):
temp = ''
for key in my_dict:

if temp < key:
temp = key

return temp

def f3(my_dict,k,v):
if k in my_dict:

my_dict[k]=v

a_dict={'bill':1,'rich':2,'fred':10,'walter':20}

print(f1(a_dict)) # Line 1
print(f2(a_dict)) # Line 2
print(None == f3(a_dict,'bill',-1)) # Line 3
print(a_dict) # Line 4

(a) What output is produced by Line 1 of the program?
(b) What output is produced by Line 2 of the program?
(c) What output is produced by Line 3 of the program?
(d) What output is produced by Line 4 of the program?

9.2 W O R D C O U N T E X A M P L E
In Section 7.5.2, we introduced text analysis using the Gettysburg Address. In that section,
we showed how to count the number of words in a text file and how to count the number
of unique words in the text.

With dictionaries, we can now do more analysis. In particular, we can determine the
word frequency of a file with the aid of a dictionary. As we did in the example above, we
use each word as a key and use as a value the number of occurrences of that word. For every
word in the file, we check to see whether that word is already in the dictionary. If the word

392 C H A P T E R 9 • D I C T I O N A R I E S A N D S E T S

is in fact already there, we increase its associated count (value) by 1. If the word is not yet
in the dictionary, we insert it with a count (value) of 1.

9.2.1 Count Words in a String
Let’s warm up by first counting the frequency of words in a string. Our algorithm will be:

� Initialize our word count dict dictionary to be empty.
� Split the string speech into a list speech list.
� For every word in a speech list:

- If the word is in word count dict:
- Add 1 to its value.

- Else:
- Insert the word into word count dict with a value of 1.

We can check whether a word (the key) is in the dictionary using the in operator, the
first of the three options we mentioned above. If a word is already in the dictionary, we can
access its value using the word (key) as an index and increment its associated value. If the
word (key) is not present, we can use index assignment to create the key and set its associated
value to 1. Code Listing 9.1 is the Python code followed by a session. The output is just
the dictionary, so there is no nice output formatting yet. Using the words in the famous
Shakespearean quote “to be or not to be,” the result is “be” and “to” with counts of 2 and
the other words with counts of 1.

Code Listing 9.1

Count words in s t r i n g

speech = "to be or not to be"
speech list = speech.split()

word count dict = {}

for word in speech list:
if word in word count dict:

word count dict[word] += 1
else:

word count dict[word] = 1

print(word count dict)

>>>
{'not': 1, 'to': 2, 'or': 1, 'be': 2}

9 . 2 • W O R D C O U N T E X A M P L E 393

9.2.2 Word Frequency for the Gettysburg Address
Now that we have an understanding of how to use dictionaries to get word frequencies, let’s
apply them to the original problem: word frequency in a text file. As always, let’s break the
problem down:

� Open the file and process each line.
� Either add each word to the dictionary with a frequency of 1 or update the word’s

count by 1.
� Nicely print the output, in this case from high to low frequency.

Again, we want to achieve each major goal with a function, in keeping with RULE 8
(one function, one action). We can find four functions in the goals stated (perhaps you can
find more):

add word: Add each word to the dictionary. Parameters are the word and a dictionary.
No return value.

process line: There is some work to be done to process the line: strip off various
characters, split out the words, and so on. Parameters are a line and the dictionary. It
calls add word with each processed word. No return value.

pretty print: Because formatted printing can be messy and often particular to each
situation (meaning that we might need to modify it later), we separated out the printing
function. The parameter is a dictionary. No return value.

main: We will use a main function as the main program. As usual, it will open the file and
call process line on each line. When finished, it will call pretty print to print
the dictionary.

Now let’s examine each function in detail.

add word
This function is fairly straightforward and follows from the previous example on word
counting. For each word, we check to see whether the word (key) is in the dictionary using
the in operator. If it is, we increment the associated value count. If not, we add the new word
to the dictionary as a key with an associated value of 1. The code is shown in Code Listing 9.2.

Code Listing 9.2

1 def add word(word, word count dict):
2 ' ' ' Update the word frequency : word i s the key , frequency i s the value . ' ' '
3 if word in word count dict:
4 word count dict[word] += 1
5 else:
6 word count dict[word] = 1

394 C H A P T E R 9 • D I C T I O N A R I E S A N D S E T S

Note that there is no return value. Because a dictionary is mutable and because the
operations use index assignment, we modify the existing object and that change is reflected
in the calling function (process line in this case). Returning the dictionary might seem
to be a reasonable design decision, but the copy created could be large and the shallow copy
could hide problems related to the sharing of mutable items.

process line
The function receives both the line and the dictionary as parameters. We need the dictionary
because we need to pass it as a parameter to the add word function. From the line, we
need to extract each word. The code is shown in Code Listing 9.3.

Code Listing 9.3

1 import string
2 def process line(line, word count dict):
3 ' ' ' P ro c e s s the l in e to g e t lowerca s e words to add to the d i c t i onary . ' ' '
4 line = line.strip()
5 word list = line.split()
6 for word in word list:
7 # ignore the '−−' that i s in the f i l e
8 if word != '--':
9 word = word.lower()

10 word = word.strip()
11 # ge t commas , pe r i od s and other punctuation out as wel l
12 word = word.strip(string.punctuation)
13 add word(word, word count dict)

We’ve seen code like this before, but briefly:

Lines 4–5: Strip whitespace from the front and back of the line, then split the line to get a
list of words. Remember that the default argument to split splits at any whitespace
character. These lines could be chained together as:

word list = line.strip().split()

Lines 6–8: Iterate through each word in word list. Skip the special string '--' that we
found in the file (see Section 7.5.2).

Lines 9–10: Make each word lowercase and strip off whitespace characters from either
end. Lowercase allows us to get a better count so that 'Nation' is not different from
'nation'. If case matters, we need to fix that here. Also, these lines could be chained
together as we showed earlier.

Line 12: This is the only really “different” line of code. Why do we strip the word twice?
The first time stripped out whitespace, what strip uses when the default is provided.
However, there are situations in the file where a punctuation mark follows a word.

9 . 2 • W O R D C O U N T E X A M P L E 395

For example, if you look at the file, you will see 'nation,' and 'nation'. The
default strip does not remove punctuation, but it seems reasonable that the two
strings above should be equivalent. So we strip each line again using the variable
string.punctuation as an argument to strip. That variable contains a string
with all the normal punctuation characters. Using it as an argument to strip will
remove punctuation marks at the beginning or end of a word (but not the middle!). To
do so, we must first import the string module, which we do in line 1. Remember
RULE 6. We need to add a comment here.

Line 13: Call add word with the processed word and the dictionary that was provided as
a parameter.

Again, the function does not return a value. All modifications made are made to a
mutable data structure (a dictionary) using index assignments. Any change will be reflected
in the calling function (main in this case).

pretty print
Printing the dictionary is a little more complicated than one might think at first. What we
would like to do is print the dictionary in sorted order, sorting on the values (the frequencies)
from largest to smallest. However, dictionaries are by definition unordered. We can sort
dictionaries using the sorted function, but it sorts by keys, giving us the list in alphabetical
order but not frequency order. The only way around this is to turn the dictionary into a list
of reversed (value-key) pairs and sort that list. The question is, how to do that? The code is
shown in Code Listing 9.4.

Code Listing 9.4

1 def pretty print(word count dict):
2 ' ' ' Print n i c e l y from highe s t to lowe s t frequency . ' ' '
3 # c r ea t e a l i s t o f tup l e s , (value , key)
4 # value key l i s t = [(val , key) f o r key , val in d . i tems ()]
5 value key list=[]
6 for key,val in word count dict.items():
7 value key list.append((val,key))
8 # s o r t method s o r t s on l i s t ' s f i r s t element , the frequency .
9 # Rever se to g e t b i g g e s t f i r s t

10 value key list.sort(reverse=True)
11 # value key l i s t = s o r t ed ([(v , k) f o r k , v in va lue key l i s t . i tems ()] ,

r e v e r s e=True)
12 print('{:11s}{:11s}'.format('Word', 'Count'))
13 print(' '*21)
14 for val,key in value key list:
15 print('{:12s} {:<3d}'.format(key,val))

396 C H A P T E R 9 • D I C T I O N A R I E S A N D S E T S

Lines 5–7 do the hard work. We iterate through the dictionary using the items method.
Remember that items returns a tuple in the form of (key, value) for each dictio-
nary entry. We do multiple assignment to assign the key and value from the returned
tuple and then append them onto the list as a new tuple in (value, key)order, the
reverse of what items provides. Why? The sort method compares list elements on
their first value if the element is a compound object. Because we want to sort on the
frequencies, we need them to be first in the tuple.

Line 4 is commented out: it is a list comprehension that performs all the tasks of lines 5–7.
We show it as an example of alternative ways you can accomplish a task as you become
more familiar with Python.

Line 10 then sorts the list using the keyword argument reverse = True (note the
lowercase first letter 'r' of reverse). This gives us an order of largest to smallest (the
default is smallest to largest, hence the reverse) The remaining code prints out the
frequency-word pairs in columns.

Line 11 is commented out. Again, this is a list comprehension that performs all the
operations of lines 6–10. Short but a little hard to read.

main
After all that, main is pretty straightforward. It initializes the dictionary
word count dict, which gets passed to all the other functions. It opens the prede-
termined file name, grabs each line, and processes that line. It then prints the dictionary.
The code is shown in Code Listing 9.5.

Code Listing 9.5

1 def main ():
2 word count dict={}
3 gba file = open('gettysburg.txt','r')
4 for line in gba file:
5 process line(line, word count dict)
6 print('Length of the dictionary:',len(word count dict))
7 pretty print(word count dict)

VideoNote 9.1
Using a Dictionary

9.2.3 Output and Comments
An abbreviated output of our code on the Gettysburg Address follows. It has 138 entries,
as we discovered in Section 7.5.2, most of which have frequencies of 1. To again reflect the
number of unique words, main prints the length of the dictionary, which is, in fact, the
number of unique words.

9 . 2 • W O R D C O U N T E X A M P L E 397

>>> main()
Length of the dictionary: 138
Word Count

that 13
the 11
we 10
to 8
here 8
a 7
and 6
of 5
not 5
nation 5
it 5
have 5
...
altogether 1
all 1
ago 1
advanced 1
add 1
above 1
>>>

A few things are worth noting:

� The sort method will use other elements of a compound object to order objects when
the first element is equivalent. Thus, all the words with a frequency of 1 are listed in
reverse alphabetical order.

� We can easily exclude any word with a frequency of 2 or less in our output. If we do
so, the number of words is reduced to only 27. Where would this change be made?

� We could also exclude from the list common, non-meaningful words such as articles
(and, the, in, it, etc.). These are often called stop words, and lists of stop words can be
found online. More easily, one can exclude any word with three or fewer letters (which
are typically stop words). Where would this change be made?

If we print under the conditions we just listed, frequency greater than 2 and key length
greater than 3, we get the following 11 entries:

>>> main()
Length of the dictionary: 138
Word Count

that 13
here 8
nation 5
have 5

398 C H A P T E R 9 • D I C T I O N A R I E S A N D S E T S

this 4
dedicated 4
they 3
shall 3
people 3
great 3
dead 3
>>>

The results here are more interesting. We see that nation is used five times, dedicated is
used four times, and great, dead, and people are each used three times. Because the Gettysburg
Address was given at a dedication of a cemetery for the historic Battle of Gettysburg, the
words dedicated, great, dead, and people would be expected. The frequent use of nation is
interesting and indicates that the speech was about more than dedicating the cemetery. Look
what our analysis revealed!

9.3 P E R I O D I C T A B L E E X A M P L E
Using a dictionary requires that you first identify the key and value elements to be used.
Consider the example of the periodic table of the elements. We can use an element’s
atomic symbol as a key and store any interesting data as another data structure associated
with that key. For example, the symbol for silicon is “Si” and if our dictionary is named
“periodic table,” we can access the data on silicon using periodic table["Si"].

9.3.1 Working with CSV Files
We’ll need a periodic table for our data. There are many online, but the particular one we
are using here was found as a spreadsheet.2 Spreadsheets and other application formats often
store data in a proprietary format, one developed by the company. However, many can also
save the data in the comma-separated values (CSV) format that we saw earlier. CSV files
are text files and more portable than an application’s proprietary format. Typically a CSV
file has a single line for each row (in this case, the row with data about a particular element)
where each value in the row is separated from the other values by a comma (hence the
name). The row information for the periodic table is listed in Figure 9.2. We are particularly
interested in the fields that contain the atomic symbol and the atomic mass (rounded).

'atomic #','atomic symbol','NewGroup','OldGroup','Period','name', 'atomic mass', ...

'1', 'H', '1', 'I A', '1', 'hydrogen', '1.008','±1', ...

FIGURE 9.2 Periodic table CSV file showing column headers and one row.

2 http://www.jeffbigler.org/documents/Periodic-Table.xls

http://www.jeffbigler.org/documents/Periodic-Table.xls

9 . 3 • P E R I O D I C T A B L E E X A M P L E 399

However, there is a problem reading the file that is illustrated in the next session. We
use pass, the “do nothing” statement (Section 2.2.10), as the suite of this loop as we are
testing the loop, not what we get from it.

>>> periodic file = open("Periodic-Table.csv", "r")
>>> for line in periodic file:

pass

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/Library/Frameworks/Python.framework/Versions/3.2/lib/python3.2/codecs.py",
line 300, in decode
(result, consumed) = self. buffer decode(data, self.errors, final)

UnicodeDecodeError: 'utf8' codec can't decode byte 0xb1 in position 461: invalid
start byte

What happened? First notice the error: “UnicodeDecodeError: 'utf8' codec can’t decode
byte 0xb1.” The offending symbol can be seen in Figure 9.2 as ± (plus/minus symbol) near
the end of the second line. That mathematical symbol doesn’t exist in the translation of
numbers to characters using the UTF-8 character set. Thus when the file-reading routine
encounters that symbol, it cannot translate it to text and throws an error. It turns out that
this CSV file was generated by Microsoft’s Excel spreadsheet software. Microsoft, especially
for some of their older products, used a different encoding of numbers to characters that
is called windows-1252.3 The official name in Python is cp1252, but windows-1252 is an
alias and more descriptive, so we use it here.4 If you look at the Wikipedia web page in
the footnote, you can see that the ± (plus/minus) symbol is represented by number 177
(in hexadecimal, 0xb1), which is the symbol reported as causing the problem in the error
message.

We need to indicate that the file was created with a different encoding to get around
this problem. The code to do this is:

periodic file = open("Periodic-Table.csv", "r",encoding="windows-1252")

However, setting the correct encoding does not necessarily solve all of our problems.
As simple as a CSV format seems, and that was the point after all, to create a simple format,
there are small variations in the details of how a CSV file can be created. These small
differences in the actual CSV format used can make reading such a file difficult.

Python to the rescue! As we have said many times, one of the strengths of Python is
the existence of modules to deal with common problems. Dealing with CSV files is very
common, so there is a useful Python module named csv that cuts through the mess of

3 http://en.wikipedia.org/wiki/Windows-1252
4 See the Python documentation at http://docs.python.org/py3k/library/codecs.html#module-codecs.

http://en.wikipedia.org/wiki/Windows-1252
http://docs.python.org/py3k/library/codecs.html#module-codecs

400 C H A P T E R 9 • D I C T I O N A R I E S A N D S E T S

the small differences in CSV formats generated by various programs. The module is simple
to use. We import the csv module and then open a file in the normal way, creating a file
object. We then create a special reader object by calling the function csv.reader with
an argument of the file. The reader object can be used with for to iterate through the
CSV file. Each iteration yields a row of the file as a list of strings where each element of the
list is one of the comma-separated fields in that row.

>>> import csv
>>> periodic file = open("Periodic-Table.csv", "r",encoding="windows-1252")
>>> reader = csv.reader(periodic file)
>>> for row in reader:

print(row)

some of the output data
['2', 'He', '18', 'VIII A', '1', 'helium', '4.003', '0', '', '', ...]
['3', 'Li', '1', 'I A', '2', 'lithium', '6.941', '+1', '', '', ...]
['4', 'Be', '2', 'II A', '2', 'beryllium', '9.012', '+2', '', '', ...]
['5', 'B', '13', 'III A', '2', 'boron', '10.81', '+3', '', '', ...]
e t c . e t c .

Note a couple of things:

� We opened the file for reading with a different encoding than the default UTF-8,
Microsoft’s windows-1252. If you work with enough files, you will run into many file
encodings (Mandarin Chinese, Thai, Arabic, etc.) so it is good to remember how to
change an encoding.

� We used the csv module to help us read the file. Though it is possible to read such a file
without the csv module, it is useful to know that we can use the module to get through
format issues of various files.

9.3.2 Algorithm Overview
For this example we will store some general data about each element (extracted from the CSV
periodic table) in our dictionary and use the atomic mass of each element to determine a
chemical compound’s atomic weight. That is, if someone enters the formula for a compound
such as sulfuric acid (H2SO4) as “H2-S-O4,” we can look up the mass of each element,
multiply that mass by the count of that element in the compound (e.g., H2 means two
hydrogen atoms), then add all the masses together. One challenge will be to parse the
compound formula—i.e., to separate the atomic symbol of the element and the element
count (H2, O4, etc.).

Let’s begin with an algorithm:

1. Read the contents of the periodic table CSV file.
2. Create a dictionary of the periodic table using each element symbol as a key and the

remaining CSV file information (shown in Figure 9.2) as the value.

9 . 3 • P E R I O D I C T A B L E E X A M P L E 401

3. Prompt for a compound string and convert it into a list of elements.
4. Parse the compound into symbol-quantity pairs, e.g., 'H2' becomes ('H', 2).
5. Print the name of each element in the compound.
6. Add each component’s atomic mass to the total mass using the information in the

dictionary.

9.3.3 Functions for Divide and Conquer
Let’s take the top two actions listed previously and create two functions to achieve those
goals:

read table(file object) takes a file object as input and returns a dictionary where
the key is the atomic symbol and the values are the remaining information for each
element found in the CSV file.

parse element(element string) takes in a string of the form 'symbol
count', such as 'H2', and returns a pair in the form (symbol,count) such as
('H',2).

read table
The read table(data file) function takes arguments: an opened file object and a
dictionary. Its processing should:

1. Create a csv.reader (from the csv module) to read the file.
2. Go through every row of the file and extract the atomic symbol (to use as the key) and

the remaining values.
3. Place them in the dictionary provided as an argument.

Again, there is no return from the function, as the dictionary, a mutable object, is
updated in the function.

Shown in Code Listing 9.6.

Code Listing 9.6

1 def read table(a file, a dict):
2 """Read Per iodic Table f i l e into a d i c t . with element symbol as key .
3 p e r i o d i c f i l e i s a f i l e ob j e c t opened f o r reading """
4 data reader = csv.reader(a file)
5

6 for row in data reader:
7 # ignore header rows : e lements begin with a number
8 if row[0].isdigit():
9 symbol str = row[1]

10 a dict[symbol str] = row[:8] # ignore end of row

402 C H A P T E R 9 • D I C T I O N A R I E S A N D S E T S

Some things to note:

Line 4: We begin with an empty dictionary: periodic table = {}.
Lines 6–10: The for loop processes each data row. We get the element’s symbol:

symbol str =row[1], and then add the element to the dictionary using the symbol
as the key. For the dictionary’s value, only the first seven fields of the row are used,
because the rest of the row happens to have extraneous data (the fields are not all filled
in). The file has quite a few header rows that we wish to ignore (they are descriptive
of the data that follows). Because every data row begins with a number (the element’s
atomic number), we can discard any line that does not begin with a number (line 8).
Grabbing the first seven fields includes the symbol in the dictionary’s value.

parse element(element str)
The function parse element(element str) takes a single string, such as 'H2', and
converts it to a tuple of symbol and quantity, ('H',2). Note a couple of tricky issues:

� 'H2' should return ('H',2).
� A singleton, such as 'H', should have a quantity 1.
� Some symbols have two letters, so 'Si4' should return ('Si',4),

The pattern is one or more letters followed by zero or more digits.
The function should:

� Gather all the characters at the beginning of the string. These constitute the symbol.
� Gather all the digit characters (which we assume to be digits) after the last character.

These constitute the quantity.
� Make the quantity an integer, and return the tuple of (symbol, quantity).

The function is shown in Code Listing 9.7.

Code Listing 9.7

1 def parse element(element str):
2 """ Parse element s t r i n g into symbol and quantity ,
3 e . g . Si2 re turn s (' Si ' ,2) """
4 symbol str=""
5 quantity str = ""
6 for ch in element str:
7 if ch.isalpha():
8 symbol str = symbol str + ch
9 else:

10 quantity str = quantity str + ch
11 if quantity str == "": # i f no number , de fau l t i s 1
12 quantity str = "1"
13 return symbol str, int(quantity str)

9 . 3 • P E R I O D I C T A B L E E X A M P L E 403

Some things to note:

Lines 7–10: The if statement is used to separate characters from numbers using the
isalpha method.

Lines 11–12: This if statement sets the quantity to "1", if no quantity is found.
Assumption: Note that this code assumes a well-formed string of the format indicated.

A string with the wrong format will not return the proper value. We’ll leave input
checking as an exercise for the reader.

With those two functions in hand, we can now write the complete program. We open
the file and create an empty dictionary. We call the function with the file and the dictionary.
The provided dictionary is updated with the information from the file. We prompt for
a hyphen-separated compound and split the compound into a list using split("-")
to split on hyphens. For each of the now element-number strings (H2, O4), we call the
parse element function, returning a tuple of (atomic-symbol, element-count). Now
we have a symbol that we can use to access the row values stored in periodic table
[symbol str]. We access the name (at index 5), and print it. Then we use the atomic mass
(at index 6), convert it to a float, and multiply by the quantity int to calculate the mass
that we add onto our total. Here is the program and output using sulphuric acid, H2-S-O4.

Code Listing 9.8

1 import csv
2

3 def read table(a file, a dict):
4 """Read Per iodic Table f i l e into a d i c t . with element symbol as key .
5 p e r i o d i c f i l e i s a f i l e ob j e c t opened f o r reading """
6 data reader = csv.reader(a file)
7

8 for row in data reader:
9 # ignore header rows : e lements begin with a number

10 if row[0].isdigit():
11 symbol str = row[1]
12 a dict[symbol str] = row[:8] # ignore end of row
13

14 def parse element(element str):
15 """ Parse element s t r i n g into symbol and quantity ,
16 e . g . Si2 re turn s (' Si ' ,2) """
17 symbol str=""
18 quantity str = ""
19 for ch in element str:
20 if ch.isalpha():
21 symbol str = symbol str + ch

404 C H A P T E R 9 • D I C T I O N A R I E S A N D S E T S

22 else:
23 quantity str = quantity str + ch
24 if quantity str == "": # i f no number , de fau l t i s 1
25 quantity str = "1"
26 return symbol str, int(quantity str)
27

28 # 1 . Read Fi l e
29 periodic file = open("Periodic-Table.csv", "r",encoding="windows-1252")
30

31 # 2 . Create Dictionary o f Per iodic Table using element symbols as key s
32 periodic dict={}
33 read table(periodic file, periodic dict)
34

35 # 3 . Prompt f o r input and convert compound into a l i s t o f e l ement s
36 compound str = input("Input a chemical compound, hyphenated, e.g. C-O2: ")
37 compound list = compound str.split("-")
38

39 # 4. I n i t i a l i z e atomic mass
40 mass float = 0.0
41 print("The compound is composed of: ", end=' ')
42

43 # 5 . Parse compound l i s t into symbol−quantity pair s , pr int name, and add mass
44 for c in compound list:
45 symbol str, quantity int = parse element(c)
46 print(periodic dict[symbol str][5], end=' ') # print element name
47 mass float = mass float + quantity int *\
48 float(periodic dict[symbol str][6]) # add atomic mass
49

50 print("\n\nThe atomic mass of the compound is", mass float)
51

52 periodic file.close()

>>>
Input a chemical compound, hyphenated, e.g. C-O2: H2-S-O4
The compound is composed of: hydrogen sulfur oxygen

The atomic weight of the compound is 98.086

Notice how convenient it was in this example to access the periodic table using the
element’s symbol. That is the power of the dictionary data structure.

9.4 S E T S
The next built-in data structure we consider is the set. Sets should be familiar to you from
either elementary or middle school mathematics. Python sets are quite similar to those sets.

9 . 4 • S E T S 405

9.4.1 History
Sets were invented by Georg Cantor, a German mathematician, in the late 1800s. Though
not old by the standards of math, sets have become an integral part of mathematical theory
and have revolutionized many aspects of mathematics. In spite of their power, the main
concepts are so simple that they can be taught at an early age.

Let’s review the set theory we all learned in elementary and middle school as we learn
about Python’s sets.

9.4.2 What’s in a Set?
A set is a collection of objects, regardless of the objects’ types. These are the elements or
members of the set. Only one copy of any element may exist in the set—a useful characteristic.
There is no order to the elements in the set, thus it is, like a dictionary, not a sequence. A
set with no elements is the “empty set,” also known as the “null set.” A set is an iterable, as
are all the collections we have seen.

9.4.3 Python Sets
A set is created by calling the set constructor or using curly braces and commas. The use of
curly braces as a way to construct a set can be a bit confusing, as it looks much like the way
to construct a dictionary. How to tell them apart? When making a dictionary, the elements
are of the form key:value, where the colon(:) separates the key from the value. In a set,
there is only a list of comma-separated elements. That is how you may tell the two data
structure constructors apart, by the form of their elements.

Furthermore, since empty curly braces are used to create an empty dictionary, you must
use the set constructor to specify an empty set: set(). The set constructor requires an
iterable argument much like the list constructor, e.g., set('abcd'). The result is a set
with each element of the iterable as a member {'a', 'c', 'b', 'd'}. Again, there is
no order to the elements of a set. The order can change as elements are added.

Like a list or a dictionary, a Python set can contain a mixture of types. We illustrate
these concepts in the following session:

>>> null set = set() # s e t () c r e a t e s the empty s e t
>>> null set
set()
>>> a set = {1,2,3,4} # no co l on s means s e t
>>> a set
{1, 2, 3, 4}
>>> b set = {1,1,2,2,2} # dup l i ca t e s are ignored
>>> b set

406 C H A P T E R 9 • D I C T I O N A R I E S A N D S E T S

{1, 2}
>>> c set = {'a', 1, 2.5, (5,6)} # d i f f e r e n t t y p e s i s OK
>>> c set
{(5, 6), 1, 2.5, 'a'}
>>> a set = set("abcd") # s e t con s t ruc t ed from i t e r a b l e
>>> a set
{'a', 'c', 'b', 'd'} # order not maintained !

If duplicate values are added to a Python set, only one such element is actually placed
in the set. This means that you can add an element as many times as you wish to a set and
only one example of the element will appear.

Python Sets Are Mutable
Like lists and dictionaries, sets are mutable data structures. Though index assignment is not
possible on a set (it isn’t a sequence), various methods of the set (such as add or remove)
change the elements of a set.

9.4.4 Methods, Operators, and Functions for Python Sets
Typical Operations
len() Like all collections, you can determine the number of elements in a set using the

len function.
in Is an element in the set? The in operator tests membership and returns a Boolean True

or False depending on whether the element is or is not a member of the set.
for Like all collections, you can iterate through the elements of a set using the for

statement. The order of the iteration through the objects is not known, as sets have no
order.

These operations are shown in the following session.

>>> my set = {'a', 'c', 'b', 1, 3, 2}
>>> len(my set)
6
>>> 'a' in my set
True
>>> 'z' in my set
False
>>> for element in my set:

print(element,end = ' ')

a 1 2 3 c b
>>>

9 . 4 • S E T S 407

9.4.5 Set Methods
Python implements the typical mathematical set operations. There are two ways to call each
of these operations: using a method or using a binary operator. The results of either approach
are the same, though there is some difference in the way they are used. We note in the expla-
nation of each operation that some are commutative and some are not—that is, the order
of the operation may or may not matter. The binary operators for set operations are &, |,
-, ˆ, <=, >=. Each binary operator takes two sets with an intervening operator,
such as a set & b set. The methods available are intersection, union,
difference and symmetric difference, issubset, issuperset.
For these methods, a set calls the method (using the dot notation) with another collection
as the argument. One difference between the binary operators and methods are that the
methods approach allows the argument to be any iterable collection. The binary operators
require both arguments to be sets. Readability is an issue as well. The methods approach
makes it clear what operation is being performed, though the method names are rather
long. The binary operator approach is short but can be difficult to read if you are not
familiar with the meaning of the binary operator symbols. We will tend to use the methods
approach because of the clarity of the method names.

Intersection
Intersection is done using the & operator or the intersection method. This operation
creates a new set of the elements that are common to both sets (Figure 9.3). The order of
the sets does not matter.

>>> a set = {'a','b','c','d'}
>>> b set = {'c','d','e','f'}
>>> a set & b set # i n t e r s e c t i o n op
{'c', 'd'}
>>> b set & a set # order doesn ' t matter
{'c', 'd'}

a b c d e f

a_set b_set

FIGURE 9.3 Intersection of {'a', 'b', 'c', 'd'} and {'c', 'd', 'e', 'f'}.

408 C H A P T E R 9 • D I C T I O N A R I E S A N D S E T S

>>> a set.intersection(b set) # method approach
{'c', 'd'}
>>> a set.intersection('cdef') # using i t e r a b l e
{'c', 'd'}
>>>

Union
Union is done using the | operator or the union method. Union creates a new set that
contains all the elements in both sets (Figure 9.4). The order of the sets does not matter.

>>> a set = {'a','b','c','d'}
>>> b set = {'c','d','e','f'}
>>> a set | b set # union o f a l l e l ements
{'a', 'c', 'b', 'e', 'd', 'f'}
>>> b set | a set # commutative , order doesn ' t matter
{'a', 'c', 'b', 'e', 'd', 'f'}
>>> a set.union(b set) # method approach
{'a', 'c', 'b', 'e', 'd', 'f'}
>> a set.union(['c', 'd', 'e', 'f']) # l i s t i t e r a b l e as an argument
{'a', 'c', 'b', 'e', 'd', 'f'}
>>>

a b c d e f

a_set b_set

FIGURE 9.4 Union of {'a', 'b', 'c', 'd'} and {'c', 'd', 'e', 'f'}.

Difference
Difference is done using the - operator or the difference method. Difference creates a
new set whose elements are in the first (calling) set and not in the second (argument) set
(Figure 9.5). Unlike the other set operators, the difference operator is not commutative (much
in the same way that integer subtraction is not commutative: 5 − 2 is not the same as 2 − 5).

>>> a set = {'a','b','c','d'}
>>> b set = {'c','d','e','f'}
>>> a set - b set # elements o f a se t that are not in b set
{'a', 'b'}

9 . 4 • S E T S 409

a b c d e f

a_set b_set

FIGURE 9.5 Difference of {'a', 'b', 'c', 'd'} and {'c', 'd', 'e', 'f'}.

>>> b set - a set # order matters !
{'e', 'f'}
>>> a set.difference(b set) # method approach
{'a', 'b'}
>>> b set.difference(a set)
{'e', 'f'}
>>> a set.difference('cdef') # s t r i n g in t e rab l e as an argument
{'a', 'b'}
>>>

Symmetric Difference
This symmetric difference operation might be new to you. Essentially, symmetric dif-
ference is the opposite of intersection. It creates a new set of values that are different,
not in either of the two sets. The symmetric difference operator is ˆ and the method is
symmetric difference. The order of the sets does not matter.

>>> a set = {'a','b','c','d'}
>>> b set = {'c','d','e','f'}
>>> a set ˆ b set # unique e lements in the s e t s
{'a', 'b', 'e', 'f'}
>>> b set ˆ a set # order doesn ' t matter
{'a', 'b', 'e', 'f'}
>>> a set.symmetric difference(b set) # method approach
{'a', 'b', 'e', 'f'}
>>> a set.symmetric difference('cdef') # using i t e r a b l e
{'a', 'b', 'e', 'f'}
>>>

Subset and Superset
The concept of subset and superset should be familiar. A set is a subset of another set only
if every element of the first set is an element of the second set. Superset is the reversed
concept: set A is a superset of set B only if set B is a subset of set A. Clearly, the order of set

410 C H A P T E R 9 • D I C T I O N A R I E S A N D S E T S

a b c d e f

a_set b_set

FIGURE 9.6 Symmetric difference of {'a', 'b', 'c', 'd'} and
{'c', 'd', 'e', 'f'}.

operation matters in these operations; i.e., it is not commutative. A set is both a subset and
a superset of itself. The subset operator is <= and the superset operator is >=. The method
names are issubset and issuperset. All four of these operations return a Boolean
value. See Figure 9.7.

>> small set = {'a', 'b', 'c'}
>>> big set = set('abcedf')
>>> small set <= big set # sub s e t
True
>>> big set >= small set # sup e r s e t
True
>>> big set <= big set # s e t i s a sub o f i t s e l f
True
>>> small set >= small set # s e t i s a super o f i t s e l f
True
>>> small set >= big set
False
>>> small set.issubset('abcdef') # s t r i n g i t e r a b l e as argument
True
>>> small set.issuperset('abcdef') # s t r i n g i t e r a b l e as argument
False
>>>

a b c d e f

small_set = {'a', 'b', 'c'}

big_set = {'a', 'b', 'c', 'd', 'e', 'f'}

FIGURE 9.7 {'a', 'b', 'c'} is a subset of {'a', 'b', 'c', 'd', 'e', 'f'}.

9 . 5 • S E T A P P L I C A T I O N S 411

Check Yourself: Set Check

1. Indicate the requested output for the following program.

def f1 (s1,s2,op=4):
if op == 1:

temp = s1.intersection(s2)
elif op == 2:

temp = s1.difference(s2)
else:

temp = s1.union(s2)
return temp

set1 = {'ab'}
set2 = {'cd'}

print(f1(set1,set2)) # Line 1
print(f1(set1,set2,1)) # Line 2
print(f1(set1,set2,2)) # Line 3

(a) What output is produced by Line 1 of the program?
(b) What output is produced by Line 2 of the program?
(c) What output is produced by Line 3 of the program?

Other Set Methods
There are a few other set methods that you might find useful:

add(element) Adds the element to the set. There is no effect if the element is already
in the set (remember, only one copy of an element in a set). It modifies the set, so there
is no return value.

clear() Removes all the elements of the set (making it empty).
remove(element) and discard(element) Both methods remove the element if

it exists. The difference is that remove will cause an error if the element being removed
is not part of the set. In contrast, discard will not give an error even if the argument
being removed does not exist in the set. There is no value returned.

copy() Returns a shallow copy of the set.

9.5 S E T A P P L I C A T I O N S
There are many applications that can make use of sets. However, two general categories are
worth mentioning:

� Finding the unique elements (of a list, file, etc.). It is relatively simple to accomplish
with a set. Just add each element to the set and let the set deal with multiples copies.

� Finding various combinations of elements using the set operators.

412 C H A P T E R 9 • D I C T I O N A R I E S A N D S E T S

9.5.1 Relationship Between Words of Different Documents
Earlier in this chapter (Section 9.2.2), we counted the frequency of words in a file using the
Gettysburg Address as an example. Let’s build on this work to do even more file analysis,
by comparing the words used in two different files to see what that might tell us about the
documents. We will use sets to discover properties such as the common words, the number
of unique words used by both, and the number of unique words used in each document.
For this example, we will continue to use the Gettysburg Address and compare its contents
to the Declaration of Independence.

The good news is that the outline of work from Section 9.2.2—even some of the code
itself—can be reused or only slightly modified to solve this new problem. Code reuse is one
of the advantages of good, modular design. Functions that solve a problem well can be used
in other contexts with little or no change required.

Here is a list of functions we will reuse. Modifications are described as well.

add word: Add each word to the set. Parameters are the word and a set. No return value.
This function must be modified from its previous definition to use the appropriate set
methods.

process line: There is some work to be done to process the line: strip off various
characters, split out the words, and so on. Parameters are a line and the set. It calls
add word with each processed word. No return value. Happily, this function can be
used as is! Though the parameter names are inappropriate for this context, the code
functions perfectly.

pretty print: The parameters are the two file sets. No return value. As the output
required is quite different, this function will have to be rewritten.

main: We will use a main function as the main program. As before, it will open each file
and call process line on each line. When finished, it will call pretty print and
print the results for the two sets. This function requires some slight modifications.

Let’s take a look at the functions in detail.

add word
We are working with sets, so we must use different methods—in particular the addmethod.
Again, it is useful to note that this change is isolated in this function. We need not change
other parts of the code to deal with changing the set. The code is shown in Code Listing 9.9.

Code Listing 9.9

1 def add word(word, word set):
2 ' ' 'Add the word to the s e t . No word smal l e r than length 3 . ' ' '
3 if len(word) > 3:
4 word set.add(word)

9 . 5 • S E T A P P L I C A T I O N S 413

As we hinted at in Section 9.2.2, it is useful to treat any word of length 3 or less as a
stopword. The if statement on line 3 does this.

process line
This code is untouched from the previous version except to use an appropriate parameter
name for this context. The code is shown in Code Listing 9.10.

Code Listing 9.10

1 import string
2 def process line(line, word set):
3 ' ' ' P ro c e s s the l in e to g e t lowerca s e words to be added to the s e t . ' ' '
4 line = line.strip()
5 word list = line.split()
6 for word in word list:
7 # ignore the '−−' that i s in the f i l e
8 if word != '--':
9 word = word.strip()

10 # ge t commas , pe r i od s and other punctuation out as wel l
11 word = word.strip(string.punctuation)
12 word = word.lower()
13 add word(word, word set)

main
The main program is modified slightly. We must now open two files to do the comparison,
and for each we must create a set for processing and then process all the lines of the file
using process line. After both sets are created, we call pretty print with the two
sets to print out the information. The code is shown in Code Listing 9.11.

Code Listing 9.11

1 def main ():
2 ' ' ' Compare the Gettysburg Address and the Declaration o f Independence . ' ' '
3 gettysburg address set = set()
4 declaration of independence set = set()
5 gettysburg file = open('gettysburg.txt')
6 declaration independence file = open('declOfInd.txt')
7 for line in gettysburg file:
8 process line(line, gettysburg address set)
9 for line in declaration independence file:

10 process line(line,declaration of independence set)
11 pretty print(gettysburg address set, declaration of independence set)

414 C H A P T E R 9 • D I C T I O N A R I E S A N D S E T S

pretty print
The main differences of the programs are here. The function takes the two sets as parameters
and then prints out various pieces of information about the documents. At the end, we print
out the common words in a nice format as well. As is often the case with print-oriented
code, it appears complicated, but each element is straightforward. The code is shown in
Code Listing 9.12.

Code Listing 9.12

1 def pretty print(ga set, doi set):
2 # print some s t a t s about the two s e t s
3 print('Count of unique words of length 4 or greater')
4 print('Gettysburg Addr: {}, Decl of Ind: {}\n'.format(len(ga set),len(
doi set)))

5 print('{:15s} {:15s}'.format('Operation', 'Count'))
6 print('-'*35)
7 print('{:15s} {:15d}'.format('Union', len(ga set.union(doi set))))
8 print('{:15s} {:15d}'.format('Intersection', len(ga set.intersection(
doi set))))

9 print('{:15s} {:15d}'.format('Sym Diff', len(ga set.symmetric difference(
doi set))))

10 print('{:15s} {:15d}'.format('GA-DoI', len(ga set.difference(doi set))))
11 print('{:15s} {:15d}'.format('DoI-GA', len(doi set.difference(ga set))))
12

13 # l i s t the i n t e r s e c t i o n words , 5 to a l ine , a lphabe t i ca l order
14 intersection set = ga set.intersection(doi set)
15 word list = list(intersection set)
16 word list.sort()
17 print('\n Common words to both')
18 print('-'*20)
19 count = 0
20 for w in word list:
21 if count % 5 == 0:
22 print()
23 print('{:13s}'.format(w), end=' ')
24 count += 1

Some comments.

Line 4: We print the lengths of the two sets. These lengths represent the number of unique
words (no duplicates in a set, remember) for each document. Because of the change we
made to add word, these are only the words of length 4 or greater.

Lines 8–13: Here we print out the lengths, not the contents, of the sets that result from
various set operations. We format the results in two columns.

9 . 5 • S E T A P P L I C A T I O N S 415

Lines 15–17: The only contents we’ll print are the intersection result, as it is the smallest.
We create the intersection set, then turn the contents into a list. We do this because it
would be nice to list the common words in alphabetical order and sets are unordered.
Once converted to a list, we sort the list. Alternatively, we could have used the function
sorted.

Line 20–25: All of this code is to print the list of sorted words in a five-column format. We
iterate through the list and print each word one at a time. That print statement on line
24 has end=' ' so that no new line character is printed. All the words will print to the
same line. However, we keep a variable count to track how many words are printed.
Every fifth word triggers the if statement on line 21, which prints a blank line. The
result is that the code prints five columns of words.

9.5.2 Output and Comments
The session below shows the output of the program on the two files.

>>> main()
Count of unique words of length 4 or greater
Gettysburg Addr: 100, Decl of Ind: 487

Operation Result

Union 556
Intersection 31

Sym Diff 525
GA-DoI 69
DoI-GA 456

Common words to both

cause civil created earth equal
from full government great have
here liberty lives long nation

people power remaining shall should
that their these they this
those thus under which will
world

>>>

We can confirm that these numbers make sense. The sum of the two sets is 587, but
the intersection has 31 words, meaning that the union should have a count of 587 − 31 =
556. Good so far. The Gettysburg addr - Decl of Independence should be the
difference of the first set size minus the common set size, 100 − 31 = 69. Also good. The

416 C H A P T E R 9 • D I C T I O N A R I E S A N D S E T S

symmetric difference should be the difference between the union size and the intersection
size, 556 − 31 = 525. All good.

As for the common (intersection) words, they are interesting to see. Words appear that
you would expect such as nation, liberty, government, people, and so on.

9.6 S C O P E : T H E F U L L S T O R Y
In Section 8.1, we defined the term scope, mostly as it applies to functions. Now that we
have dictionaries, we can provide a more complete explanation. A novice programmer can
get by without a complete understanding of scope, but a greater understanding is useful as
you advance in Python (or another programming language). Also, a better understanding
of scope can help interpret some error messages.

9.6.1 Namespaces and Scope
Remember, a namespace is a relation between names and objects. We use a namespace to
determine what object is associated with a variable. It is easy to think of a namespace as a
dictionary, where the keys are the names and the values are the objects.5 In Python, there can
be multiple namespaces. These namespaces do not share names. A name in one namespace
can have as a value any Python object, and the same name in different namespaces can
be associated with a different object. However, multiple namespaces can work together to
resolve a name if a name-resolution protocol exists. That is, if there are multiple namespaces
(and there always are), we can define an order of search to look through different namespaces
to find a name (or find that the name does not exist in any recognized namespace). That
process defines scope in Python.

In Python we resolve names by defining a search rule that defines the order that Python
looks through multiple namespaces to find a name (or find that the name is not yet defined).

9.6.2 Search Rule for Scope
In the book Learning Python,6 the author defines a lovely abbreviation that summarizes the
Python rule for scope. He calls it the LEGB rule, where the letters stand for:

� Local
� Enclosing
� Global
� Built-in

5 The Python documentation notes that, although namespaces are currently implemented as dictionaries, it would be dangerous to count
on that fact, as the implementation might change!

6 Mark Lutz. Learning Python, 3rd ed. (Cambridge, MA: O’Reilly Media, Inc., 2007) ©2007 Mark Lutz. All rights reserved. Used with
permission.

9 . 6 • S C O P E : T H E F U L L S T O R Y 417

This LEGB rule defines the sequence of namespaces examined when looking for a name
(variable name, function name, etc.). If the entire sequence is examined and the name is not
found, then Python returns an error. Let’s take a look at each of the namespaces searched.

9.6.3 Local
The local namespace is the namespace that we discussed in Section 8.1 in the context of a
function. It is the namespace within a function that comes into being when the function
is invoked, and it becomes inactive when the function invocation ends. While the local
namespace is active, it is the first namespace that is checked for the existence of a name.
If the name is found in the local namespace, then the associated object (or an error if the
name exists but no value is yet associated) is returned. Look at Code Listing 9.13 and the
below session.

Code Listing 9.13

global X = 27

def my function(param1=123, param2='hi mom'):
local X = 654.321
print('\n=== local namespace ===')
for key,val in locals().items():

print('key:{}, object:{}'.format(key, str(val)))
print('local X:',local X)
print('global X:',global X)

my function()

=== local namespace ===
key:local X, object:654.321
key:param1, object:123
key:param2, object:hi mom
local X: 654.321
global X: 27

The special function locals takes no arguments and returns a dictionary of the local
namespace—in this case, the namespace found in the function my function while it is
running. Notice that there are three entries: the two parameters param1 and param2 and
the variable created by assignment in the function suite, local X. Further, notice that the
variable global X assigned outside of the function is not found in the local namespace of
the function. Yet, as evidenced by the print statement, it is available and can be printed in
the function.

418 C H A P T E R 9 • D I C T I O N A R I E S A N D S E T S

Python is able to resolve global X because global X is in the global namespace.
The search rule, LEGB, says to look first in the local space (then in the enclosing space—
described later), and then in the global space. Let’s look at the global namespace.

9.6.4 Global
One place where a namespace is maintained is in a module. Modules are Python files, and
they contain objects such as functions that can be imported and used by other programs.
The math module is the one we’ve discussed the most. When a module such as math is
imported, that module brings with it a namespace that relates all the names of the module to
objects. This namespace can be observed by looking at the dictionary stored in dict
in each module. This dictionary is the namespace for the module.

If we want to reference one of the objects in a module such as math, we precede the
associated name with the module name using dot notation. When we do so, we are asking
for the object associated with a name in that module. For example, math.pi is a request
for the object (in this case, a floating-point number) associated with the name pi in the
math module.

When the Python interpreter starts up, it loads two default modules without requiring
an import: the module main and the module builtins . The main is
the default, global module in which all new objects are stored. The dictionary of that
namespace can be accessed by using the function globals. Like the previously observed
locals function, globals returns a dictionary representing the global namespace. When
we type interactively to the Python interpreter, globals is the active namespace.

Look at Code Listing 9.14 and resulting session. The function my function is
identical to the function in the previous example.

Code Listing 9.14

import math
global X = 27

def my function(param1=123, param2='hi mom'):
local X = 654.321
print('\n=== local namespace ===')
for key,val in locals().items():

print('key: {}, object: {}'.format(key, str(val)))
print('local X:',local X)
print('global X:',global X)

my function()

key,val = 0,0 # add to the g loba l namespace . Used below
print('\n--- global namespace ---')

9 . 6 • S C O P E : T H E F U L L S T O R Y 419

for key,val in globals().items():
print('key: {:15s} object: {}'.format(key, str(val)))

print('\n-----------------------')
#print ' Local X : ' , local X
print('Global X:', global X)
print('Math.pi:',math.pi)
print('Pi:',pi)

=== local namespace ===
key: local X, object: 654.321
key: param1, object: 123
key: param2, object: hi mom
local X: 654.321
global X: 27

--- global namespace ---
key: my function object: <function my function at 0xe15a30>
key: builtins object: <module ' builtin ' (built-in)>
key: package object: None
key: global X object: 27
key: name object: main
key: doc object: None
key: math object: <module 'math' from '/Library/Frameworks/Python.
framework/Versions/3.2/lib/python3.2/lib-dynload/math.so'>

Global X: 27
Math.pi: 3.14159265359
Pi:

Traceback (most recent call last):
File "/Volumes/Admin/Book/chapterDictionaries/localsAndGlobals.py", line 22, in

<module>
print('Pi:',pi)

NameError: name 'pi' is not defined

The local function results are exactly as in the previous example, but we now also print
the global values. Notice a few things. First, global X is indeed in the global namespace,
which is why the print statement in my function does work. Python first looks in the
local namespace, fails, and moves on to look in the global namespace as it follows the
LEGB rule.

Second, my function is itself a name in the global namespace! Finally, the variable
local X is not in the global namespace. If we try to print its value, we get an error. There

420 C H A P T E R 9 • D I C T I O N A R I E S A N D S E T S

is an error, because at that point in the program, outside of the running function, the
function’s namespace is unavailable. The function’s namespace is active only while the suite
of the function is actually executing.

Third, math is now a name in the global namespace due to the import of the math
module, so we can use math as a prefix to names in that module. When we print math.pi,
we get a value, but when we print pi by itself, we get an error. That name pi is not in the
global namespace!

The Local Assignment Rule
One interesting effect of Python’s approach is something we call the local assignment rule. If
anywhere in a function an assignment is made, then that assignment is assumed to create a
name only in the presently active namespace. This has the sometimes painful side effect shown
in Code Listing 9.15.

Code Listing 9.15

my var = 27

def my function(param1=123, param2='Python'):
for key,val in locals().items():

print('key {}: {}'.format(key, str(val)))
my var = my var + 1 # cau s e s an e r ro r !

my function(123456, 765432.0)

key param2: 765432.0
key param1: 123456
Traceback (most recent call last):
File "localAssignment1.py", line 9, in <module>
my function(123456, 765432.0)

File "localAssignment1.py", line 7, in my function
my var = my var + 1 # cau s e s an e r ro r !

UnboundLocalError: local variable 'my var' referenced before assignment

We first create the variable my var by assignment in the global namespace. The natural
expectation is that, when we try to add 1 to that value within the function, the function
looks in the local namespace, cannot find it, and moves on to the name in the global
namespace. Sadly, that is not how it works.

Python makes the following assumption. If an assignment of a variable takes place
anywhere in the suite of a function, Python adds the name to the local namespace. The
statement my var = my var + 1 has an assignment of the name my var. Python

9 . 6 • S C O P E : T H E F U L L S T O R Y 421

assumes, no matter where the assignment occurs, that my var is part of the local namespace
of the function my function. When Python tries to add 1 to my var, the name is in the
local namespace but has no value (yet), so Python generates an error.

The problem is when Python decides to make my var local. It does so before the code
is run, i.e., when Python encounters the function definition. As the local namespace is
created (before the code actually runs), Python examines the code and populates its local
namespace. Before it runs the offending line, it sees the assignment to my var and adds it
to the local namespace. When the function is executed, the Python interpreter finds that
my var is in the local namespace but has no value yet—generating an error.

The global Statement
There is a way around this conundrum. If, within a function suite, a variable is declared to
be a global variable using the global statement, then Python will not create a local name
in the namespace for that variable. Code Listing 9.16 shows the change in the new function
better function while keeping the old code around for comparison.

Code Listing 9.16

my var = 27

def my function(param1=123, param2='Python'):
for key,val in locals().items():

print('key {}: {}'.format(key, str(val)))
my var = my var + 1 # cau s e s an e r ro r !

def better function(param1=123, param2='Python'):
global my var
for key,val in locals().items():

print('key {}: {}'.format(key, str(val)))
my var = my var + 1
print('my var:',my var)

my function (123456, 765432.0)
better function()

key param2: Python
key param1: 123
my var: 28

422 C H A P T E R 9 • D I C T I O N A R I E S A N D S E T S

9.6.5 Built-Ins
As we mentioned earlier, there are two namespaces that are created when Python starts:

main and builtins . The latter is a link to all the regular Python programs
and data types that are provided by default. Following the LEGB search rule, if Python
cannot find a name in first the local namespace, then the global namespace, it looks for a
Python built-in name.

The builtin module, like other modules, has a dict attribute, which is the
module’s namespace. The following code will print out the key-value pairs in that namespace.
The output from Code Listing 9.17 is too long to include here.

Code Listing 9.17

builtin dict = builtins . dict
print('Builtin dictionary has {} entries\n'.format(len(builtin dict)))

for key,val in builtin dict.items():
print('key:: {:20s} val:: {}'.format(key,str(val)))

9.6.6 Enclosed
An astute reader will note that we skipped one letter: what about the E in the LEGB rule,
the “enclosed” namespace? A beginning programmer may not encounter this situation, but
we include it for completeness.

The “enclosed” scope rule applies when a function defines a function; that is, within
a function’s suite, a new function is defined. Take a look at the code and output in Code
Listing 9.18.

Code Listing 9.18

global var = 27

def outer function(param outer = 123):
outer var = global var + param outer

def inner function(param inner = 0):
ge t inner , enc l o s ed and g loba l
inner var = param inner + outer var + global var

9 . 6 • S C O P E : T H E F U L L S T O R Y 423

print inner namespace
print('\n--- inner local namespace ---')
for key,val in locals().items():

print('{}:{}'.format(key,str(val)))
return inner var

result = inner function(outer var)
print outer namespace
print('\n--- outer local namespace ---')
for key,val in locals().items():

print('{}:{}'.format(key,str(val)))
return result

result = outer function(7)
print('\n--- result ---')
print('Result:',result)

--- inner local namespace ---
outer var:34
inner var:95
param Inner:34

--- outer local namespace ---
outer var:34
param Outer:7
result:95
inner function:<function inner function at 0xe2ba30>

--- result ---
Result: 95

The inner function is defined within the suite of outer function. In the
session output, you can see that inner function is part of the local namespace of
outer function, meaning that only code with the suite of the outer function can
call inner function. Said another way, the inner function is available for execution
only during the execution of outer function. The full LEGB rule is to check the local
namespace, then any functions that enclose our local namespace, as outer function
encloses inner function, then the global namespace, and ending with the built-ins.
The output shows the dependencies of the various pieces.

For the beginning programmer, this kind of nested function is uncommon. Still, it does
show fairly clearly how the scope search rule of Python works.

424 C H A P T E R 9 • D I C T I O N A R I E S A N D S E T S

9.7 P Y T H O N P O I N T E R : U S I N G zip T O C R E A T E
D I C T I O N A R I E S

An interesting and very useful operator is zip, which creates pairs from two parallel
sequences. The zip operator works like a zipper to merge multiple sequences into a list of
tuples. It is not special to dictionaries, but when combined with the dict constructor, it
provides a useful way to create dictionaries from sequences.

>>> keys = ["red","white","blue"]
>>> values = [100, 300, 500]
>>> d = dict(zip(keys,values))
>>> d
{'blue': 500, 'white': 300, 'red': 100}

The zip function provides another way to reverse key-value pairs, but it is possible
only if values are immutable so that they are allowable as keys. Here is a session that reverses
the key-value pairs of the previous session:

>>> d
{'blue': 500, 'white': 300, 'red': 100}
>>> d2 = dict(zip(d.values(), d.keys()))
>>> d2
{300: 'white', 500: 'blue', 100: 'red'}

VideoNote 9.2
More Dictionaries

9.8 P Y T H O N D I V E R S I O N : D I C T I O N A R Y A N D S E T
C O M P R E H E N S I O N

In Section 7.10 we introduced the idea of a comprehension and, in the context of the
list collection, the list comprehension. Because we know about two more collections, it
turns out there are two more comprehensions we can work with: the dictionary and set
comprehensions. The general format is as with lists, but the brackets are different:

{expression for-clause condition}
Dictionary and set comprehensions both use curly braces, but dictionaries are differentiated
by the colon used to separate the elements in the expression part of the comprehension. The
set comprehension returns a set and the dictionary comprehension returns a dictionary. In
the following session we create a dictionary, reverse its key-value pairs, and then create a list
for sorting.

>>> a dict = {k:v for k,v in enumerate('abcdefg')}
>>> a dict
{0: 'a', 1: 'b', 2: 'c', 3: 'd', 4: 'e', 5: 'f', 6: 'g'}
>>> b dict = {v:k for k,v in a dict.items()} # r e v e r s e key−value pa i r s
>>> b dict

9 . 9 • V I S U A L V I G N E T T E : B A R G R A P H O F W O R D F R E Q U E N C Y 425

{'a': 0, 'c': 2, 'b': 1, 'e': 4, 'd': 3, 'g': 6, 'f': 5}
>>> sorted(b dict) # only s o r t s key s
['a', 'b', 'c', 'd', 'e', 'f', 'g']
>>> b list = [(v,k) for v,k in b dict.items()] # c r ea t e l i s t
>>> sorted(b list) # then s o r t
[('a', 0), ('b', 1), ('c', 2), ('d', 3), ('e', 4), ('f', 5), ('g', 6)]

Set comprehension is similar. Again note that we can differentiate the set from the
dictionary comprehension by the lack of colon in the expression part of the comprehension.
Note how when building the set we end up with unique items.

>>> a set = {ch for ch in 'to be or not to be'}
>>> a set
{' ', 'b', 'e', 'o', 'n', 'r', 't'} # s e t o f unique chara c t e r s
>>> sorted(a set)
[' ', 'b', 'e', 'n', 'o', 'r', 't']

V I S U A L V I G N E T T E

9.9 BAR GRAPH OF WORD FREQUENCY
Having constructed the dictionary of word-frequency pairs, it would be interesting to plot
the words versus their frequency to visualize the results. Matplotlib provides a bar command
to plot bar charts, so that is a natural choice.

There are three general steps to make the bar chart in this case. The first is to set up the
x-axis to use the words as the labels. The second is to get the dictionary data gathered together
in the appropriate format for plotting. The third is to actually make the plot. Let’s see some
code, then go through these issues one at a time. We add a new function, the bar graph
function, which takes as a parameter our word count dict from Section 9.2.2 and plots
a bar graph of word versus frequency.

Code Listing 9.19

1 def bar graph(word count dict):
2 ' ' ' bar graph of word−frequency , xax i s labe l ed with words ' ' '
3 # c o l l e c t key and value l i s t f o r p l o t t in g
4 word list = []
5 for key,val in word count dict.items():
6 if val>2 and len(key)>3:
7 word list.append((key,val))

426 C H A P T E R 9 • D I C T I O N A R I E S A N D S E T S

8 word list.sort()
9 key list = [key for key,val in word list]

10 value list = [val for key,val in word list]
11 # ge t t i c k s as the key s / words
12 bar width=0.5
13 x values = numpy.arange(len(key list))
14 pylab.xticks(x values+bar width/2.0,key list,rotation=45)
15 # c r ea t e the bar graph
16 pylab.bar(x values,value list,width=bar width,color='r')
17 pylab.show()

9.9.1 Getting the Data Right
Ultimately, what we want are two lists: a list of the keys in alphabetical order and another
corresponding list of values. “Corresponding” means that we want the index of the key list
to “line up” with its associated value in the value list. Let’s take a look:

Lines 4–7: We make a list word list and append onto it key-value pairs as tuples from
word count dict. As we did in Section 9.2.2, we take only those words that appear
to be important: frequencies greater than 2 and word length greater than 3. We order
the tuples in (key,value) order because we want to then sort the list into alphabetical
order on the words. Thus, we need the value to be first in each tuple.

Lines 9–10: We then create the two lists, key list and value list, which contain the
keys and the values, respectively. The index of the keys and values are aligned—that
is, the key at index 0 corresponds to the value at index 0 and so forth. We use a list
comprehension in both cases.

9.9.2 Labels and the xticks Command
Matplotlib provides a command to orient and label each x-axis entry. These entries are often
called “ticks,” so the commands to label them are called xticks and yticks. If you do
not provide such a command, matplotlib will label the ticks with the appropriate number.
However, you have the option to say what each tick label should be and where it should be
located. Let’s look.

Line 12: We set a width bar width for the width of our bars in the graph.
Line 13: We create a list with numbers from 0 to the size of our key list. We use the

numPy function arange, similar to range, to generate the list (see Appendix C).
This will be the number of xticks on our graph.

9 . 9 • V I S U A L V I G N E T T E : B A R G R A P H O F W O R D F R E Q U E N C Y 427

Line 14: This is the xticks command. It takes three arguments here. The first is the
location of the tick being placed. We are using a numPy array to indicate the position
of each tick, and to each of those ticks we add the tick position to the bar width
divided by 2. Because it is a numPy array, the addition-division is done to each element
of the xVals array (see Appendix C for more details). The second argument is the
list of labels, the key list. The third is an option that specifies to rotate each label
45 degrees.

9.9.3 Plotting
Lines 16–17 do the plotting. The bar command takes four arguments here. The first is
the xtick locations. The labels were set previously by the xticks command. The second
is the list of values to plot, the value list. The last two are plot options, the bar width
and the bar color. The show command then draws the plot.

The plot is shown in Figure 9.8.

de
ad

de
dic

at
ed

gr
ea

t
he

re

na
tio

n

pe
op

le
sh

all th
at

th
ey th

is
ha

ve

0

2

4

6

8

10

12

14

FIGURE 9.8 Bar graph of the Gettysburg Address “important” word frequencies.

428 C H A P T E R 9 • D I C T I O N A R I E S A N D S E T S

Summary
In this chapter, we introduced the powerful and useful dictionary and set data structures.
We also more fully developed the idea of scope.

Dictionaries
� Dictionaries are unordered collections specified by curly braces: {}.

� Each dictionary item is a key-value pair (specified with a colon).

� Key must be immutable.

� Example: { 'a':5, 6:[1,2], (3,4):'abc'}

� Assignment: D[2] = 'xyz' creates entry 2:'xyz'

� The get method returns the value or the specified default: my dict(value,
default)

� Iterating through a dictionary D:

- for k in D: # iterate by key
- for k,v in D.items(): # iterate by key,value pairs
- for v in D.values(): # iterate by value
- for k in D.keys(): # iterate by key

Sets
� Sets are unordered collections of unique items, just like mathematical sets.

� Sets are specified by curly braces—like dictionaries, but there are no colons.

� Common mathematical set operations are supported.
For A = {'a','b','c','d'} and B = {'c','d','e','f'}:

- A.intersection(B) is {'c','d'}; shorthand: A & B
- A.union(B) is {'a','b','c','d'}; shorthand: {A | B}

- A.difference(B) is {'a','b'}; shorthand: A - B
- A.symmetric difference(B) is {'a','b','e','f'}; shorthand: AˆB
- A.issubset(B) is False; shorthand: A <= B
- A.issuperset(B) is False; shorthand: A >= B

Scope
� Practically, scope is a search through various namespaces to find a reference to an object.

� The rule is LEGB:
- Local (local namespace)
- Enclosing (any enclosing functions)

E X E R C I S E S 429

- Global (global namespace)
- Built-in (the Python built-ins)

Rules
� RULE 1: Think before you program!

� RULE 2: A program is a human-readable essay on problem solving that also happens
to execute on a computer.

� RULE 3: The best way to improve your programming and problem skills is to practice!

� RULE 4: A foolish consistency is the hobgoblin of little minds.

� RULE 5: Test your code, often and thoroughly!

� RULE 6: If it was hard to write, it is probably hard to read. Add a comment.

� RULE 7: All input is evil, until proven otherwise.

� RULE 8: A function should do one thing.

Exercises
1. What are the characteristics and limitations of sets?

2. What does the set operator in return? Give an example.

3. Why is it important for a key of a dictionary to be immutable, even though the
dictionary itself is mutable?

4. Given D = {'a':3, 'x':7, 'r':5}:

(a) Write Python code that returns the value at key 'x'.
(b) Write Python code that returns the key given value '7'.

5. A dictionary that refers to itself.
Consider this code:

other_hash = {}
other_hash[2] = 10

self_hash = {}
self_hash[2] = other_hash
self_hash[3] = 4
self_hash["2"] = self_hash

Whats the output of self hash["2"]["2"]["2"]["2"][2][2]?
Try it!

6. If you had two lists, one of first names and one of last names ['Jane', 'John',
'Jack'] and ['Doe', 'Deer', 'Black'], use zip to create a dictionary with the
keys as the first names and the values as the last names.

430 C H A P T E R 9 • D I C T I O N A R I E S A N D S E T S

7. If my set = 'bcd' and your set = 'abcde'

(a) What is the value of my set.issubset(your set)?
(b) What is the value of your set.issubset(my set)?

8. If my dict = {'a':15 , 'c':35, 'b':20}, write Python code:

(a) to print all the keys.
(b) to print all the values.
(c) to print all the keys and values pairs.
(d) to print all the keys and values pairs in order of key.
(e) to print all the keys and values pairs in order of value.

9. Given the following sets, predict the outputs and then check them in your shell. (Hint:
Remember which is independent of the order—i.e., when it matters that a set is first
versus b set being first.)

a set="the", "coat", "had", "many", "colors", "red", "blue", "yellow"
b set="my", "coat", "had", "two", "main", "colors", "red", "blue"
x= a set.intersection(b set)
y= b set.intersection(a set)
print(x)
print(y)
w= a set.union(b set)
v= a set.union(a set)
print(w)
print(v)
t= a set.difference(b set)
u= b set.difference(a set)
print(t)
print(u)
r= a set.symmetric difference(b set)
s= b set.symmetric difference(a set)
print(r)
print(s)

10. Revisit the Gettysburg analysis and eliminate “stop words” such as 'a', 'and', 'the',
etc. Also, only print words that occur more than twice.

11. A Caesar cipher encrypts a message by shifting letters in the alphabet. For example,
a shift of 4 maps 'a' to 'e' and maps 'p' to 't' Here is a famous line from
Shakespeare encrypted with a shift of 4: “vq dg qt pqv vq dg: vjcv ku vjg swguvkqp.”

(a) Write a program that takes as input a string to be encrypted and an integer en-
crpytion shift (such as 4 mentioned above) and prints the encrypted string. Hint:
zip() is helpful in building a dictionary. Also, remember to handle space—it
doesn’t shift.

(b) Extend your program to take an additional input that indicates if your program is
to encrypt or decrypt the string.

E X E R C I S E S 431

12. Texting on portable devices has developed a set of abbreviations due to the necessary
brevity of text messages. Create a dictionary of texting abbreviations and use it to write
functions that can translate to and from English. Of course, your dictionary cannot be
complete. For example: “y r u l8?” translates to “Why are you late?”

13. Refactor the program from Chapter 7 to determine the number of unique words in the
Gettysburg Address. This time use sets. Be sure to strip the words of their punctuation
and make all the letters lowercase.

14. Letter counts using dictionaries:
Remember to consider spaces as a special case.

(a) Write a function that takes as input a string and returns the most common letter
in the string.

(b) Write a function that takes as input a string and returns a dictionary of letter counts.
(c) Write a function that takes as input a string and prints a histogram of letter

counts. A histogram can be done with matplotlib or using different length strings
of characters.

15. Write a function that takes a person’s first and last names as input and

(a) uses lists to return a list of the common letters in the first and last names (the
intersection).

(b) uses sets to return a set that is the intersection of the characters in the first and last
names.

(c) uses sets to return the set that is the symmetric difference between the first and last
names.

16. Create a dictionary that maps countries to their capitals. You may start with an empty
dictionary. Ask the user to input the name of the country and its capital and add them
to the dictionary.
E.g., capitals = { 'Argentina':'Buenos Aires', 'France':'Paris', 'US':
'Washington D.C.'}
Once the dictionary is created, print the capitals in alphabetical order.

17. Consider a file in which every line is of the format City, Country. Read the file, record
the information in a dictionary, and report the number of cities in each country. For
example, if the file contains

London, UK
Chicago, US
Detroit, US

The output will be:

UK : 1
US : 2

432 C H A P T E R 9 • D I C T I O N A R I E S A N D S E T S

18. A book could be written by a single author or multiple authors. Consider the organi-
zation of a dictionary, e.g., what should be used as the key in the dictionary?

(a) What should the organization of the dictionary be if we want to find the names of
all the books written by a given author?

(b) What should the organization of the dictionary be if we want to find the names of
all the authors of a given book?

(c) Find a list of books and authors on the Internet (there are many). Put the list in a
file. Write a program to read the books and authors in the file and put them in a
dictionary. Output the books organized by author.

19. A person can have more than one credit card, but a credit card can belong to only one
person. Create a hypothetical file that contains the name and credit card number of a
person on each line. Read the file and organize a dictionary to return all the credit cards
associated with a person. Your program should behave as follows:

Input : Name of person
Output : List of credit cards.

20. In an earlier set of exercises, we provided a code framework for solving word puzzles.
Using that framework, solve this puzzle: find an uncapitalized seven-letter word in which
six of the seven letters use the same number on a telephone key pad. For example, the
word “cabbala” on a telephone would be 222-2252.

21. Morse Code uses a series of short and long pulses called dots and dashes, respectively,
to encode letters and digits. For example, the letter A is “dot-dash,” B is “dash-dot-dot-
dot.” Find a table of Morse Code on the Internet to create a dictionary for mapping
characters and digits to Morse Code. Use the dictionary to create a program that can
translate between Morse Code and characters and digits.

22. Use a dictionary to create a program that prompts for an integer and prints out the
integer using words. For example: 138 will print “one three eight.”

23. Say the last letter in a word is missing. For example, let the word be fantasti. Could you
find out the original word (fantastic) from a word list? Write a function to retrieve the
original word and print it. In some cases, a set of words might have to be returned, e.g.,
if the word is bas, the original word could have been bask or bass. So far in this problem,
you have not needed to use a Python dictionary. Rather than linearly scanning through
the input word list and checking for the original word, how could you store the words
so you can search faster?

24. Write a program that reads a word list and prints out all the anagrams in the word list.
In earlier exercises you saw how to read a word list. Also, in earlier examples we saw
how the sorted characters of a word are a useful canonical representation of an anagram
(therefore, useful as a key).

P R O G R A M M I N G P R O J E C T S 433

25. Find two historic documents to compare—similar to the example in this chapter. For
example, use the Preamble to the U.S. Constitution and compare it to the Declaration
of Independence. Find the most common meaningful words and output them in
alphabetical order.

26. In the Machine Learning Repository (http://archive.ics.uci.edu/ml) one
of their most popular databases is the Iris database. Irises come in three different
species: setosa, virginica, and versicolor. Each entry in the data set has five values: sepal
length, sepal width, petal length, petal width, and the species name (setosa, virginica,
and versicolor). Read in the data and create a dictionary with the key as the species
name and the values as the averages of each of the four characteristic values: sepal
length, sepal width, petal length, petal width. That is, the size of the dictionary will
be three. Write functions to create the dictionary and display the contents of the
dictionary.

27. Time magazine7 created a list of the 50 worst cars ever made.
Create a dictionary with keys as the car manufacturer with values a tuple for the
(year,model). Note that in some cases, the model might be absent. Then, write a
function to find the company that has made the maximum number of worst cars.

Programming Projects
1. Data Mining the Internet Movie Database

Websites like the Internet Movie Database (www.imdb.com) maintain extensive infor-
mation about movies and actors. If you search for a movie on the website, a web page
showing information about the movie is displayed. It also shows all the actors in the
movie. If you click on the link for an actor, you are taken to an actor’s page, where you
can find information about him or her, including the movies the actor has appeared in.
This assignment should give you some insight into the working of such websites.
Here is what we’d like to do with the data:

(a) Given two titles of a movie, each representing the set of actors in that movie:
i. Find all the actors in those movies: i.e., A union B (A & B).

ii. Find the common actors in the two movies: i.e., A intersection B (A | B).
iii. Find the actors who are in either of the movies but not both: symmetric difference

(A - B).
(b) Given an actor’s name, find all the actors with whom he or she has acted.
The data are available as a huge, compressed text file (at www.imdb.com/interfaces)
that lists each actor followed by his or her movies and the year the movies were made.

7 http://www.time.com/time/specials/2007/completelist/0,,1658545,00.html

http://archive.ics.uci.edu/ml
http://www.time.com/time/specials/2007/completelist/0,,1658545,00.html
www.imdb.com
www.imdb.com/interfaces

434 C H A P T E R 9 • D I C T I O N A R I E S A N D S E T S

Here is a small sample (also available on the text website) that you can work with for
this exercise:

Brad Pitt, Meet Joe Black (1998), Oceans Eleven (2001), Se7en (1995), Mr &
Mrs Smith (2005) Tom Hanks, Sleepless in Seattle (1993), Catch Me If You Can (2002),
You’ve got mail (1998) Meg Ryan, You’ve got mail (1998), Sleepless in Seattle (1993),
When Harry Met Sally (1989) Anthony Hopkins, Hannibal (2001), The Edge (1997), Meet
Joe Black (1998), Proof (2005) Alec Baldwin, The Edge (1997), Pearl Harbor (2001)
Angelina Jolie, Bone Collector (1999), Lara Croft Tomb Raider (2001), Mr &
Mrs Smith (2005) Denzel Washington, Bone Collector (1999), American Gangster (2007)
Julia Roberts, Pretty Woman (1990), Oceans Eleven (2001), Runaway Bride (1999)
Gwyneth Paltrow, Shakespeare in Love (1998), Bounce (2000), Proof (2005)
Russell Crowe, Gladiator (2000), Cinderella Man (2005), American Gangster (2007)
Leonardo Di Caprio, Titanic (1997), The Departed (2006), Catch Me If You Can (2002)
Tom Cruise, Mission Impossible (1996), Jerry Maguire (1996), A Few Good Men (1992)
George Clooney, Oceans Eleven (2001), Intolerable Cruelty (2003)
Matt Damon, Good Will Hunting (1997), The Departed (2006), Oceans Eleven (2001)
Ben Affleck, Bounce (2000), Good Will Hunting (1997), Pearl Harbor (2001)
Morgan Freeman, Bone Collector (1999), Se7en (1995), Million Dollar Baby (2004)
Julianne Moore, Assassins (1995), Hannibal (2001)
Salma Hayek, Desperado (1995), Wild Wild West (1999)
Will Smith, Wild Wild West (1999), Hitch (2005), Men in Black (1997)
Renee Zellweger, Me-Myself & Irene (2000), Jerry Maguire (1996), Cinderella Man
(2005)

What is an appropriate data structure? A dictionary is suggested, as we want to access
the movies and actors efficiently, but what should be the key? A key needs to be unique,
which rules out actors’ names—they are unique in our sample but not in the whole
database. On the other hand, movie titles and production dates form a unique identity
that suggests an immutable tuple—perfect as keys. We can arrange our dictionary with
(title,year) pairs as keys and have a collection of actors in each movie as the dictionary
values. As we will be looking at the intersection and union of actor combinations, that
suggests using sets for the collection of actors’ names in each movie. Read in the data
and add the data to a dictionary that is structured as described.

Repeatedly prompt the user until some sentinel is entered. If two movies are entered,
they should be separated by the appropriate operator: &, |, − to indicate the appropriate
set operation to be performed (union, intersection, symmetric difference). If an actor
is entered, find all the actors that he or she has been in movies with.

2. Metadata: Organizing Your iTunes
Digitized music such as that managed by iTunes has metadata such as the name, artist,
and so on. Internally, iTunes uses the XML format to manage its metadata, and Python
has modules to work with XML, but XML has more complexity than we can deal with
in a problem (or even a few chapters). However, using copy-and-paste you can copy
your iTunes metadata from the text “list” view of your playlist into your favorite text

P R O G R A M M I N G P R O J E C T S 435

editor such as TextEdit or WordPad. The result is a file that is tab separated, i.e., fields
are separated by the tab character. Because the split() method can take an argument
of what to split on, we can split the lines of your text file using line.split("\t").
Remember that we can specify the tab character with "\t".
What is an appropriate data structure? It is natural to organize music around the artist,
and an artist’s name is immutable, so a dictionary is suggested with the artist as the
key. The remaining metadata becomes the value of each record. You can read in your
metatdata and place it in a dictionary.
Write a program that does the following:

(a) Reads the metadata from a file into a dictionary
(b) Loops to repeatedly prompt for:

i. Name: list all songs by the specified artist.
ii. Album: list all songs on the specified album.

iii. Genre: list all songs in a specified genre.
iv. Add: add a song.
v. Delete: delete a specified song (specify its name).

vi. Popular: find the artist with the most songs in your collection.
vii. Longest: find the longest song in your collection and prints its metadata.

Hint: To sort to find the most popular or longest, you need to convert your dictionary
into a data structure that you can sort, such as a list or tuple. Remember that the Python
sort will sort on the first item in each list (or tuple), so you will need to arrange your
lists appropriately.

This page intentionally left blank

•10C H A P T E R

More Program
Development

The ability to simplify means to eliminate the unnecessary so that the
necessary may speak.

Hans Hofmann, artist

10.1 I N T R O D U C T I O N
IN CHAPTER 3, WE COVERED DESIGNING ALGORITHMS AND SUBSEQUENTLY BUILDING

programs. We introduced strategies to help with those tasks.
Now that you have functions and new data structures such as lists and dictionaries in

your repertoire, you can do an even better job of breaking larger problems into smaller,
more manageable, pieces.

10.2 D I V I D E A N D C O N Q U E R
We have developed a number of programs, but these programs have tended to be relatively
small. As programs get bigger, designing them so they can be easily read, implemented, and
tested becomes more important. We described simplification as one strategy available for
writing programs in Chapter 3, especially divide and conquer. Divide and conquer is a general
strategy for problem solving: breaking a problem down into smaller, interacting pieces that
can be addressed more easily individually than can the problem as a whole. Functions can
be particularly useful in a divide-and-conquer approach, as parts of the program can be
broken off into functions that can be refined later.

437

438 C H A P T E R 1 0 • M O R E P R O G R A M D E V E L O P M E N T

10.2.1 Top-Down Refinement
As we have done with previous development, we will use divide and conquer and the
principle of top-down refinement to guide our development of a program.

Approaching design from the top down begins with a description of a solution at a very
high level—not in Python. Having done so, we then refine that description into more detail.
Where we identify an appropriate piece of the solution description, we create a function to
fulfill the role identified.

In the initial (top level) design, we worry about the “big picture” approach to solving
the problem. We describe what data structures we need and what “big” processing steps we
might take along the way.

To make this process concrete, we will use a complicated example that will require more
development on our part.

10.3 T H E B R E A S T C A N C E R C L A S S I F I E R
Scientists make data sets available for use by other researchers in the hopes that the data
will be helpful in solving important problems. Various repositories exist around the world
that distribute such data sets, made freely available to everyone. One such repository is the
University of California–Irvine Machine Learning Repository (http://archive.ics.
uci.edu/ml). As of this writing, this repository houses 177 data sets on topics ranging
from character recognition to flower identification. One of the data sets describes tumors
removed from breast cancer patients. The data were provided by Dr. William H. Wolberg
at the University of Wisconsin Hospitals in Madison. Each of the patients had a tumor
biopsy—a small needle was inserted into the tumor to remove some tissue. That tissue was
examined by oncologists (physicians who specialize in cancer) to describe various features
of the tissue. Subsequent to that examination, they determined if the tumor was benign
or malignant. A malignant cancer is the bad one: that means that the cancer is spreading.
Benign means that the cancer is isolated to the tumor itself, so it is much less of a threat to
the patient.

10.3.1 The Problem
The problem is to determine, based on the the tumor attributes, whether the tumor is
malignant or benign. We do so by examining the data provided by Dr. Wolberg. The data
list 699 patients, each with nine tumor attributes provided by the oncologist who examined
the biopsy, as well as whether that patient was ultimately diagnosed as having a benign
or malignant tumor. That is, the “solution” (malignant or benign) is included in the data
set. Therefore, every patient has a set of 11 values: a patient ID, the nine tumor attribute
values, and the ultimate diagnosis. By examining these data, we hope to discover patterns
that predict, based on the tumor attributes alone, whether the tumor is malignant or benign.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

1 0 . 3 • T H E B R E A S T C A N C E R C L A S S I F I E R 439

That is, for a patient we have not yet seen (and do not yet know the diagnosis), we wish to
predict whether the tumor is malignant or benign based on the tumor attributes.

How are we going to do that?

10.3.2 The Approach: Classification
It turns out that there are a number of approaches we could take to solve this problem.
In fact, there is an entire research area, “data mining,” that works on ways to solve such
problems. Most of those approaches share some high-level concepts that we will use to solve
our problem. The approach we will use is to create a classifier—a program that takes in a
new example (a patient, in our case)—and determines, based on previous examples it has
observed, what “class” the new example belongs to.

For this problem we consider patients, along with their associated tumor attributes, as
our examples and separate each into one of two classes: benign or malignant.

Now that we have identified a broad approach to solving this problem, how do we
create a classifier? We begin with a look at training and testing.

10.3.3 Training and Testing the Classifier
A classifier begins by training on examples with known solutions. In training, the classifier
looks for patterns that indicate classifications (e.g., malignant or benign). After patterns have
been identified, they are tested against “new” examples with known solutions. By testing
with known solutions, we can determine the accuracy of the classifier.

In our case, we provide to the classifier patients’ tumor attributes that have a known
result (benign or malignant). Each patient contributes toward building an internal model
of what patterns are used to distinguish between our two classes. Once we have trained the
classifier, we must test the classifier’s effectiveness. We do this by providing “new” patients,
or patients who were not used as data for the training process, to see what class the classifier
predicts each new patient belongs to.

We have to take our data and split them into two parts: data we will use to “train” the
classifier and data we will use to “test” the classifier. In practice, we will create two separate
files, with most of the data in the training file and the remainder in the testing file.

Now the issue is this: how do we write a program that can find patterns in the training
data?

10.3.4 Building the Classifier
There are many interesting internal models that a classifier could use to predict the class
label of a new example. We will use a simple one, but as you will see, it can be quite effective.

The model we chose is itself a result of divide and conquer and problem solving. The
approach is as follows. Look at a tumor attribute for each individual, and then combine

440 C H A P T E R 1 0 • M O R E P R O G R A M D E V E L O P M E N T

the observations on that attribute into a decision value used to classifiy an individual for
that particular attribute. For example, one attribute is tumor thickness, measured on a scale
of 1 to 10. A good decision value for this attribute might be 7. For a value of 7 or greater
(i.e., a thick tumor), our classifier will predict malignant. For a value of less than 7, our
classifier will predict benign. We can use these values to predict a patient’s class.

How do we find these decision values? For each of the nine tumor attributes, let us
develop two averages. The first average for each attribute will represent the average value over

Benign averages Malignant averages

Average of the
two averages

Classifier: List of separator values

Classifier: List of separator values

Testin
g

Greater than separator:
malignant else benignCompare

ID: 1054593
Tumor vals: 10 5 5 3 6 7 7 10 1 4
Prediction: ?
Diagnosis: malignant

ID: 1054593
tumor vals: m m b b m m m m b b
Prediction: malignant
Diagnosis: malignant

ID: 1017122
Tumor vals: 8 10 10 8 7 10 9 7 1 4
Diagnosis: malignant

ID: 100025
Tumor vals: 5 1 1 1 1 2 1 3 1 1 2
Diagnosis: benign

Benign patients

Average each
characteristic

…

Train
in

g

Average each
characteristic

Malignant patients

…

FIGURE 10.1 Overview of classifier approach.

1 0 . 4 • D E S I G N I N G T H E C L A S S I F I E R A L G O R I T H M 441

all the training data for women with benign tumors. The second average for that attribute
will represent that average value over all the training data for women with malignant tumors.
After training on the nine attributes, we should end up with 18 averages: 9 averages for
benign tumors and 9 averages for malignant tumors.

Our classifier will be constructed as follows: for each attribute we will find the midpoint
between the benign average and the malignant average. This midpoint of averages will be
our decision value, which is better termed the class separation value. Our classifier will consist
of nine separation values, one for each attribute. If a new sample comes along with a value
less than the separation value of an attribute, we will predict that this patient is benign, at
least on that attribute. If the sample is greater than the separation value, we predict that it
is malignant.

To select which overall class we predict the patient belongs to, we compare each of the
nine tumor attributes for that patient to attribute’s classifier separation value. We label that
attribute based on whether it is larger or smaller than the separator value. Remember, in
this case, smaller indicates benign and greater indicates malignant. For the overall patient,
we let the majority rule. Whichever class label predominates over the nine attributes, we use
that label for the patient overall.

Figure 10.1 shows an overview of the process.

10.4 D E S I G N I N G T H E C L A S S I F I E R A L G O R I T H M
That’s a lot of description for what we have to do. Let’s see if we can use our top-down
refinement to get started. Here is our first cut of an algorithm in English:

1. Create a training set from a training file.
2. Create a classifier by using the training set to determine separator values for each

attribute.
3. Create a test set from a test file.
4. Use the classifier (separator values) to classify data in the test set while keeping score of

the accuracy of those decisions.

Code Listing 10.1 is a Python version of that algoritm. It shows the overall structure of
the program, including both the names of the function and the arguments of those functions.

Code Listing 10.1

1 def main():
2

3 print("Reading in training data...")
4 training file name = "breast-cancer-training.data"
5 training set list = make training set(training file name)

442 C H A P T E R 1 0 • M O R E P R O G R A M D E V E L O P M E N T

6 print("Done reading training data.\n")
7

8 print("Training classifier...")
9 classifier list = train classifier(training set list)

10 print("Done training classifier.\n")
11

12 print("Reading in test data...")
13 test file name = "breast-cancer-test.data"
14 test set list = make test set(test file name)
15 print("Done reading test data.\n")
16

17 print("Classifying records...")
18 result list = classify test set list(test set list, classifier list)
19 print("Done classifying.\n")
20

21 report results(result list)
22

23 print("Program finished.")

Notice that the code listing has all the essential elements of the algorithm we described
earlier, even though it lacks most of the details. For example:

� Line 1 defines a main function, a function to be called by the user to run the rest of
the program.

� Line 5 calls a function called make training set, which takes the name of a file
(containing training data) and returns a training set list data structure (not yet
defined).

� Line 9 calls a function called train classifier, which takes the training
set list as an argument and returns a classifier list data structure (not yet
defined).

� Line 14 calls a function called make test set, which takes the name of a file (test
data) and returns a test set list data structure (not yet defined).

� Line 18 returns a result list data structure from the function
classify test set, which takes both the test set list and
classifier list as arguments.

� Line 21 calls the report results function, which takes the result list as an
argument.

This is not code that will presently run, as there are five undefined functions. However,
it does show us a couple of things we need to do:

� Define the four data structures: test set list, training set list,
classifier list, result list

1 0 . 4 • D E S I G N I N G T H E C L A S S I F I E R A L G O R I T H M 443

� Define five functions: make training set, train classifier,
make test set, classify test set, report results

We can fix up our main program to run by defining skeleton versions of all the functions.
Again, by “skeleton,” we mean that the function is defined, the argument numbers are
correct, and the function returns a value. Otherwise, the function definitions are empty. By
creating skeleton functions, we create a running program with all the requisite parts. Sadly,
it doesn’t do anything, but that is something we can work on. Code Listing 10.2 is a second
version with skeleton functions. Remember that the functions must be defined before they
are called.

Code Listing 10.2

1 def make training set(training file name):
2 return []
3

4 def train classifier(training set list):
5 return []
6

7 def make test set(test file name):
8 return []
9

10 def classify test set list(test set list, classifier list):
11 return []
12

13 def report results(result list):
14 print("Reported the results")
15

16 def main():
17

18 print("Reading in training data...")
19 training file name = "breast-cancer-training.data"
20 training set list = make training set(training file name)
21 print("Done reading training data.\n")
22

23 print("Training classifier...")
24 classifier list = train classifier(training set list)
25 print("Done training classifier.\n")
26

27 print("Reading in test data...")
28 test file name = "breast-cancer-test.data"
29 test set list = make test set(test file name)
30 print("Done reading test data.\n")
31

32 print("Classifying records...")

444 C H A P T E R 1 0 • M O R E P R O G R A M D E V E L O P M E N T

33 result list = classify test set list(test set list, classifier list)
34 print("Done classifying.\n")
35

36 report results(result list)
37

38 print("Program finished.")

Following is a test of that code. The important thing to notice is that it works! Of
course, it doesn’t do anything useful, but it is a working program that we can continue to
develop. Most important, though, it gives an outline for the entire program.

>>> import second cut
>>> second cut.main()
Reading in training data...
Done reading training data.

Training classifier...
Done training classifier.

Reading in test data...
Done reading test data.

Classifying records...
Done classifying.

Reported the results
Program finished.
>>>

This session illustrates a useful technique when developing larger code incrementally
in Python. Here we import our program into the shell, rather than using IDLE’s run
command. The import command takes the name of the Python program file without
the “.py” extension. For example, in this session the program file name is “second cut.py.”
Similar to when we imported modules such as math, we must preface function calls by the
name of the file. Therefore, to call our main function we must use “second cut.main().”
Once we import our program file, the functions in the file become available for our use.
We will use this style of development in the sessions of this chapter. Alternatively, one could
run the program within IDLE and call the functions (without the “second cut” prefix).

10.4.1 Divided, Now Conquer
By designing the program as we did, we have in fact divided the program into smaller pieces,
tied together by the overall design. Of course, there are many ways we could have divided

1 0 . 4 • D E S I G N I N G T H E C L A S S I F I E R A L G O R I T H M 445

up the program. Our job now is to decide about the required data structures and further
apply our divide-and-conquer strategy to each of the functions.

10.4.2 Data Structures
We need to make some decisions about our data structures—this is what design is all about.
Again, there are many valid possibilities—we show only one. Other choices are left for
exercises.

� training set list, test set list: The data structures training
set list and test set list contain information about each individual patient.
Because the data on each patient are never modified, each patient’s data could be stored
as a tuple of values. A list of tuples would then hold all patient data. Therefore, a list of
tuples will serve for the training and test data structures. The tuple format will be:
- First position: patient ID. String.
- Second position: patient diagnosis. String (single letter, 'm' or 'b').
- Positions 3–12: tumor attributes 1–9 in order. Integer.

� classifier list: The classifier is simply a sequence of nine values, the separation
values. A tuple of values will suffice, as these values also do not change. It will consist of
nine floating-point values: the average of each benign and malignant attribute average
(the midpoint between each of the two averages).

� results list: For the results, we need a list of tuples again, but what to put in each
tuple? The classifier provides the number of attributes for each patient that indicate
malignant and benign. We also need the actual diagnosis for the patient. Therefore, we
need to store:
- The patient ID: string
- The number of attributes that indicate malignant: integer
- The number of attributes that indicate benign: integer
- The actual diagnosis: string (either 'm' or 'b')

10.4.3 File Format
We have not yet discussed the actual data. The file format as provided by Dr. Wolberg
through the ML Repository is shown in Table 10.1.

The “id number” can be interpreted as a string; the “Class” at the end of the file line
is the known diagnosis: 2 for benign, 4 for the malignant. The values in between are the
attributes as integers between 1 and 10. Figure 10.2 is an example of the first few file
lines.

Note that on a file line, each attribute is separated by a comma. We could either use the
csv module discussed previously in Section 9.3.1 or do the parsing by hand. In this case,
we can do the parsing by hand, because parsing the file happens to be well behaved.

446 C H A P T E R 1 0 • M O R E P R O G R A M D E V E L O P M E N T

Attribute Domain
1 Sample code number id number
2 Clump thickness 1 - 10
3 Uniformity of cell size 1 - 10
4 Uniformity of cell shape 1 - 10
5 Marginal adhesion 1 - 10
6 Single epithelial cell size 1 - 10
7 Bare nuclei 1 - 10
8 Bland chromatin 1 - 10
9 Normal nucleoli 1 - 10
10 Mitoses 1 - 10
11 Class (2 for benign, 4 for malignant)

TABLE 10.1 File Format

1000025,5,1,1,1,2,1,3,1,1,2
1002945,5,4,4,5,7,10,3,2,1,2
1015425,3,1,1,1,2,2,3,1,1,2
1016277,6,8,8,1,3,4,3,7,1,2
1017023,4,1,1,3,2,1,3,1,1,2
1017122,8,10,10,8,7,10,9,7,1,4

FIGURE 10.2 A small part of the data file.

10.4.4 The make training set Function
With our main program defined, we must now work on the functions. Which one should
we do first?

One way to choose is by doing the easiest, or at least the most obvious, first. We have a
working program, so by filling in an existing empty function with a working function, we
maintain a working program, and the program does more of what it is supposed to do.

The input and output are often easy, and the input will be needed by other functions.
Therefore, let’s begin with the make training set function. According to our main
function, make training set takes as an argument the name of the file that has the
patient data for training. It returns the filled-in data structure training set list,
whose format was described earlier. We need to further refine what the function will
accomplish—more divide and conquer. Here are some of the things the function must do:

� Open the file. Optionally, we should also have some tests to make sure the file exists
and help the user if the file name does not exist. We will focus on just the opening for
now and refine it to have error checking later.

1 0 . 4 • D E S I G N I N G T H E C L A S S I F I E R A L G O R I T H M 447

� Initialize the training set list to be empty.
� For each line in the file:

- Parse the line into its constituent parts as described earlier.
- Create a tuple for the patient.
- Append the tuple to the training set list.

� Return the training set list.

We can write the function as a series of comments, reflecting what we need to do in
the function, and then fill each one in. Remember, if any piece gets too complex, we should
think about breaking that piece out as a function. Code Listing 10.3 is that first cut.

Code Listing 10.3

1 def make training set(file name):
2 # open f i l e
3

4 # i n i t i a l i z e t ra in ing s e t l i s t
5

6 # fo r each l in e in the f i l e
7

8 # parse the l in e into i t s 11 par t s
9

10 # c r ea t e a tup l e f o r the pat i ent
11

12 # append to the end of the t ra in ing s e t l i s t
13

14 # return the t ra in ing s e t l i s t

As expected, some of those elements are fairly easy to fill in.

� Line 2: open the file (no error checking, something we need to fix later).
� Line 4: We need to make an empty list to hold the training set (called
training set list).

� Line 6: Get each line from the training file descriptor using a for iterator.
� Line 8: Extract each of the fields with a split method on the line str using the

comma as the separation element. We can do multiple assignment to create 11 new
variables: id, diag, and attributes a1–a9. Remember, they are all strings initially! We
could have used a list but decided this was more readable.

� Line 14: When we are all done, we return the resulting training set list. Note
the nesting: the indentation of the return is at the same level as the statements of the
function, not at the level of the for iterator.

448 C H A P T E R 1 0 • M O R E P R O G R A M D E V E L O P M E N T

Our second cut is shown in Code Listing 10.4. Note that at some point the comments
start to interfere with the readability of the program. We can clean up the comments as we
fill in the code.

Code Listing 10.4

1 def make training set(file name):
2 training set list = []
3 # open f i l e
4 training file = open(file name)
5 # read in a l in e o f the f i l e
6 for line str in training file:
7 # parse the l in e into i t s 11 par t s
8 id str,a1,a2,a3,a4,a5,a6,a7,a8,a9,diagnosis str = line str.split(',')
9

10 # c r ea t e a new tra in ing s e t element
11

12 # append to the end of the t ra in ing s e t l i s t
13

14 # return the training s e t
15 return training set list

We did the easy and obvious coding. Now let’s finish it. The next pass is shown in Code
Listing 10.5.

Code Listing 10.5

1 def make training set(file name):
2 """ Reads a training s e t from the s p e c i f i e d f i l e .
3 return l i s t o f t up l e s in format : id , diagnos i s , 9 a t t r i b u t e s . """
4 training set list = []
5

6 # open f i l e . Fix the e r ro r checking
7 training file = open(file name)
8

9 for line str in training file:
10 id str,a1,a2,a3,a4,a5,a6,a7,a8,a9,diagnosis str = line str.split(',')
11 patient tuple=id str,diagnosis str,int(a1),int(a2),int(a3),int(a4),\
12 int(a5),int(a6),int(a7),int(a8),int(a9)
13 training set list.append(patient tuple)
14 return training set list

1 0 . 4 • D E S I G N I N G T H E C L A S S I F I E R A L G O R I T H M 449

In this version, we did the following:

� We removed comments that were no longer really needed. However, we did keep some,
including a note that we need to clean up the error checking on file opening.

� We added a docstring for the function.
� Line 9: We created the newly formatted patient as a tuple, called patient tuple.

We need to take those 11 new variables and rearrange them to go with our specified
data structure format (id str, diagnosis str, a1, . . . , a9). We specified that the
attributes would be integers, and everything we brought in from the file is a string, so
the attributes have to be converted to integers using the int constructor. The comma
operator (,) is used to make a tuple. Note the use of the line continuation character (\),
because the line is so long.

� Line 11: Once patient tuple is created, we simply use the append method to
append it to the end of the training set list list and return it.

How did we do? We should test this little piece of code to make sure that it works
(remember RULE 5). We need to do it now while we are freshly working on it. Once it’s
tested, we can set it aside and move on to the other parts of the program. How do we go
about testing it? We could open the training data set, but that is a pretty big file, making
the results hard to visualize easily. Instead, let’s create a small file in the same format. We’ll
call the file “test data.txt” and use the data shown in Figure 10.2. This file has only a few
lines of the original data.

Here is a test session using the function and the small input file. We’ll be honest: we
did find a few typing bugs at this point (not shown above, of course!). Testing at this level
is a good idea!

>>> import fileInputThirdCut
>>> fileInputThirdCut.make training set('testData.txt')
[('1000025', '2\n', 5, 1, 1, 1, 2, 1, 3, 1, 1), ('1002945', '2\n', 5, 4, 4, 5, 7,
10, 3, 2, 1), ('1015425', '2\n', 3, 1, 1, 1, 2, 2, 3, 1, 1), ('1016277', '2\n', 6,
8, 8, 1, 3, 4, 3, 7, 1), ('1017023', '2\n', 4, 1, 1, 3, 2, 1, 3, 1, 1), ('1017122',
'4\n', 8, 10, 10, 8, 7, 10, 9, 7, 1)]
>>>

How well did we do? Well, it is close to what we want. We did get a list of tuples, and
the tuples have the correct information in the correct order. The attributes are all integers,
and the id is a string. However, there are a couple of problems. Look at the the first tuple
and its second element. It has the value '2\n'. According to the earlier specifications, it
should be a string, either 'm' or 'b'. Furthermore, where did that '\n' come from?

Here’s what we did to fix these issues:

� Line 8: '\n' is the linefeed or end-of-line character. It exists on every line. Remember
in our line format that the diagnosis was originally the last character on every line. We
can use the strip method to remove it.

450 C H A P T E R 1 0 • M O R E P R O G R A M D E V E L O P M E N T

� Lines 11–14: Convert the '2' and '4' to 'm' or 'b', respectively. A simple if
statement will do, with the creation of a new variable, diagnosis str.

The final cut is shown in Code Listing 10.6, along with the session output.

Code Listing 10.6

1 def make training set(file name):
2 """ Reads a training s e t from the s p e c i f i e d f i l e .
3 return l i s t o f t up l e s in format : id , diagnos i s , 9 a t t r i b u t e s . """
4 training set list = []
5

6 # open f i l e . Fix the e r ro r checking
7 training file = open(file name)
8

9 for line str in training file:

10 line str = line str.strip() # s t r i p o f f end−of−l i n e charac t e r " \n"
11 id str,a1,a2,a3,a4,a5,a6,a7,a8,a9,diagnosis str = line str.split(',')
12 if diagnosis str == '4': # diagno s i s i s "malignant "
13 diagnosis str = 'm'
14 else:
15 diagnosis str = 'b' # diagno s i s i s " benign"
16 patient tuple=id str,diagnosis str,int(a1),int(a2),int(a3),int(a4),\
17 int(a5),int(a6),int(a7),int(a8),int(a9)
18 training set list.append(patient tuple)
19 return training set list

>>> import fileInputFourthCut
>>> fileInputFourthCut.make training set('testData.txt')
[('1000025', 'b', 5, 1, 1, 1, 2, 1, 3, 1, 1), ('1002945', 'b', 5, 4, 4, 5, 7, 10,
3, 2, 1), ('1015425', 'b', 3, 1, 1, 1, 2, 2, 3, 1, 1), ('1016277', 'b', 6, 8, 8, 1,
3, 4, 3, 7, 1), ('1017023', 'b', 4, 1, 1, 3, 2, 1, 3, 1, 1), ('1017122', 'm', 8,
10, 10, 8, 7, 10, 9, 7, 1)]
>>>

We hope you get the idea of how to slowly break the problem down, first as functions,
then as pieces within the functions, to solve the problem. Remember that testing each piece
is important to make sure they do what they are required to do! Testing each function as
you write it allows you to fix problems while your design is fresh in your head. Let’s take a
look at the remaining functions.

10.4.5 The make test set Function
There is good news with the make test set function. If you look closely, the
make training set and make test set functions perform similar tasks. They take

1 0 . 4 • D E S I G N I N G T H E C L A S S I F I E R A L G O R I T H M 451

in a file name and return the same data structure format. The only real difference is that
they read from two different files: the test data and the training data, both of which have
the same file format.

Thus, we can reuse our code from make training set to accomplish the same
task in the make test set function. To reflect this, we will rename the function to
make data set and use it in for both operations in the main function.

10.4.6 The train classifier Function
The train classifier function is the heart of the program. Based on Figure 10.1, let’s
outline what this function needs to do:

� The function takes the training set as an argument. The training set is a list of patient
tuples where the tuples are in the format described earlier.

� For each patient tuple in the training set:
- If the tuple represents a benign tumor, add each patient attribute to the running sum

of benign attributes. Keep a count of the number of benign patients as well.
- If the tuple represents a malignant tumor, add each patient attribute to the running

sum of malignant attributes. Keep a count of the number of malignant patients as well.
- In the end we have 18 sums: the sum of every benign patient’s attributes and the

sum of every malignant patient’s attributes. We also end up with two counts: the
number of benign patients and the number of malignant patients.

� For each of the nine benign attributes and each of the nine malignant attributes, find
the average attribute value (sum/count).

� For each of the nine attributes, find the average of its benign average and its malignant
average, i.e., an average of averages. These nine separator values specify the midpoint,
the separation value, between a malignant diagnosis and a benign diagnosis for that
attribute. These nine values are the classifier.

� Return the classifier: a list of nine separator values.

As before, let’s implement the function, beginning with comments and obvious struc-
ture. We can fill in the details later. Code Listing 10.7 is the first cut.

Code Listing 10.7

1 def train classifier(training set list):
2

3 for patient tuple in training set list:
4 # i f pat i ent tuple i s benign :
5 # add a t t r i b u t e s from pat ient tuple to corre sponding benign sums list
6 # a t t r i bu t e
7 # inc r ea s e the benign count by 1
8 # e l s e :

452 C H A P T E R 1 0 • M O R E P R O G R A M D E V E L O P M E N T

9 # add a t t r i b u t e s from pat ient tuple to corre sponding malignant sums list
10 # a t t r i bu t e
11 # inc r ea s e the malignant count by 1
12 # c r ea t e benign average s l i s t by dividing each benign sums list by the
13 # benign count
14 # c r ea t e malignant averages l i s t by dividing each malignant sums list by the
15 # malignant count
16

17 # c r ea t e c l a s s i f i e r l i s t by dividing the sum of each a t t r i bu t e from
18 # benign average s l i s t and malignant averages l i s t by 2
19

20 return classifier list

Some Utility Functions for Manipulating Lists
In looking at the first cut for train classifier, it seems we have to keep track of a
lot of individual sums and averages. The 18 sums and averages are a lot of variables, so let’s
organize the variables into lists. For example, a list of the benign sums list, a list of
the benign averages list, etc. If we use lists instead of individual variables, we have
to write code to add two lists. Because we have to find this sum multiple times, a function
will make this task easier. We also need to turn a list of sums into a list of averages. As we
have to find averages multiple times, it makes sense to break this out as a function, too.

Let us call these two functions sum lists and make averages. These functions
are utility functions—general-purpose functions that help with the work to be done.

The sum lists Function
The sum lists function takes two arguments, two lists of the same size, and returns a
new list that contains the sums of the elements from the two argument lists. That is, we
take the first element from the first argument list and add it to the first element from the
second argument list and store that sum as the first element in the sum list. The code for
this function is shown in Code Listing 10.8.

Code Listing 10.8

1 def sum lists(list1,list2):
2 """Element−by−element sums o f two l i s t s o f 9 items . """
3 sums list = []
4 for index in range(9):
5 sums list.append(list1[index]+list2[index])
6 return sums list

1 0 . 4 • D E S I G N I N G T H E C L A S S I F I E R A L G O R I T H M 453

Some things to note:

� Line 3: We create a new list called sums list that will hold the nine sums. The list
is initialized to be empty.

� Lines 4–5: We create a variable called index that can be used as an index into list1
and list2 so we can walk through the two lists at the same time. We iterate through
the indices, adding the two argument list elements at index and appending the sum
onto sums list.

� Line 6: Return sums list.

Note that the size of the lists are all fixed at 9. This fixed size is fine for our present appli-
cation but is limiting if this function is to be used in other applications. How could you make
the function more general? Also, this function could be written using list comprehension.
(See the exercises.)

The make averages Function
The function make averages is not much different than the sum lists function from
earlier. It takes in a list and a total and divides each element in the list by the total, collecting
the results in a list to be returned. The code for this function is shown in Code Listing 10.9.

Code Listing 10.9

1 def make averages(sums list,total int):
2 """ Convert each l i s t element into an average by dividing by the t o t a l . """
3 averages list = []
4 for value int in sums list:
5 averages list.append(value int/total int)
6 return averages list

Some things to note:

� Line 3: Initialize averages list to be empty.
� Lines 4–5: Iterate through the sums list, finding the average at each element in the

list and appending the result onto the averages list.
� Line 6: Return averages list.

As with the sum lists function, this function could be written using list compre-
hension and is left for an exercise.

10.4.7 train classifier, Round 2
Using our utility functions and the train classifier function outline, we can fill in
the details for the train classifier function. See Code Listing 10.10.

454 C H A P T E R 1 0 • M O R E P R O G R A M D E V E L O P M E N T

Code Listing 10.10

1 def sum lists(list1,list2):
2 """Element−by−element sums o f two l i s t s o f 9 items . """
3 sums list = []
4 for index in range(9):
5 sums list.append(list1[index]+list2[index])
6 return sums list
7

8 def make averages(sums list,total int):
9 """ Convert each l i s t element into an average by dividing by the t o t a l . """

10 averages list = []
11 for value int in sums list:
12 averages list.append(value int/total int)
13 return averages list
14

15

16 def train classifier(training set list):
17 """ Build a c l a s s i f i e r using the training s e t . """
18 benign sums list=[0]*9 # l i s t o f sums o f benign a t t r i b u t e s
19 benign count=0 # count o f benign pa t i en t s
20 malignant sums list=[0]*9 # l i s t o f sums o f malignant a t t r i b u t e s
21 malignant count=0 # count o f malignant pa t i en t s
22

23 for patient tuple in training set list:
24 if patient tuple[1]=='b': # i f benign d iagno s i s
25 # add benign a t t r i b u t e s to benign t o t a l
26 benign sums list=sum lists(benign sums list,patient tuple[2:])
27 benign count += 1
28 else: # e l s e malignant d iagno s i s
29 # add malignant a t t r i b u t e s to malignant t o t a l
30 malignant sums list=sum lists(malignant sums list,patient tuple[2:])
31 malignant count += 1
32

33 # find average s o f each s e t o f benign or malignant a t t r i b u t e s
34 benign averages list=make averages(benign sums list,benign count)
35 malignant averages list=make averages(malignant sums list,malignant count)
36

37 # separa to r va lue s f o r each a t t r i bu t e average s benign and malignant
38 classifier list=make averages(\
39 sum lists(benign averages list,malignant averages list),2)
40

41 return classifier list

1 0 . 4 • D E S I G N I N G T H E C L A S S I F I E R A L G O R I T H M 455

Some things to note:

� Lines 18–21: These lines establish and initialize the two nine-value lists:
benign sums list and malignant sums list and the two count variables,
benign count and malignant count.

� Line 24: We can determine if the patient tuple represents either a malignant or benign
tumor based on the diagnosis at position 2 (index 1).

� Lines 26 and 30: Calls the sum lists function to add the patient tuple to the
appropriate sum list.

� Lines 27 and 31: When the tuple is added to the sum, the appropriate count is
incremented by 1.

� Line 34 and 35: Once the sums and counts are calculated, we can calculate the benign
and malignant averages by calling the make averages function with the appropriate
sum list and count.

� Lines 37 and 38: Finally, we create the classifier. We use both of the utility functions
we wrote. We use the sum lists function to add the two averages and then pass the
resulting list to the make averages function to divide each sum by 2.

A Little Testing
We need to test to ensure that we are on the right track. We can load the code we have
written so far and test how well the classifier works on the simple data file we created, which
was shown in Figure 10.2. Following is that session:

>>> import make data set
>>> import train classifier
>>> training set list = make data set.make data set('testData.txt')
>>> for patient tuple in training set list:
... print(patient tuple)
...
('1000025', 'b', 5, 1, 1, 1, 2, 1, 3, 1, 1)
('1002945', 'b', 5, 4, 4, 5, 7, 10, 3, 2, 1)
('1015425', 'b', 3, 1, 1, 1, 2, 2, 3, 1, 1)
('1016277', 'b', 6, 8, 8, 1, 3, 4, 3, 7, 1)
('1017023', 'b', 4, 1, 1, 3, 2, 1, 3, 1, 1)
('1017122', 'm', 8, 10, 10, 8, 7, 10, 9, 7, 1)
>>> classifier list = train classifier.train classifier(training set list)
>>> for average in classifier list:
... print("{:.3f}".format(average))
...
6.300
6.500
6.500
5.100

456 C H A P T E R 1 0 • M O R E P R O G R A M D E V E L O P M E N T

5.100
6.800
6.000
4.700
1.000

In the session, we first imported the “make data set” file, then the “train classifier” file.
The “train classifier” file has both the two utility functions and the train classifier
function. We read in the file “testData.txt” to create a training set. We then printed out the
training set in a nice format so we could verify that the file was read correctly. We then used
the created data set to create a classifier and printed out the classifier values. To make the
classifier values easier to read, we used string formatting.

Using a calculator, we can check the averages of the data set and verify that they match
the classifier.

10.4.8 Testing the Classifier on New Data
Now we need to see whether the classifier we have created will properly predict the pa-
tient diagnosis based only on the patient’s tumor attributes. This testing is done with the
classify test set function.

Let’s remember what this function has to do. It takes in a set of test data, consisting of
patient tumor data along with the determined diagnosis. We compare each attribute in the
patient with the corresponding classifier average. If the attribute is larger than the classifier
average, that attribute is considered to be evidence of malignancy. If it is smaller, then that
attribute indicates benignity. For each of those patients, we count the number of benign
and malignant attributes, and the majority rules. That is, whichever type of attribute is in
the majority, that is the classifier’s predicted diagnosis.

Code Listing 10.11 is an outline of our code in our typical way, listing comments and
obvious pieces of code.

Code Listing 10.11

1 def classify test set list(test set list, classifier list):
2

3 # fo r each pat i ent in the s e t
4 for patient tuple in test set list:
5 # fo r each a t t r i bu t e o f the pat i ent
6 # i f a t t r i bu t e i s g r ea t e r than the c l a s s i f i e r corre sponding a t t r i bu t e
7 # inc r ea s e the count o f a t t r i b u t e s indicat ing malignancy , o therwi s e
8 # inc r ea s e the count o f a t t r i b u t e s indicat ing benigni ty
9 # c r ea t e r e s u l t tup l e : (id , benign count , malignant count , d iagno s i s)

10 # append the r e s u l t tup l e to the l i s t o f r e s u l t t up l e s
11 # return the l i s t o f r e s u l t t up l e s

1 0 . 4 • D E S I G N I N G T H E C L A S S I F I E R A L G O R I T H M 457

Some notes about this example code:

� Line 5: This is a loop to go through each tuple in the test set list list, i.e., each
patient.

� Line 6: This is a loop nested within the outer, patient loop. This inner loop iterates
through each attribute in the patient tuple.

� Line 10: Once the two counts are set, we create a result tuple in the format
indicated earlier, that is: (patient ID, benign count, malignant count,
actual diagnosis)

The nested loop is an important concept. There are two parts: an outer loop and an
inner loop. Nested loops work as follows: for every iteration of the outer loop, the inner
loop runs through a complete loop (all iterations). Thus, if the outer loop runs 5 iterations
and the inner loop runs 4 iterations, a total of 20 iterations are run.

Code Listing 10.12 is a final version of the classify test set function.

Code Listing 10.12

1 def classify test set list(test set list, classifier list):
2 ' ' ' Given t e s t s e t and c l a s s i f i e r , c l a s s i s f y each pat i ent in t e s t s e t ;
3 return l i s t o f t up l e s : (id , benign count , malignant count , d iagno s i s) ' ' '
4 result list = []
5 # fo r each pat i ent
6 for patient tuple in test set list:
7 benign count = 0
8 malignant count = 0
9 id str, diagnosis str = patient tuple[:2]

10 # fo r each a t t r i bu t e o f the pat i ent
11 for index in range(9):
12 # i f ac tual pat i ent a t t r i bu t e i s g r ea t e r than s epara to r value
13 if patient tuple[index] > classifier list[index]:
14 malignant count += 1
15 else:
16 benign count += 1
17 result tuple = (id str,benign count,malignant count,diagnosis str)
18 result list.append(result tuple)
19 return result list

Notes about this code:

� Line 7 and 8: We need to reset the two counts, benign count and
malignant count, at the beginning of the inner loop because we maintain the
counts for each patient. After the inner loop runs, the two counts contain the respective

458 C H A P T E R 1 0 • M O R E P R O G R A M D E V E L O P M E N T

counts for that patient. When the outer loop runs again, it has moved on to the next
patient, and we need to reset those counts to 0 so we can get an accurate count for the
next patient.

� Line 11: Again, we need to use an index so we can access the same element in the two
lists.

� Line 17: Create the result tuple by using the patient ID (from the first element of the
patient), the two counts, and then the actual diagnosis (from the second element of the
patient list).

� Line 18: Append the tuple to the end of the complete set of results.

Testing the classify test set Function
We continue by testing using our small “testData” set. Following is the session.

>>> import make data set
>>> import train classifier
>>> import classify test set
>>> training set list = make data set.make data set('testData.txt')
>>> classifier list = train classifier.train classifier(training set list)
>>> results list = classify test set.classify test set(training set list,
classifier list)
>>> for patient tuple in training set list:
... print(patient tuple)
...
('1000025', 'b', 5, 1, 1, 1, 2, 1, 3, 1, 1)
('1002945', 'b', 5, 4, 4, 5, 7, 10, 3, 2, 1)
('1015425', 'b', 3, 1, 1, 1, 2, 2, 3, 1, 1)
('1016277', 'b', 6, 8, 8, 1, 3, 4, 3, 7, 1)
('1017023', 'b', 4, 1, 1, 3, 2, 1, 3, 1, 1)
('1017122', 'm', 8, 10, 10, 8, 7, 10, 9, 7, 1)
>>> for average in classifier list:
... print("{:.3f}".format(average),end=' '),
...
6.300 6.500 6.500 5.100 5.100 6.800 6.000 4.700 1.000
>>> for result tuple in results list:
... print(result tuple)
...
('1000025', 6, 3, 'b')
('1002945', 4, 5, 'b')
('1015425', 6, 3, 'b')
('1016277', 4, 5, 'b')
('1017023', 6, 3, 'b')
('1017122', 0, 9, 'm')
>>>

How are we doing? Something is wrong. Look at the first patient; the counts are wrong.
From our earlier testing, the classifier appeared to be working (though that isn’t a guarantee;

1 0 . 4 • D E S I G N I N G T H E C L A S S I F I E R A L G O R I T H M 459

it is an indication), so something we did with the classify test set function is wrong.
Let’s look at the first patient (ID 1000025), his or her attributes, and the classifier values.
We’ll print them again so they are easier to examine:

patient_tuple: ('1000025', 'b', 5, 1, 1, 1, 2, 1, 3, 1, 1)
classifier averages: 6.300 6.500 6.500 5.100 5.100 6.800 6.000 4.700 1.000
result_tuple: ('1000025', 6, 3, 'b')

Looking at the patient attributes and the classifier cutoffs, the counts are indeed wrong.
For example, by examining the values from the first patient, number 1000025, and the
classifier, we should have come out with all nine predictions benign. That is, count values
of “9, 0” instead of the “6, 3” in the output. What did we do wrong?

The indexing is off. The problem is in line 10. We compared the first element
(index 0) of patient against the first element (index 0) of classifier list. But
what is the format of the patient tuple? The first two values are the ID and the diagnosis,
respectively. In fact, we want to compare the third element of patient with the first of
classifier list. We can solve this issue by adding 2 to each index for the patient
tuple (line 13), so we skip over the first two values.

Code Listing 10.13 shows the working version and session.

Code Listing 10.13

1 def classify test set list(test set list, classifier list):
2 ' ' ' Given t e s t s e t and c l a s s i f i e r , c l a s s i f y each pat i ent in t e s t s e t ;
3 return l i s t o f t up l e s : (id , benign count , malignant count , d iagno s i s) ' ' '
4 result list = []
5 # fo r each pat i ent
6 for patient tuple in test set list:
7 benign count = 0
8 malignant count = 0
9 id str, diagnosis str = patient tuple[:2]

10 # fo r each a t t r i bu t e o f the pat i ent
11 for index in range(9):
12 # i f ac tual pat i ent a t t r i bu t e i s g r ea t e r than s epara to r value
13 # Note : the pat i ent tup l e has two ext ra e lements at the beginning
14 # so we add 2 to each pat i ent index to only index a t t r i b u t e s .
15 if patient tuple[index+2] > classifier list[index]:
16 malignant count += 1
17 else:
18 benign count += 1
19 result tuple = (id str,benign count,malignant count,diagnosis str)
20 result list.append(result tuple)
21 return result list

460 C H A P T E R 1 0 • M O R E P R O G R A M D E V E L O P M E N T

>>> import make data set
>>> import train classifier
>>> import classify test set
>>> training set list = make data set.make data set('testData.txt')
>>> classifier list = train classifier.train classifier(training set list)
>>> results list = classify test set.classify test set(training set list,
classifier)
>>> for patient tuple in training set list:
... print(patient tuple)
...
('1000025', 'b', 5, 1, 1, 1, 2, 1, 3, 1, 1)
('1002945', 'b', 5, 4, 4, 5, 7, 10, 3, 2, 1)
('1015425', 'b', 3, 1, 1, 1, 2, 2, 3, 1, 1)
('1016277', 'b', 6, 8, 8, 1, 3, 4, 3, 7, 1)
('1017023', 'b', 4, 1, 1, 3, 2, 1, 3, 1, 1)
('1017122', 'm', 8, 10, 10, 8, 7, 10, 9, 7, 1)
>>> for average in classifier list:
... print("{:.3f}".format(average),end=' ')
...
6.300 6.500 6.500 5.100 5.100 6.800 6.000 4.700 1.000
>>> for result tuple in results list:
... print(result tuple)
...
('1000025', 9, 0, 'b')
('1002945', 7, 2, 'b')
('1015425', 9, 0, 'b')
('1016277', 6, 3, 'b')
('1017023', 9, 0, 'b')
('1017122', 1, 8, 'm')

10.4.9 The report results Function
Finally, we need to report the results. You might think that this would be pretty straightfor-
ward and not really require a function, but what should be reported? The accuracy would
be nice, but one could imagine reporting how many 9/0 votes, how many close votes, and
so on. Therefore, we write a function because we want to isolate potential future changes.

For now, we’ll just report the accuracy. Remember that the results data structure is a
list with four elements, in order: id, benign count, malignant count, diagnosis.
Also, remember that the diagnosis in the results is the actual patient’s diagnosis, not our
classifier prediction.

What do we mean by accuracy? “Majority mules” means that if the benign count >
malignant count, our prediction is benign (“b”), and similarly for malignant. Does our
predictor correctly predict the actual diagnosis?

1 0 . 4 • D E S I G N I N G T H E C L A S S I F I E R A L G O R I T H M 461

The function is shown in Code Listing 10.14:

Code Listing 10.14

1 def report results(result list):
2 ' ' ' Check r e s u l t s and repor t count o f inaccurate c l a s s i f i c a t i o n s . ' ' '
3 total count=0
4 inaccurate count = 0
5 for result tuple in result list:
6 benign count, malignant count, diagnosis str = result tuple[1:4]
7 total count += 1
8 if (benign count > malignant count) and (diagnosis str == 'm'):
9 # oops ! wrong c l a s s i f i c a t i o n

10 inaccurate count += 1
11 elif diagnosis str == 'b': # and (benign count < malignant count)
12 # oops ! wrong c l a s s i f i c a t i o n
13 inaccurate count += 1
14 print("Of ",total count," patients, there were ",\
15 inaccurate count," inaccuracies")

Notes on this function:

� Lines 3 and 4: Initialize the total and inaccurate counts.
� Line 8: If the benign count > malignant count and actual diagnosis is “m” for malignant,

there is an inaccuracy.
� Line 11: This line uses similar logic for the malignant count. Note that since the

number of attributes is odd (nine), it isn’t possible for the counts to be equal.
� Line 14: Print the results.

The following session shows a test of the code.

>>> import make data set
>>> import train classifier
>>> import classify test set
>>> training set list = make data set.make data set('testData.txt')
>>> classifier list = train classifier.train classifier(training set list)
>>> results list = classify test set.classify test set(training set list,
classifier)
>>> for result tuple in results list:
... print(result tuple)
...
('1000025', 9, 0, 'b')
('1002945', 7, 2, 'b')
('1015425', 9, 0, 'b')
('1016277', 6, 3, 'b')

462 C H A P T E R 1 0 • M O R E P R O G R A M D E V E L O P M E N T

('1017023', 9, 0, 'b')
('1017122', 1, 8, 'm')
>>> report results.report results(results list)
Of 6 patients, there were 0 inaccuracies
>>>

10.5 R U N N I N G T H E C L A S S I F I E R O N F U L L D A T A
Now comes the real test. We have assembled all the functions and have tested them in parts.
Now we need to put the full code together and test it on the entire breast cancer data set.

10.5.1 Training Versus Testing
We need to take the full 699 patients and divide them into two files: one file to train the
classifier and one file for testing. There are many strategies for testing the accuracy of a
classifier. The goal is to train the classifier on as many examples as possible while still testing
many patient values. We will take a simple approach and just divide the original file in half:
349 for training, 350 for testing. We put all our code together and run it as indicated in
this example, getting the following result.

>>> import bcancer classifier
>>> bcancer classifier.main()
Reading in training data...
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "bcancerClassifier.py", line 74, in main
training set list = make data set(training file)

File "bcancerClassifier.py", line 14, in make data set
int(a5),int(a6),int(a7),int(a8),int(a9)

ValueError: invalid literal for int() with base 10: '?'

What happened? The error message says that we have the error in the 14th line of the make
data set function. Apparently, Python tried to convert a ''?'' into an integer. Why?

A look at the data files shows the problem. There are a number of patients out of the
699 that have an unknown value as part of their data, indicated by a ''?'' instead of an
integer. That is the source of our problem. We missed that in testing because we looked at
only a small portion of the data.

We have a few choices. We can throw out the “bad” data (there are 16 patients that have
a “?” instead of an integer), or we can fix the problem in the make data set function. It
may be a bad idea to throw away the 16 patients with a ''?'' for an attribute. However,
it may also be a bad idea to “make up” a substitute value for the missing data.

We chose to modify make data set to ignore any patient with a ''?.'' We do
that at lines 10–11, providing a test to see whether there is a ''?'' in the lines. If so, we
continue, meaning that we skip the rest of the loop and go on to the next patient. That
probably deserves a comment, so we place one in.

1 0 . 5 • R U N N I N G T H E C L A S S I F I E R O N F U L L D A T A 463

The final code and session output are shown in Code Listing 10.15.

Code Listing 10.15

1 # naming pro t o c o l :
2 # 1 . names are s t r i n g s
3 # 2 . counts and indexe s are i n t s
4

5 def make data set(file name): # file name i s a s t r i n g
6 ' ' ' Read f i l e file name (s t r) ; return l i s t o f t up l e s in format :
7 id , diagnos i s , 9 a t t r i b u t e s . ' ' '
8 input set list = []
9

10 # open f i l e . Fix the e r ro r checking
11 input file = open(file name)
12

13 for line str in input file:

14 line str = line str.strip() # s t r i p o f f end−of−l i n e charac t e r " \n"
15 # i f a ' ? ' in the pat i ent data , sk ip that pat i ent
16 if '?' in line str:
17 continue
18 id str,a1,a2,a3,a4,a5,a6,a7,a8,a9,diagnosis str = line str.split(',')
19 if diagnosis str == '4': # diagno s i s i s "malignant "
20 diagnosis str = 'm'
21 else:
22 diagnosis str = 'b' # diagno s i s i s " benign"
23 patient tuple=id str,diagnosis str,int(a1),int(a2),int(a3),int(a4),\
24 int(a5),int(a6),int(a7),int(a8),int(a9)
25 input set list.append(patient tuple)
26 return input set list
27

28

29 def sum lists(list1,list2):
30 """Element−by−element sums o f two l i s t s o f 9 items . """
31 sums list = []
32 for index in range(9):
33 sums list.append(list1[index]+list2[index])
34 return sums list
35

36 def make averages(sums list,total int):
37 """ Convert each l i s t element into an average by dividing by the t o t a l . """
38 averages list = []
39 for value int in sums list:
40 averages list.append(value int/total int)
41 return averages list

464 C H A P T E R 1 0 • M O R E P R O G R A M D E V E L O P M E N T

42

43 def train classifier(training set list):
44 """ Build a c l a s s i f i e r using the training s e t . """
45 benign sums list=[0]*9 # l i s t o f sums o f benign a t t r i b u t e s
46 benign count=0 # count o f benign pa t i en t s
47 malignant sums list=[0]*9 # l i s t o f sums o f malignant a t t r i b u t e s
48 malignant count=0 # count o f malignant pa t i en t s
49

50 for patient tuple in training set list:
51 if patient tuple[1]=='b': # i f benign d iagno s i s
52 # add benign a t t r i b u t e s to benign t o t a l
53 benign sums list=sum lists(benign sums list,patient tuple[2:])
54 benign count += 1
55 else: # e l s e malignant d iagno s i s
56 # add malignant a t t r i b u t e s to malignant t o t a l
57 malignant sums list=sum lists(malignant sums list,patient tuple[2:])
58 malignant count += 1
59

60 # find average s o f each s e t o f benign or malignant a t t r i b u t e s
61 benign averages list=make averages(benign sums list,benign count)
62 malignant averages list=make averages(malignant sums list,malignant count)
63

64 # separa to r va lue s f o r each a t t r i bu t e average s benign and malignant
65 classifier list=make averages(sum lists(benign averages list,
malignant averages list),2)

66

67 return classifier list
68

69 def classify test set(test set list, classifier list):
70 ' ' ' Given t e s t s e t and c l a s s i f i e r , c l a s s i s f y each pat i ent in t e s t s e t ;
71 return l i s t o f r e s u l t t up l e s : (id , benign count , malignant count ,

d iagno s i s) ' ' '
72 result list = []
73 # fo r each pat i ent
74 for patient tuple in test set list:
75 benign count = 0
76 malignant count = 0
77 id str, diagnosis str = patient tuple[:2]
78 # fo r each a t t r i bu t e o f the patient ,
79 for index in range(9):
80 # i f ac tual pat i ent a t t r i bu t e i s g r ea t e r than s epara to r value
81 # "+2" s k i p s id and diagno s i s in l i s t
82 if patient tuple[index+2] > classifier list[index]:
83 malignant count += 1
84 else:

1 0 . 5 • R U N N I N G T H E C L A S S I F I E R O N F U L L D A T A 465

85 benign count += 1
86 result tuple = (id str,benign count,malignant count,diagnosis str)
87 result list.append(result tuple)
88 return result list
89

90 def report results(result list):
91 ' ' ' Check r e s u l t s and repor t count o f inaccurate c l a s s i f i c a t i o n s . ' ' '
92 total count=0
93 inaccurate count = 0
94 for result tuple in result list:
95 benign count, malignant count, diagnosis str = result tuple[1:4]
96 total count += 1
97 if (benign count > malignant count) and (diagnosis str == 'm'):
98 # oops ! wrong c l a s s i f i c a t i o n
99 inaccurate count += 1

100 elif diagnosis str == 'b': # and (benign count < malignant count)
101 # oops ! wrong c l a s s i f i c a t i o n
102 inaccurate count += 1
103 print("Of ",total count," patients, there were ",\
104 inaccurate count," inaccuracies")
105

106 def main():
107

108 print("Reading in training data...")
109 training file = "training data.txt"
110 training set list = make data set(training file)
111 print("Done reading training data.\n")
112

113 print("Training classifier...")
114 classifier list = train classifier(training set list)
115 print("Done training classifier.\n")
116

117 print("Reading in test data...")
118 test file = "test data.txt"
119 test set list = make data set(test file)
120 print("Done reading test data.\n")
121

122 print("Classifying records...")
123 result list = classify test set(test set list, classifier list)
124 print("Done classifying.\n")
125

126 report results(result list)
127

128 print("Program finished.")

466 C H A P T E R 1 0 • M O R E P R O G R A M D E V E L O P M E N T

>>> import bcancer classifier
>>> bcancer classifier.main()
Reading in training data...
Done reading training data.

Training classifier...
Done training classifier.

Reading in test data...
Done reading test data.

Classifying records...
Done classifying.
Of 348 patients, there were 7 inaccuracies
Program finished.

>>>

10.6 O T H E R I N T E R E S T I N G P R O B L E M S
Here are some other interesting problems. We don’t solve them fully, but we provide you
the background information so you can solve them yourself.

VideoNote 10.1
Program
Development: Tag
Cloud

10.6.1 Tag Clouds
Tag clouds are a useful way to provide a visual description of the word content of a document.
In a tag cloud, words that are used more frequently have a larger font—less frequently used
words have a smaller font. For example, Figure 10.3 shows a tag cloud for the Declaration

abolishing absolute assent colonies consent

free government hold independent

justice large laws long mankind new

pass peace people power powers

refused repeated right rights seas states

time usurpations war world

FIGURE 10.3 Tag cloud for the U.S. Declaration of Independence.

1 0 . 6 • O T H E R I N T E R E S T I N G P R O B L E M S 467

of Independence. Common words, called stop words, such as a, and, the, and so on, are
usually removed before the analysis, because their frequency isn’t usually of interest. As this
tag cloud illustrates, one can quickly see the words emphasized in the declaration.

Most of the work with a tag cloud is similar to what we did for the Gettysburg Address
earlier in Section 8.2: get a count of each word in the document. As with every problem,
there are many details to be handled: “stop words” need to be removed from consideration,
punctuation needs to be eliminated, non-ASCII characters need to be removed, and so
on. Also, it isn’t interesting to display all words, so, as we did with the Declaration of
Independence we display only words that occur three or more times, as shown. Finally, one
must come up with a way to translate word counts into font sizes for display.

A common way to display tag clouds is on the web. The language of the web is
HTML. You create a document with HTML tags and then point your web browser to it.
Two tasks are needed to to create the HTML document: first, you need to create words
with different font sizes in HTML, and second, you need to pack those words into a box.
Code Listing 10.16 shows two functions that accomplish those two tasks.

Code Listing 10.16

Functions adapted from ProgrammingHistorian (updated to Python3)
http : / / niche .uwo. ca / programming−hi s t o r ian / index . php / Tag clouds

Take one long s t r i n g o f words and put them in an HTML box .
I f de s i r ed , width , background co l o r & border can be changed in the funct ion
This function s t u f f s the "body" s t r i n g into the the HTML formatting s t r i n g .
def make HTML box(body):

box str = """<div s t y l e =\"
width : 560px ;
background−c o l o r : rgb (250,250,250) ;
border : 1px gray s o l i d ;
t ex t−al ign : c en t e r\" >{ : s}</div>
"""
return box str.format(body)

Take word(s t r) and f o n t s i z e (int) , and c r ea t e an HTML word in that f o n t s i z e .
These words can be s trung t o g e th e r and s en t to the make HTMLbox () funct ion .
This funct ion s t u f f s the body and f o n t s i z e into an HTML word format s t r i n g .
def make HTML word(body, fontsize):

word str = '{:s}'
return word str.format(str(fontsize), body)

10.6.2 S&P 500 Predictions
The S&P 500 is a stock market index containing the stocks of 500 large corporations.
It is one of a number of important bellwethers of the stock market—showing trends in

http://niche.uwo.ca/programming-historian/index.php/Tag-clouds

468 C H A P T E R 1 0 • M O R E P R O G R A M D E V E L O P M E N T

overall market performance. A number of sites on the web collect stock market data and
make them available. One such site is Yahoo! Finance.1 The site provides a download in
CSV format—the first few lines are shown in Figure 10.4. We selected to download weekly
values.

Date,Open,High,Low,Close,Volume,Adj Close
2008-07-21,1261.82,1267.74,1255.70,1260.00,4630640000,1260.00
2008-07-18,1258.22,1262.23,1251.81,1260.68,5653280000,1260.68
2008-07-17,1246.31,1262.31,1241.49,1260.32,7365209600,1260.32
2008-07-16,1214.65,1245.52,1211.39,1245.36,6738630400,1245.36

FIGURE 10.4 CSV file downloaded from Yahoo! Finance.

The first line of the file is a header line that labels each of the comma-separated fields in
each line. Let’s consider the “Date” and “Adj Close” values—the latter is the final, adjusted
value for the index at the end of the week. To smooth out the data, let’s consider 13
weeks at a time—13 weeks is one-quarter of a year. Finally, let’s consider data over the
last 20 years—roughly the lifetime so far of a college student. Here are some questions we
might ask:

� What is the greatest difference between the max and min values in any 13-week interval?
� What is the smallest difference between the max and min values in any 13-week interval?
� What is the greatest change between the first and last values in any 13-week interval?
� What is the smallest change between the first and last values in any 13-week interval?
� If we fit a line to a 13-week interval of data, what is the slope of the line?
� What are the difference, change, and slope for last week?

Note that as we phrased the questions, the first two values will always be positive, and
the next three could be negative. That is, the last value may be less than the first value. Also,
a line fit to the data may be sloping downward (negative slope).

How might we approach this problem? We can go through the data line by line and
split on commas, yielding date as the first value and close as the last value in the resulting
list. We can gather 13 values together into a list and find the differences and changes over
that 13-week interval. Using the max and min functions we can find the difference as
max - min on each 13-week list. We can find the change by subtracting the first week
from the last week: thirteen week list[-1] - thirteen week list[0]. We
can then put the differences into one list and changes into another list. The max and min
of those latter lists provide the answers to the first four questions.

The slope of a line made from the data is a bit trickier. Fitting a line to data is called a
linear least squares fit; a search on the web provides the following formula, which can be put

1 S&P 500 data: http://finance.yahoo.com/q/hp?s=GSPC, ©YAHOO! and the YAHOO! logo are registered trademarks of Yahoo! Inc.

http://finance.yahoo.com/q/hp?s=GSPC

1 0 . 6 • O T H E R I N T E R E S T I N G P R O B L E M S 469

in a function. The x values will be 0 to 12, representing the 13 weeks, and the range(13)
function will be useful for generating those values. The y values will be the 13 closing values
in the thirteen week list. The formulas for p, q, r, and s look intimidating, but the
Python sum function does that summation calculation for us. For example, to calculate q
you simply sum over the list: q = sum(thirteen week list).

s l o pe =
ns − pq
nr − p2

where

p =
n∑

k=1

xk

q =
n∑

k=1

yk

r =
n∑

k=1

x 2
k

s =
n∑

k=1

xk yk

We formatted our output as follows:

>>>
Twenty years of S&P 500 in 13-week intervals.

max and min difference between high and low values in 13 weeks: 191.33, 11.47
max and min change from first week to 13th week: 191.33, -171.73
max and min slope of line fit to data over 13 weeks: 15.33, -14.36
latest week difference, change, slope, 2008-07-02 : 58.79 , 1.52 , 0.87

From that output we can observe that over 20 years:

� The biggest difference between the max and min in any 13-week interval was 191.
� The smallest difference between the max and min in any 13-week interval was 11.
� The biggest increase from the first to last week in any 13-week interval was 191.
� The biggest decrease from the first to last week in any 13-week interval was -171.
� The biggest trend increase over any 13-week interval (slope) was 15.
� The biggest trend decrease over any 13-week interval (slope) was -14.
� The 13-week trend was nearly flat but going up a little.
� The index has gone up as much as it has gone down in any 13-week interval.

Finally, we can see that in the last week, the index has been volatile—that it ended
slightly better than it started and that overall the trend is positive.

470 C H A P T E R 1 0 • M O R E P R O G R A M D E V E L O P M E N T

With some real data and a little Python programming, we were able to do some real
analysis of stock market data. One could easily substitute another index or individual stock
performance to do the same or similar analysis.

10.6.3 Predicting Religion with Flags
The design of a flag is influenced by the political and cultural roots of a country. Is it possible
to determine the predominate religion of a country simply by looking at its flag?

Characteristics of flags were collected from a book of flags and are available online.2

Twenty-eight different characteristics of flags were collected, such as number of vertical bars,
horizontal stripes, colors, circles, crosses, and stars. Some characteristics were Boolean—that
is, they exist or do not—such as crescent, triangle, a particular icon, a particular animate
object, or some particular text. Finally, some non-numeric data were collected: dominate
color, color in upper-left corner, and color in the bottom-right corner. The data set was
augmented with the predominate religion of the country. Roughly half the 194 countries in
the data set were Christian, so using the techniques we used for the breast cancer study, we
created a flag classifier to predict whether the predominate religion of a country is Christian
or not.

The simple classifier correctly predicted the predominate religion from flag character-
istics 70% of the time. It was better at predicting that a country is not Christian (88%
correct) than it was at predicting that a country is Christian (52% correct).

Here is a sample of the data set:

Andorra,3,1,0,0,6,0,3,0,3,1,0,1,1,0,0,0,gold,0,0,0,0,0,0,0,1,1,1,blue,red
Angola,4,2,1247,7,10,5,0,2,3,1,0,0,1,0,1,0,red,0,0,0,0,1,0,0,1,0,0,red,black
Anguilla,1,4,0,0,1,1,0,1,3,0,0,1,0,1,0,1,white,0,0,0,0,0,0,0,0,1,0,white,blue

Fields 1–6 are country characteristics, such as location, size, population, and language,
so they are ignored for this exercise. Consider the flag of Andorra in Figure 10.5. Using
brackets to note indices in the data line above, it has three vertical bars [7], zero stripes [8],
three colors [9]—red [10], blue [12], gold [13], and gold dominates [17]—an icon [25], an
animate object [26], text [27], blue in the top left [28], and red in the bottom right [29].

FIGURE 10.5 Flag of Andorra.
2 Richard Forsyth, University of California, School of Information and Computer Science Machine Learning Repository,

http://archive.ics.uci.edu/ml/machine-learning-databases/flags/flag.names.

http://archive.ics.uci.edu/ml/machine-learning-databases/flags/flag.names

S U M M A R Y 471

As with the breast cancer data, averages were calculated for each field and then a
midpoint was found. If a country’s data fell on the correct side of the midpoint for a field,
the score was increased by 1. A high score was considered to be a match, i.e., a predominately
Christian country. The non-numeric color fields were handled by determining the dominant
color for Christian flags—listing, counting, sorting, and selecting the dominant color. If a
field matched the Christian dominant color, the score was increased. As the dominant color
for the bottom right was red for both Christian and non-Christian, it was not used as a
discriminator.

Because the overall accuracy is barely 70%, it is easy to find countries that are identified
incorrectly by our simple predictor. In the following output, we illustrate with two correct
and two incorrect inputs:

Flags

Enter a country: UK
UK is Christian
Enter a country: China
China is not Christian
Enter a country: Spain
Spain is not Christian
Enter a country: Qatar
Qatar is Christian
Enter a country: done

Summary
In this chapter, we showed how Python could be applied in a variety of domains. We walked
through one problem in detail and outlined approaches to a few very different problems.
One interesting observation about this chapter is the complexity of problems that you now
have the tools to solve.

Rules
� RULE 1: Think before you program!

� RULE 2: A program is a human-readable essay on problem solving that also happens
to execute on a computer.

� RULE 3: The best way to improve your programming and problem skills is to practice!

� RULE 4: A foolish consistency is the hobgoblin of little minds.

� RULE 5: Test your code, often and thoroughly!

� RULE 6: If it was hard to write, it is probably hard to read. Add a comment.

472 C H A P T E R 1 0 • M O R E P R O G R A M D E V E L O P M E N T

� RULE 7: All input is evil, until proven otherwise.

� RULE 8: A function should do one thing.

Exercises
1. The function sum lists works only with two lists of exactly nine elements.

(a) Fix the function to work with lists of any size.
(b) Fix the function to work even if the lists are of different sizes.
(c) Rewrite the function using list comprehension. Can you reduce the function to one

line yet have it still be readable?

2. The function make averages works only with lists of exactly nine elements.

(a) Fix the function to work with lists of any size.
(b) Rewrite the function using list comprehension. Can you reduce the function to one

line yet have it still be readable?

3. Refactor the breast cancer code using sets rather than lists. Compare the refactored code
to the original code: is it more readable?

4. Refactor the breast cancer code to collect data into 18 lists and then create the averages
using sum and len. Compare the refactored code to the original code: is it more
readable?

5. Find an online transcription of a political debate online and download the file.

(a) Generate separate tag clouds for each participant.
(b) Analyze the tag clouds and write a one-page essay on what the tag clouds tell about

the debate.

6. Find a set of online stock transactions as we did in Section 10.6.2 (Yahoo!) and download
the data. Pick an interesting and volatile period, such as the second half of 2008.

(a) Choose a feature of the market that you find interesting and write a program that
analyzes the data.

(b) Write a one-page analysis of your output.

7. Choice of appropriate data structure is an important step in designing algorithms.
Suppose a text file contains student records on each line, and each record is of the
format: Name of Student, Student ID, GPA. Now consider reading that file to create a
list of lists, a list of tuples, or a tuple of tuples.

(a) If you just want to create a report using the data, would you choose a list or a tuple
as the underlying data structure for the record?

(b) If you want to modify the name or student ID or GPA, would you choose a list or
a tuple as the underlying data structure for the record?

P R O G R A M M I N G P R O J E C T S 473

8. A major holiday is coming, and you need to keep track of all the things to do to prepare
for the relatives coming to your place to celebrate. What data structure do you use to
keep track?

Programming Projects
1. Classifier: Income predictor

An alternative classifier assignment can be constructed from another data set out of
the UCI Machine-Learning Repository. The “Adult Data Set” can be used to predict
whether someone’s income will be greater than $50,000. The process is the same as for
classifying cancer as benign or malignant.

In this case, there are three information fields that can be ignored. They are labeled
“Fnlwgt” (field 3), “Native-country” (field 14), and “Education” (field 4). The last one
is ignored, because that value is captured in the adjacent field “Education-num.”

The other difference in this data set is that some fields have discrete attributes.
Calculating averages for attributes such as “Hours per week” is simple: just add up
all the values and divide by the count of values. The discrete attributes are a little
more interesting. Imagine that we have 10 records, all of which are examples of the
>50K examples. If the “Relationship” attribute for 2 of these 10 records is “Wife,” 3
is “Own-child,” 2 is “Husband,” 1 is “Not-in-family,” 1 is “Other-relative,” and 1 is
“Unmarried,” then the “Relationship” attribute in the >50K model would be as follows:

Relationship Wife: 0.2
Own-child: 0.3
Husband: 0.2
Not-in-family: 0.1
Other-relative: 0.1
Unmarried: 0.1

Follow the six steps outlined for the cancer classifier.

2. Tag cloud
Choose a document to analyze and use the tag cloud function of Section 10.6 to create
a tag cloud web page. An interesting alternative is to use a transcript of a political debate
for analysis.

3. Stock analysis
Using the formulas of Section 10.6, gather and analyze stock trends. An interesting
alternative is to analyze a particular stock.

4. Flag analysis
Using the outline of Section 10.6 and the URL provided, recreate the flag analysis.

This page intentionally left blank

•4P A R T

Classes, Making Your Own
Data Structures and

Algorithms

Chapter 11 Introduction to Classes

Chapter 12 More on Classes

Chapter 13 Program Development with Classes

This page intentionally left blank

•11C H A P T E R

Introduction to Classes

Controlling complexity is the essence of computer programming.

B. Kernighan, co-author of the first book on the C programming language

WE HAVE DISCUSSED AT LENGTH THE USE OF BUILT-IN DATA STRUCTURES AND

methods for problem solving. What we have not addressed is how to build our own data
structures. What if our problem requires a data structure and methods of our own design?
In this chapter, we will introduce classes and how they can help us do exactly that.

11.0.5 Simple Student Class
To get a flavor of classes, let’s define a simple Student class. The class definition and a
session using it are shown in Code Listing 11.1. Our class has a few attributes, such as a
first name, last name, and ID. Once the class is defined, we can create an instance object
named stu1 and then print its attributes in the accompanying session. You will notice a
number of unusual features, such as names beginning and ending with underscores and the
name self appearing in many places. We explain these and many other interesting aspects
of classes in this chapter.

Code Listing 11.1

class Student(object):
""" Simple Student c l a s s . """
def init (self,first='', last='', id=0): # i n i t i a l i z e r

self.first name str = first
self.last name str = last
self.id int = id

477

478 C H A P T E R 1 1 • I N T R O D U C T I O N T O C L A S S E S

def str (self): # s t r i n g repre s en ta t ion , e . g . f o r pr int ing
return "{} {}, ID:{}".format\

(self.first name str, self.last name str, self.id int)

>>> stu1 = Student('Terry', 'Jones', 12345)
>>> print(stu1)
Terry Jones, ID:12345

11.1 O B J E C T - O R I E N T E D P R O G R A M M I N G
A common concept in modern programming languages design is the object-oriented program-
ming paradigm. Object-oriented programming, or OOP for short, is a general approach to
programming that grew out of a need to handle the increasing complexity of programming.
It is not the only approach, and hopefully you will be exposed to others, but it is common
and has a number of advantages.

OOP is really a point of view. That point of view is that a program is a set of objects,
where each object can interact with other program objects to accomplish the programmer’s
goal. These objects will have two characteristics:

� Each object has some number of attributes (e.g., color, make) that are stored within the
object.

� The object responds to some methods, which are also attributes, that are particular for
that kind of object (e.g., move forward, print).

11.1.1 Python Is Object Oriented!
The good news is that we have been working with the OOP paradigm all along, because
Python is fundamentally an OOP language. We have spoken often of Python objects and
their associated methods. When we call a constructor such as list or str (or their shortcuts
[] and ' '), we are making a new object. Those objects have attributes. Both a list and
string object are collections with multiple parts. Those objects respond to methods. We can
sort a list by calling the method my list.sort(), change a string to lowercase with the
method my str.lower(). We know how to work with objects; now we are moving on
to making our own.

In Python, there is a strong similarity between a type and a class. We have seen many
examples of the difference among objects that are of type str, list, int, and many
others. They store different things (strings store only strings, lists store any object, integers
store only non-floating-point numbers) and respond to different methods, and even the

1 1 . 2 • W O R K I N G W I T H O B J E C T - O R I E N T E D P R O G R A M M I N G 479

same methods in different ways (the binary operator minus (−) is set difference for a set,
subtraction for an integer).

Object-oriented programming compels the programmer to think of the items in a
program as objects. We have a lot of experience with this point of view in the programs we
have written to date!

11.1.2 Characteristics of OOP
There are three characteristics typically associated with the OOP paradigm:

� Encapsulation
� Polymorphism
� Inheritance

It is difficult to define these characteristics exactly at this point, so we will return to them
after we get a better understanding of OOP. Keep them in mind as we lead you through the
concepts of OOP.

We will begin with a discussion of OOP in general and then examine the implementa-
tion of those concepts in Python.

11.2 W O R K I N G W I T H O B J E C T - O R I E N T E D
P R O G R A M M I N G

There are some terms commonly associated with OOP that we introduce here. We acknowl-
edge that OOP terminology is not universally accepted, but there are some general things
we can discuss that will span most OOP approaches. We will begin with a generic view of
OOP and then consider Python’s view.

11.2.1 Class and Instance
The terms class and instance are important for understanding OOP. They can be surprisingly
tricky to understand at first, so we approach the concepts slowly.

The viewpoint we take in this book is that a class is a template for making a new object
and that an object made by a class template is called an instance of that class. Using a simple
analogy, class and instance have a relationship similar to that between a cookie cutter and a
cookie (see Figure 11.1). A cookie cutter is a template for stamping out cookies. Once the
template is made, we can stamp out any number (an infinite number, in fact) of cookies,
each one formed in the likeness defined by the cutter (template).

OOP works similarly. A class is a template for making an instance, and the instance
reflects the structure provided by the template, the class. The class can “stamp out” any
number (in fact, an infinite number) of instances, each in the likeness of the class.

480 C H A P T E R 1 1 • I N T R O D U C T I O N T O C L A S S E S

FIGURE 11.1 Analogy: cookie cutter is to cookie as class template is to instance. [© Emilia
Stasiak/Shutterstock]

As we said earlier, a class operates in much the same way as a type. The type int is in
fact a template; a general model of the attributes of an integer and the operations that can
be performed on an integer. In contrast, the specific integers 1, 2, 3, 145, 8857485, etc.
are each instances of the int type. Because they are of the same type, each integer instance
shares the operations that can be performed on all integers, but each integer instance has
local, individual characteristics, i.e., their individual value.

The class template defines the two major aspects of an instance: the attributes that
might be contained in each instance and the operations that can be performed on each
instance. It is important to remember that the class defines the structure and operations of
an instance but that those operations are operations for class instances, not the class itself.1

If we stay with the cookie analogy, the operations to be performed on the instance (cookie),
such as eat a cookie or dunk it in milk, are not operations that can be performed on the
cookie cutter (at least, we hope not!). We can again look to the integers. We can add two
integers, 1 + 2, but what does it mean to perform the same operation on the type int itself,
int + int?

The traditional view is that class defines the instance, the potential attributes (though
not the values) of the instance, and the operations that can be performed on that instance.
In this first take, the most important operation that a class can do is the “instance making”
operation. All other operations are associated with the instance.

1 Note that it is possible to make new classes as instances of other classes with associated methods, so-called metaprogrammng. We
leave this for more involved discussions of OOP, but Python does support metaprogramming; see http://www.onlamp.com/pub/
a/python/2003/04/17/metaclasses.html

http://www.onlamp.com/pub/a/python/2003/04/17/metaclasses.html
http://www.onlamp.com/pub/a/python/2003/04/17/metaclasses.html

1 1 . 3 • W O R K I N G W I T H C L A S S E S A N D I N S T A N C E S 481

11.3 W O R K I N G W I T H C L A S S E S A N D I N S T A N C E S
Let’s take a look at some real classes and instances in Python and see what we can do with
them.

11.3.1 Built-In Class and Instance
We can apply our new terminology, class and instance, to the programming we have been doing.
Any of the built-in data structures are defined as a class: a list is a class, as is a string, set, tuple, or
dictionary. These classes can be used to make individual instances using either the constructor
(respectively list, str, set, tuple, dict) or their shortcuts, where available. The
constructor creates a new object, which is an instance of the class. These instances have
internal attributes and associated methods that may be applied to those instances.

The type function helps us understand this detail. Look at the following session:

>>> my list = [1,2,3]
>>> type(my list)
<class 'list'>
>>> my str = 'abc'
>>> type(my str)
<class 'str'>
>>> my dict = {1:'a',2:'b',3:'c'}
>>> type(my dict)
<class 'dict'>
>>> my list
[1, 2, 3]
>>> my list.sort(reverse=True)
>>> my list
[3, 2, 1]
>>> my str.upper()
'ABC'
>>> my dict.values()
['a', 'b', 'c']
>>> my str.sort()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

AttributeError: 'str' object has no attribute 'sort'
>>> my list.values()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

AttributeError: 'list' object has no attribute 'values'

When an instance is made of any of the built-in data structures, the new instance has
a type: the type of the class it was created from. As a result, certain methods defined by the
class are available to those instances. However, when an instance attempts to use a method
not defined as part of the class, an error results. The error message is also very telling—

482 C H A P T E R 1 1 • I N T R O D U C T I O N T O C L A S S E S

for example: AttributeError: 'str' object has no attribute 'sort'. It
clearly states that the attribute being sought is not part of an element of this type (of this class).

11.3.2 Our First Class
Take a look at the following Python session. In the session, we create a class named MyClass
and create an instance of that class that we name my instance.

>>> class MyClass (object):
pass

>>> dir(MyClass)
' class ', ' delattr ', ' dict ', ' doc ', ' eq ',
' format ', ' ge ', ' getattribute ', ' gt ', ' hash ',
' init ', ' le ', ' lt ', ' module ', ' ne ', ' new ',
' reduce ', ' reduce ex ', ' repr ', ' setattr ',
' sizeof ', ' str ', ' subclasshook ', ' weakref ']

>>> my instance = MyClass()
>>> dir(my instance)
[' class ', ' delattr ', ' dict ', ' doc ', ' eq ',
' format ', ' ge ', ' getattribute ', ' gt ', ' hash ',
' init ', ' le ', ' lt ', ' module ', ' ne ', ' new ',
' reduce ', ' reduce ex ', ' repr ', ' setattr ',
' sizeof ', ' str ', ' subclasshook ', ' weakref ']

>>> type(my instance)
<class ' main .MyClass'>

Figure 11.2 shows the basic components of a class definition.

Class name.
Must follow variable
naming rules. Parent object.

Suite
follows
the colon.

Class suite:
contains code to
define class.

Keyword
indicating
class is being
defined.

class className (object) :

suite

FIGURE 11.2 The basic format of a class definition.

1 1 . 3 • W O R K I N G W I T H C L A S S E S A N D I N S T A N C E S 483

A class definition starts with the class keyword, followed by the class name. As with
all names, the class name must adhere to normal Python naming rules (see Section 1.4.6).
Class names use what is called the CapWords approach. Each word is capitalized, joined
together without underscores. After assignment and def, the keyword class is our third
example of making a new association in a namespace. The name that follows the keyword is
the name of the class, and that name becomes associated with a class object. After the class
name we include, in parentheses, the name of the parent class of our class. In Section 12.6,
we cover more on parent and base classes, but for now we always include the class object
in parentheses followed by a colon.

What follows the colon, as in previous Python compound statements, is a suite that
defines the class. The suite can contain any relevant Python code, typically methods or
variable assignments. This particular class has what is essentially an empty suite, except
Python will not syntactically allow an empty suite. We use the Python keyword pass as we
have before to indicate that the suite is indeed empty. In this context, the keyword pass is
an indication of intent. We, the class designers, did not forget to add content; we intended
to have no content.

Once the class is defined, we can inspect what we have made with the Python function
dir. The function dir lists all of the attributes of the class. Python uses the word attribute
to indicate both the methods of an object and the names of any values stored in an object.
An attribute is a name associated with another object.

You may have noticed something strange about the previous paragraph. We said that
dir lists all the attributes of an object and used it on our class MyClass. Yes, a class is
also an object. We will talk more about a class as an object later, but every class, every
instance—in fact, nearly everything in Python—is an object!

The function dir with the argument MyClass produced a long list attributes. Most
of these were provided, by default, by Python through the special object named object.
Even though we provided no attributes to MyClass, that class does indeed have a set of
attributes, most of which begin and end with double underscore characters (). Python
reserves a number of special methods and variables that begin with with a pair of underscore
characters. These have predefined meaning to Python in its OOP class system. We will be
seeing more of these special names shortly.

A Simple Instance
Even though we have included nothing in our class definition, MyClass comes with one
very important built-in ability. It has the ability to make an instance. We, as class designers,
are given the opportunity to affect the instance-creation process, but even if we choose not
to avail ourselves of it, our class can make an instance.

We invoke any class’s instance-making function by using the name of the class as a
function. In our case, the name of our class is MyClass, so the name of the instance-
creation function is MyClass(). This is the normal approach in Python. Every constructor
we have seen is named the same as the class name it is associated with. We can see this
action in the previous session. Because our class is empty, we use the default instance-making
ability of Python.

484 C H A P T E R 1 1 • I N T R O D U C T I O N T O C L A S S E S

What is created is an instance of the class. We can use the dir function to see what
attributes the instance contains. Not surprisingly, the instance attributes look like the class
attributes, because the instance was made from the class as a template. More important,
what type is the instance? It is an instance of the class MyClass, as indicated by the
result from the type function. An instance is made from a class and carries that class as
its type. We have created a new type by creating a class and can make instances of that
type!

11.3.3 Changing Attributes
Now we have a class and an instance. How can we change them?

In general, you can reference any object using the standard dot notation we have been
using. Also, as in any other assignment, we need only assign a value to a variable for a
variable to be created. However, in this case, we assign the variable internally to the object
when we use the dot notation. That is, as with other objects, a class and instance have a
namespace, and when we make a new assignment we add the name to the namespace. Look
at the following session.

>>> class MyClass (object):
pass

>>> my instance = MyClass()
>>> dir(MyClass)
[' class ', ' delattr ', ' dict ', ' doc ', ' eq ',
' format ', ' ge ', ' getattribute ', ' gt ', ' hash ',
' init ', ' le ', ' lt ', ' module ', ' ne ', ' new ',
' reduce ', ' reduce ex ', ' repr ', ' setattr ',
' sizeof ', ' str ', ' subclasshook ', ' weakref ']

>>> dir(my instance)
[' class ', ' delattr ', ' dict ', ' doc ', ' eq ',
' format ', ' ge ', ' getattribute ', ' gt ', ' hash ',
' init ', ' le ', ' lt ', ' module ', ' ne ', ' new ',
' reduce ', ' reduce ex ', ' repr ', ' setattr ',
' sizeof ', ' str ', ' subclasshook ', ' weakref ']

>>> MyClass.class attribute = 'hello'
>>> print(MyClass.class attribute)
hello
>>> dir(MyClass)
[' class ', ..., 'class attribute']

>>> my instance.instance attribute = 'world'
>>> print(my instance.instance attribute)

1 1 . 3 • W O R K I N G W I T H C L A S S E S A N D I N S T A N C E S 485

world
>>> dir(my instance)
[' class ', ,..., 'class attribute', 'instance attribute']

>>> print(my instance.class attribute)
hello

To create a variable in Python, you assign it a value. You do much the same for an
object attribute. To create a new attribute in an object, the programmer assigns a value
to an object attribute—that is, to object name.attribute name using dot nota-
tion. In the previous session, we made the assignment MyClass.class attribute =
'hello', resulting in the attribute class attribute being added to MyClass with
the value 'hello'. We can print that value back using a normal print statement and
the full name, print MyClass.class attribute. Furthermore, we can see that us-
ing the dir function on MyClass clearly shows that class attribute is now part of
MyClass.2

As we have mentioned, a namespace is actually a dictionary that establishes a relationship
between names and objects. The namespace for a class is named dict , and that name
can be seen in the previous session.

We can also add an attribute to the instance, my instance, again using dot notation
and assignment. As before, we can view the attribute’s value by printing it. However, look
closely at the result of the dir function on my instance. See anything odd?

11.3.4 The Special Relationship Between an Instance
and Class: instance-of

The oddity is the fact that the attribute class attribute, set to be part of
MyClass, shows up as an attribute of my instance even though we never assigned
class attribute to the instance. How can that be?

Look at the following session.

>>> class MyClass (object):
pass

>>> my instance = MyClass()
>>> MyClass.class attribute = 'hello'
>>> my instance.instance attribute = 'world'
>>> dir(my instance)
[' class ', ... , 'class attribute', 'instance attribute']
>>> print(my instance. class)
<class ' main .MyClass'>

2 For the sake of brevity, we indicate with . . . the repetition of most of the default attributes in the remaining sessions.

486 C H A P T E R 1 1 • I N T R O D U C T I O N T O C L A S S E S

>>> type(my instance)
<class ' main .MyClass'>
>>> print(my instance.instance attribute)
world
>>> print(my instance.class attribute)
hello
>>> print(MyClass.instance attribute)

Traceback (most recent call last):
File "<pyshell#11>", line 1, in <module>
print MyClass.instance attribute

AttributeError: type object 'MyClass' has
no attribute 'instance attribute'

A special relationship holds between a class and its instance. This relationship is often
called an instance-of relationship. That is, every instance is related to its respective class by
the instance-of relationship: the instance is an instance of its template class. In fact, we can
even see how that relationship is established. In the previous session we printed the value of
my instance. class , an attribute of my instance. When an instance is created,
the class from which it was created is recorded in the special attribute name class
in the instance. In this way, an instance always “remembers” its class, the template from
which it was created. When we print(my instance. class), we see that it is an
instance of the class MyClass. This is shown in Figure 11.3.

class MyClass

 class_attribute (value ‘‘hello’’)
my_instance

 instance_attribute (value ‘‘world’’)

FIGURE 11.3 The instance-of relationship.

Again, if we ask Python to indicate the type of my instance using the type function,
it reports that my instance is of type MyClass, the value stored in the class
attribute.

Part of the Python Scope Rules for Objects: Instance, then Class
You saw in Section 8.1 that the scope of a variable is related to the namespace that defines
where a variable is referenced. The previous rule was called the LEGB rule—that is, we look
for a variable: first in the local namespace (L), second in the enclosing (function) namespace
(E), third in the global namespace (G), and then finally in the built-in namespace (B). If it
cannot be found in that search process, then the variable is undefined.

1 1 . 3 • W O R K I N G W I T H C L A S S E S A N D I N S T A N C E S 487

A similar rule applies to objects. We can search through different namespaces to find
the value associated with a name. The instance-of relationship provides half of the object
rule (Section 12.6 reveals the full rule). If the name cannot be found in the instance itself,
Python will look up the instance-of relation to see whether the name can be found in
the associated class namespace. In this way, OOP provides an economy of definition. A
name defined in the class namespace is available to all instances of that class. The class
acts as a kind of global repository for attributes to be used and shared by all its instances.
This is how class attribute becomes available to my instance; it is not found in
the instance itself but is found in the class, MyClass, that formed my instance. Note
that the relationship does not hold both ways. Python throws an error if we ask to print
MyClass.instance attribute. The direction of the arrows in Figure 11.3 illustrates
that one-way relation.

Interestingly, a programmer is free to override the class-global definition. Because the
rule is to first look in the instance, then the class, defining any attribute in the instance
overrides the definition in the class.

What happens if the class resets the attribute class attribute, as in MyClass.
class attribute='goodbye'? That invocation is perfectly legal in Python, but now
every instance of MyClass will be affected by the change unless they have changed the
attribute locally. Look at the following session.

>>> class MyClass (object):
pass

>>> inst1 = MyClass()
>>> inst2 = MyClass()
>>> inst3 = MyClass()
>>> MyClass.class attribute = 27
>>> inst1.class attribute = 72
>>> print(inst1.class attribute)
72
>>> print(inst2.class attribute)
27
>>> print(inst3.class attribute)
27
>>> MyClass.class attribute = 999
>>> print(inst1.class attribute)
72
>>> print(inst2.class attribute)
999
>>> print(inst3.class attribute)
999

The instance inst1 set the attribute locally. It is not affected by the class attribute
change, and it does not affect the value of the attribute, as seen by inst2 and inst3.

488 C H A P T E R 1 1 • I N T R O D U C T I O N T O C L A S S E S

class MyClass

 class_attribute (value 27)

inst1

 class_attribute (value 72)

inst2

inst3

FIGURE 11.4 A mixture of local and instance-of attribute relationships.

However, when the class changes the attribute value, both inst2 and inst3 reflect the
change, as they are using the instance-of link to find the value. This situation is shown in
Figure 11.4.

11.4 O B J E C T M E T H O D S
We added attributes to objects but didn’t add methods. How do we add methods to an
object? In fact, exactly what is a method? How do we use methods?

11.4.1 Using Object Methods
We alluded earlier to the fact that a method and a function are different. In Chapter 6, we
discussed functions and what they can do. A function is a small program—an encapsulation
of an operation. It takes in parameters and returns a value. By providing encapsulation of a
task, we can write more readable code.

Functions that define the operations that can be done on an object are called methods.
We know a lot about calling methods. We first discussed how a method is called in Chapter 4,
but here’s a refresher. Consider a string and the string’s count method. The count method
takes a single argument, a string, and counts the number of occurrences of the argument
string in the calling string. For example, to count the number of times the “m” character
occurs in the a str string:

>>> a str = "hi mom"
>>> print a str.count("m")
2
>>> print a str.count
<built-in method count of str object at 0xcb0f20>

The variable a str is associated with an instance of the string class, the string
"hi mom". If we want to call a method on a str, we use the the same dot notation

1 1 . 4 • O B J E C T M E T H O D S 489

that we used for attributes. The notation works because a method is just another attribute
of an object. It just so happens that a method is a callable, or invokable, attribute. Just to
make that clear, when we print(a str.count), we get a value back indicating that this
particular attribute is a method of the str object. To invoke it, we use parentheses after the
method name.

To invoke the method, we must do so in the context of a string object, in this case the
object associated with a str. We can call count in the context of a string instance, because
count works only with string instances. There might be other count methods (there is
one for list instances, for example), but this particular method works only for strings, while
the other count works only for lists. The names may be the same, but their operation
depends on the type of object being used.

The invocation is:

a str.count('m')

which can be read as “Call the string method count using the string a str along with the
argument 'm'.” The result is how many times 'm' shows up in the calling string, a str.

The important thing to note is that a str is the object that is used in the calling of
count. This observation points out two important issues:

� We know which method to call. Both the type of the object (type str for a str,
in this case) and the method name (count, in this case) are used to find the correct
method. Using both names directs Python to the correct method even if it is overloaded
(Section 1.7).

� The calling object (a str, in this case) is part of the invocation. In a very real sense,
it is another argument to the method.

The method, written specifically for a particular type of object, is specialized for working
with just that type.

11.4.2 Writing Methods
Now we need to define our own methods. When defining a method there, are really only a
few differences between it and a function:

� Where a method is defined
� An extra argument that is added to every method

Methods are added to a class by defining functions in the suite of a class. By providing these
specialized functions in the class, those functions become available to every instance made
from the class using the class-instance scope rules we discussed previously.

490 C H A P T E R 1 1 • I N T R O D U C T I O N T O C L A S S E S

The code in Code Listing 11.2 adds a method to our simple class.

Code Listing 11.2

class MyClass (object):
class attribute = 'world'

def my method (self, param1):
print('\nhello {}'.format(param1))
print('The object that called this method is: {}'.\

format(str(self)))
self.instance attribute = param1

my instance = MyClass()
print("output of dir(my instance):")
print(dir(my instance))
my instance.my method('world') # adds the in s tance a t t r ibut e
print("Instance has new attribute with value: {}".\

format(my instance.instance attribute))
print("output of dir(my instance):")
print(dir(my instance))

>>>
output of dir(my instance):
[' class ', ..., 'class attribute', 'my method']

hello world
The object that called this method is: < main .MyClass object at 0x1020c7610>
Instance has new attribute with value: world
output of dir(my instance):
[' class ', ..., 'class attribute', 'instance attribute', 'my method']
>>>

The method is called my method and takes a single argument, as evidenced by the
invocation. One can also see the parameter param1 in the method definition. We invoke
it as we described, calling the method in the context of an instance of the class. The scope
search process looks first in the instance and, not finding the method there, looks next in
the class and, finding the method in the class, runs that method.

The dir command shows that the method my method and the attribute
class attribute, both defined in the class, are available to the instance my instance.

1 1 . 4 • O B J E C T M E T H O D S 491

11.4.3 The Special Argument self
There is an oddity about the definition of our method that you may have noticed. We noted
in the invocation that only one argument was passed, but in fact two parameters show up
in the definition of the method: self, and param1. Our argument mapped to param1,
but what is self?

Python automatically maps the first parameter in a method definition to the object that
called the method. This mapping is shown in Figure 11.5.

class MyClass (object):

 def my_method (self, param1):

 #method suite

my_instance = MyClass()

my_instance.my_method(‘‘world’’)

FIGURE 11.5 How the calling object maps to self.

Traditionally, this first parameter is called self, indicating that the object we are calling
this method on is the object itself. The variable can be called anything, but self is the
expected name. Any other name would be confusing to other programmers who have to
read the code.

The name self allows us to always have a way to reference the object that called
the method. Anywhere in the method where the code references self, we are referenc-
ing the object that called the method. In this way, we can perform the method’s operation
on the object that called it.

Look again at the previous code example. In the class definition, my method prints the
value of self and also performs the following operation: self.instance attribute
= param1. This means that the object that called the method (in this case, my
instance) is associated with self, and self has a new attribute added to it called
instance attribute. In the code following the class definition of Code Listing 11.2, we
see that we can print my instance.instance attribute to see that my method
really assigns param1 to the instance attribute.

P R O G R A M M I N G T I P

The method parameter self must always be placed as the first parameter in any method
definition. Further, any reference to the calling object must be made through self. That
is, when we refer to a part of the calling object, we use dot referencing, as in self.
instance attribute. This is a reference to the attribute instance attribute in
self, where self is associated with the calling object.

492 C H A P T E R 1 1 • I N T R O D U C T I O N T O C L A S S E S

Check Yourself: Basic Classes Check

1. Please show what output results for the indicated lines using the following program.

class MyClass (object):
def method1(self, param_tuple):

self.local_list = []
for element in param_tuple:

if element > 10:
self.local_list.append(element)

def method2(self):
self.sum_int = 0
for element in self.local_list:

self.sum_int += element
return self.sum_int

inst1 = MyClass()
inst2 = MyClass()
inst1.method1([1,2,3])
print(inst1.local_list) # Line 1
inst1.method1([10,11,12])
print(inst1.local_list) # Line 2
print(inst1.method2()) # Line 3
inst2.method2() # Line 4

(a) What output is produced by Line 1 of the above program?
(b) What output is produced by Line 2 of the above program?
(c) What output is produced by Line 3 of the above program?
(d) Line 4 is commented out. What result would occur if Line 4 were executed by

the program. Why?

11.4.4 Methods Are the Interface to a Class Instance
The methods of a class object define what the object can do and, at the same time, define
the interface to the object. That is, a user’s interaction with an instance of a class is defined
by the methods the class has to offer.

Consider the interface to an MP3 player such as an iPod. The only interaction you
can have with the iPod is through the functions (for us, methods) available in the interface.
Those functions define what you can do with the iPod. You could perform other actions—
open up the case and modify the electronics—but that is outside the design of the object
itself. If the interface provided is sufficient, then the object is, in a very real sense, defined
by that interface for the normal user.

1 1 . 5 • F I T T I N G I N T O T H E P Y T H O N C L A S S M O D E L 493

The class designer, in designing the class, provides an interface by defining a set of
methods. The expectation is that a well-designed class definition need not be modified,
only accessed through the provided methods. If the class is well written, then all the user of
the class should ever need to use are those methods. How those methods accomplish their
job should not be that user’s concern. Should we be required to understand the underlying
electronics of our iPod? No, the interface provided should be sufficient.

Whatever the underlying structure of an instance, its methods (which come from the
class it was created from) define everything the user needs to know about that instance. In
particular, manipulation of the internal structure of an instance should be defined by and
limited to the available methods.

11.5 F I T T I N G I N T O T H E P Y T H O N C L A S S M O D E L
Every OOP approach provides an underlying class model that the class designer uses. Python
does as well, and if we are to effectively use classes, we must understand a little more about
Python’s class model. We have seen an introduction in the previous pages; now we will delve
a little more deeply into the model. To do so, we must first build a class.

11.5.1 Making Programmer-Defined Classes
How do we decide what should or should not be a class in our program? What counts as
an object depends on the context of the program. It should be something recognizable to
someone familiar with the problem, regardless of the reader’s ability to write a program. For
example, if the program is a racing game, an object might be a car. A car’s actions might
include move forward, turn right, and report position. The car object might have attributes
such as color, make, or top speed. By making objects that make sense in the context of the
program, it is easier to design the program.

The other components of the car game should also be recognizable objects. You will
have other cars as well as a racetrack—all objects. Obstacles that appear in the track will
also be objects. People will be objects. By designing the objects and how they interact, an
overall design unfolds.

VideoNote 11.1
Designing a Class

11.5.2 A Student Class
Let’s get back to our very first class, the Student class. The Student class had three
attributes: id int, last name str, and first name str. It will also have three
methods described in detail next. One method initializes the class, the second allows updates,
and the third defines how information about the class is organized for printing. We will
explain this class over the next few sections. See Code Listing 11.3.

494 C H A P T E R 1 1 • I N T R O D U C T I O N T O C L A S S E S

Code Listing 11.3

class Student(object):
def init (self, first='', last='', id=0):

print ' In the init method '
self.first name str = first
self.last name str = last
self.id int = id

def update(self, first='', last='', id=0):
if first:

self.first name str = first
if last:

self.last name str = last
if id:

self.id int = id

def str (self):
print "In str method"
return "{} {}, ID:{}".\

format(self.first name str, self.last name str, self.id int)

11.5.3 Python Standard Methods
We mentioned earlier in Section 11.3.2 that Python reserves some special methods that
begin and end with two underscore characters (). The first method in our Student class
is one of those special Python methods, the constructor init . We call the init
method a constructor because it is part of the sequence of constructing a new instance of a
class.3 When an instance is made of the class by using the name of the class as a function,
the user can effect the creation of that instance through init . How that happens is
shown in Figure 11.6.

Beginning at the bottom of Figure 11.6, Python creates a default instance when a
constructor is called (that is, when the name of a class is used as a function, e.g., MyClass
('world')). After the default instance is made, Python searches for an init method
in the class. If it is found, then the newly created default instance is passed to the parameter
self of init , and the remaining arguments are passed to the method’s parameters
(e.g., 'world' is passed to param1). The instance is modified according to the init
method suite. The updated instance is then returned from init . If no such init

3 Strictly speaking, init is not a constructor in the strictest sense of OOP terminology; rather, it is an initializer.

1 1 . 5 • F I T T I N G I N T O T H E P Y T H O N C L A S S M O D E L 495

Python checks for__init__

in instance’s class.

def__init__ (self, param1):

 ... do stuff ...

my_instance = MyClass(‘world’)

Return
default
instance

Return
updated
instance

Python allocates

memory

and creates a

default instance.

Yes,
call it

Default
instance
passed

Call to Python

Default instance

NO

FIGURE 11.6 How an instance is made in Python.

method exists, then the default instance is returned. In this example, the instance returned
is assigned to my instance.

It is very important to note that init does not have an explicitreturn statement.
In fact, a return statement is forbidden for this method. This is because init is
part of the instance creation cycle, so Python handles the return automatically.

Initializing the Instance
By providing an init method, the class designer can add attributes to any instance
made of that class. Because dot-notation assignment creates attributes, the designer must
make an assignment to self.new attribute, creating the attribute as part of the
instance (remember, self is associated with the instance being made). It is also important
to assign some value to each attribute, as assignment is how a value attribute is created.
For example, in the Student class init , we have self.first name str =
first.

Following is a session using our Student class of Code Listing 11.3.

>>> s1 = Student()
>>> print s1.last name str

>>> dir(s1)
[' class ', ...,' init ', ..., ' str ', ...,
'firstNameStr', 'idInt', 'lastNameStr', 'update']
>>> s2 = Student(last='Python', first='Monty')
>>> print s2.last name str
Python

496 C H A P T E R 1 1 • I N T R O D U C T I O N T O C L A S S E S

>>> dir(s2)
[' class ', ...,' init ', ..., ' str ', ...,
'firstNameStr', 'idInt', 'lastNameStr', 'update']
>>>

Two instances of Student are created, s1, s2. The first instance, s1, is created with-
out any arguments to the constructor call: Student(). Since a default value (empty) is
specified for the last parameter, the value of last name str is empty. The second
instance, s2, is made with two of the three arguments Student(last='Python',
first = 'Monty'). A dir of the s1 instance shows that all three attributes were cre-
ated: first name str, last name str, and id int. Each instance and its attributes
are now available to be updated, printed, or otherwise acted upon. Remember, each in-
stance carries its own copies of the three attributes, since they were created by assignment
in the init method. They are part of the instance’s namespace. The dir also shows
the three methods we defined in the class: init , update, and str which
are also available to the instance.

Printing the Instance
The next special Python method in Code Listing 11.3 is the str method. As you
might guess from the name, it is a method to provide a string that represents the instance.
This method is most useful in calls to the print statement, as theprint statement attempts
to convert any object it is provided into a string. By providing a str method, we can
print a representation of our object.

For the Student class, the str method creates a single string that brings together
the three attributes and returns that string. When a print function is called, the object is
“converted” to a string and printed. Converted may not necessarily be the best word—clearly
there is more to our object than the string we produce, but that is essentially what Python
tries to do.

Following is a session that utilizes the str method.

>>> s1 = Student()
>>> s2 = Student(first='Monty', last='Python')
>>> print(s1)
, ID:0
>>> print(s2)
Monty Python, ID:0

You may notice some commented print statements in the definition of our methods.
Sometimes it is useful to print out when a method is invoked so that you can track more
clearly when Python calls your methods. Here is the same session with the comments
removed:

1 1 . 5 • F I T T I N G I N T O T H E P Y T H O N C L A S S M O D E L 497

>>> s1 = Student()
In init method
>>> s2 = Student(last='Punch', first='Bill')
In init method
>>> print s1
In str method
, ID:0
>>> print s2
In str method
Bill Punch, ID:0

By turning these print statements on and off, you can better trace the interplay between
Python’s class model and your methods.

P R O G R A M M I N G T I P

Make sure that the str returns a value and that the value is a string. Odd things can
happen otherwise.

Changing an Instance
In Python, the initialization of each instance by init ensures that every instance of
the class is created in the same way. Each instance will contain the same number of attributes
(though the values of the attributes may be different) and has access to the the same number
of methods from the class. However, Python does not restrict the programmer from changing
an instance once it is made. This is in keeping with our cookie and cookie cutter example.
When the cookie is first stamped out, all of the cookies are the same. However, once they
are made the cook is free to decorate or change each cookie individually.

Similarly, one may add a new attribute to an instance and even add a method directly
to the instance’s namespace (not easy to do, but it can be done). This ability differs from
some other OOP languages, such as Java and C++, in that those languages can prevent a
user from changing an instance once it is created.

However, no matter the language, most OOP models agree that the interface to the
object should be through its methods. In this way, the class designer can ensure that the
instance is only modified in class-designer-approved ways. Users may be free to “mess with”
an instance, but they do so at their own risk. If the class designer provides an interface to
the instance, then that is what the user should use.

In that spirit, we provide the update method to our Student class of Code Listing
11.3. This method is the class designer’s interface for modifying the three attributes of a
Student instance. Very similar to the init method, it provides the user with access
to the instance’s internal attributes.

498 C H A P T E R 1 1 • I N T R O D U C T I O N T O C L A S S E S

Check Yourself: Defining Special Methods

1. Show the output that results for the indicated lines using the following program.

class NewClass(object):
def _ _init__(self,param_int=1):

self.the_int = param_int
if param_int%2==0:

self.parity='even'
else:

self.parity='odd'
def process(self,instance):

sum_int = self.the_int + instance.the_int
if sum_int < 0:

return 'negative'
elif sum_int % 2==0:

return 'even'
else:

return 'odd'
def _ _str__(self):

return 'Value {} is {}'.format(self.the_int,self.parity)

inst1=NewClass(4)
inst2=NewClass(-5)
inst3=NewClass()
print(inst1) # Line 1
print(inst1.parity) # Line 2
print(inst1.process(inst2)) # Line 3
print(inst3.process(inst1)) # Line 4

(a) What output is produced by Line 1 of the example program?
(b) What output is produced by Line 2 of the example program?
(c) What output is produced by Line 3 of the example program?
(d) What output is produced by Line 4 of the example program?

11.5.4 Now There Are Three: Class Designer,
Programmer, and User

So far, we have discussed two kinds of players in our programming world: the programmers
that make the programs and the users who use those programs. With the introduction of
classes, we introduce a third player, the class designer.

The class designer is also a programmer, but this programmer provides code for other
programmers to use. In designing a class, the class designer provides a tool that, ideally, is
intended to only be used and not modified by other programmers. Therefore, the class
designer creates the class with other programmers in mind, and the programmer creates the
program with the user in mind.

1 1 . 6 • E X A M P L E : P O I N T C L A S S 499

The programmer has a different view of the class than the class designer. The pro-
grammer sees the class only through the interface that the class designer provides. The
programmer is shielded from the details of how the class does its job and is only aware of
the interface—in particular, the operations that the class designer provides. This structure is
the promise of encapsulation. By designing the class well, the class stands as a library to be
used by other programmers, providing those programmers with a more abstract, functional
unit to solve their problems.

The class designer provides the class; the programmer uses it. When we design a class,
we are designing it to be used by other programmers. Our job is to provide a reasonable
interface to the class so that it:

� Does its job
� Can be updated or modified with minimal impact on the users

11.6 E X A M P L E : P O I N T C L A S S
Let’s tackle an example using Cartesian coordinates: dealing with points in a graph—
something you should be familiar with from middle-school mathematics. We want to
represent the two-dimensional points on the Cartesian coordinate plane. Each point is
completely described by its coordinate pair: (x , y). We will choose two instance attributes,
x and y , to represent the pair of values.

Once we have the instance attributes in place, we can consider what operations we wish
to perform on these objects and write methods to take those actions. For illustration, we
will choose finding the distance between two points and the sum of two points (also known
as a vector sum).

More specifically, we will implement these methods:

� distance: returns a distance (a floating-point number) between two points using
the standard distance formula: the distance between (x1, y1) and (x2, y2) is:

distance =
√

(x1 − x2)2 + (y1 − y2)2

� sum: returns a new point that is the vector sum of two points. First, the new point
must be created. Then, for points (x1, y1) and (x2, y2), the new point’s coordinates are
updated to be:

(x1 + x2, y1 + y2)

We’ll show the code and output and then describe it. To run this class code you simply
run the program as normal (e.g., F5 from IDLE), which loads the class into the Python
shell so that it can then be used as shown in the following Python shell session. At this
moment, the output isn’t very interesting, because the points we create are all (0, 0). See Code
Listing 11.4.

500 C H A P T E R 1 1 • I N T R O D U C T I O N T O C L A S S E S

Code Listing 11.4

import math # need sq r t (square roo t)

a Point i s a Cartes ion point (x , y)
a l l va lue s are f l o a t un l e s s o therwi se s t a t ed
class Point(object):

def init (self): # c r ea t e and i n i t i a l i z e
self.x = 0.0
self.y = 0.0

def distance (self,param pt): # standard di s tance formula
""" Distance between s e l f and a Point """
x diff = self.x - param pt.x # (x1 − x2)
y diff = self.y - param pt.y # (y1 − y2)
square d i f f e r en c e s , sum, and take s q r t
return math.sqrt(x diff**2 + y diff**2)

def sum (self,param pt): # new point from vec t o r sum
""" Vector Sum of s e l f and a Point """
new pt = Point() # c r ea t e a new point
new pt.x = self.x + param pt.x # ca l cu l a t e x value sum from s e l f

and pt
new pt.y = self.y + param pt.y
return new pt

>>> p1 = Point() # c r ea t e a Point named "p1"
>>> p2 = Point()
>>> print(p1.x, p1.y) # print the Point ' s x and y value s
0.0 0.0
>>> print(p2.x, p2.y)
0.0 0.0
>>> print(p1.distance(p2)) # find di s tance from p1 to p2
0.0
>>> p3 = p1.sum(p2) # find sum of p1 and p2
>>> print(p3.x, p3.y)
0.0 0.0

11.6.1 Construction
The init method creates two attributes: the coordinates x and y in each instance.
We can show this by printing the two attributes of each of the Point instances: p1 and p2.
Note that the coordinates are each set to 0 in all instances.

1 1 . 6 • E X A M P L E : P O I N T C L A S S 501

11.6.2 Distance
To find the distance from p1 to p2, we can call the distance method using the normal
dot notation: p1.distance(p2). When the method is invoked, self is set to the calling
object, the one associated with p1, and the second parameter param pt is set to the object
associated with p2.

Within the method, we apply our distance formula. We must first find the difference,
as indicated in the formula (x1 − x2). We have two parameter points, self and param pt.
The difference in x for those two points is expressed as x diff = self.x - pt.x
. Be careful that you understand that particular statement! The expression self.x is
the x attribute of the calling object, and param pt.x is the x attribute of the second
object, the parameter object. We must also calculate y diff using a similar expression. We
can then determine the distance using the formula distance =

√
(x1 − x2)2 + (y1 − y2)2.

We implement this as math.sqrt(x diff**2 + y diff**2). The resulting distance
floating-point value is then returned.

Because distance is commutative, reversing the invocation—that is, p2.distance
(p1)—would yield the same result. Which object gets associated with self and which with
the paramater param pt for this invocation?4

11.6.3 Summing Two Points
First it is interesting to note that we named the operation sum. Isn’t there a sum operation
in Python already, and wouldn’t that affect the default function? That answer is no, and the
reason is interesting. The default sum is a function in the Python global namespace. The
method sum we are defining is part of the Point class. We can call the default function
just by invoking it, but to call the method, we must invoke it in conjunction (using dot
notation) with a Point object. Python can keep these two separate because of how they are
invoked.

On to the method. To sum two points p1 and p2, the invocation would again be done
in dot notation: p3 = p1.sum(p2). We are calling the sum using p1 as the invoking
object and (p2) as an argument. Therefore, when the method is invoked, self is associated
with the p1 object and the second parameter, param pt, is associated with the p2 object.

What is the right type to return from the summation of two points? With a little
thought it should be clear that a Point object is what should be returned. It would be
unusual to return any other type, as we would expect to apply Point methods to the result.
The same would be true of other objects we already know. What should be returned from
the sum of two floats, of two strings, of two lists?

Since we need to return a Point instance, we must first create a new Point instance
in the method and store the sum in that instance: new pt = Point(). Once set with the

4 p2 is associated with self, p1 with param pt.

502 C H A P T E R 1 1 • I N T R O D U C T I O N T O C L A S S E S

proper attribute values, new pt will be the return object. For the x attribute, we add the x
values of the two parameter points and assign the result to the x attribute of the return object:
new pt.x = self.x + param pt.x. We do the same for the y values: new pt.y =
self.y + param pt.y. Finally, we return new pt. In the original invocation, the
returned point associated with new pt is assigned to p3.

As with thedistancemethod, thesummethod is commutative, so a reverse invocation
would return the same Point object result.

The output isn’t interesting because the points we are creating are all initialized to (0, 0)
so both the distance and sum are 0. We start the session by running the program, which
loads the class into the Python shell so we can use it.

VideoNote 11.2
Improving a Class

11.6.4 Improving the Point Class
Default Initialization
The init method is like any other method, in that it, too, can take parameters. These
parameters are typically used to set the attribute values of each new instance.

A useful feature for the init method is the default parameter value (see Sec-
tion 8.2). By using defaults, the user is not required to specify all the instance attributes, but
every attribute is still created in the instance with some value. Remember that an attribute
must be assigned a value to be created in an instance. The following example has parameters
x and y , each with default value of 0.0. If the user, in invoking the method, provides
arguments, then those argument values will be used. If not, the default values of 0.0 will be
used.

Code Listing 11.5 is the improved init method—the rest of the class is
unchanged.

Code Listing 11.5

import math # need sq r t (square roo t)

a Point i s a Cartes ion point (x , y)
a l l va lue s are f l o a t un l e s s o therwi se s t a t ed
class Point(object):

def init (self, x param = 0.0, y param = 0.0):
' ' ' Create x and y a t t r i b u t e s . Default s are 0 .0 ' ' '
self.x = x param
self.y = y param

def distance (self,param pt):
""" Distance between s e l f and a Point """
x diff = self.x - param pt.x # (x1 − x2)
y diff = self.y - param pt.y # (y1 − y2)

1 1 . 6 • E X A M P L E : P O I N T C L A S S 503

square d i f f e r en c e s , sum, and take s q r t
return math.sqrt(x diff**2 + y diff**2)

def sum (self,param pt):
""" Vector Sum of s e l f and a Point

return a Point in s tance """
new pt = Point()
new pt.x = self.x + param pt.x
new pt.y = self.y + param pt.y
return new pt

Let’s use the improved version in a session. This time the point p1 will have some
non-zero values for x and y .

>>> p1 = Point(2.0,4.0) # c r ea t e a point with x and y value s s p e c i f i e d
>>> p2 = Point() # c r ea t e a point with de fau l t va lue s
>>> print(p1.distance(p2)) # find and print the d i s tance
4.47213595499958
>>> p3 = p1.sum(p2) # ca l cu l a t e the sum and then print i t
>>> print(p3.x, p3.y)
2.0 4.0
>>>

When the instance is made, you can now pass arguments to initialize the attributes of
an instance. We see that in the creation of p1 = Point(2.0,4.0), which initializes p1’s
x attribute to 2.0 and similarly its y attribute to 4.0.

You do not have to explicitly set the values for an instance’s x and y attributes: you can
use default arguments. We see that with the creation of p2 = Point(), no arguments are
passed to init , so the specified default values of 0.0 are used forp2’s x and y attributes.

As with earlier constructor invocations, p1 = Point(2.0,4.0) calls the init
method with self associated with the new instance being created. In the method,
self.x = param x initializes that new object’s x attribute and similarly for the y
attribute. Python automatically returns that object (a specific return statement is for-
bidden in init), and that object is assigned to p1.

“Do the Right Thing”: Printing the Values
It is painful to have to print each value of a class instance, especially if it is a complex object
with many instance variables. Moreover, we have come to expect Python to “do the right
thing” when it comes to operations like printing. As much as possible, when we create a
new class it should “do the right thing” with respect to standard Python operations. This is
so important that we make it a new rule:

Rule 9: Make sure your new class does the right thing.

504 C H A P T E R 1 1 • I N T R O D U C T I O N T O C L A S S E S

Again, by “right thing” we mean it should operate in a way that is familiar to a Python user
of your class. The sum of two Point instances should return a new Point instance. When
using a print function, an instance should respond to that function and print itself.

For printing, it means that we need to provide a str method in Point that gets
called when we print an instance. Code Listing 11.6 adds that method to the Point class.

Code Listing 11.6

import math # need sq r t (square roo t)

a Point i s a Cartes ion point (x , y)
a l l va lue s are f l o a t un l e s s o therwi se s t a t ed
class Point(object):

def init (self, x param = 0.0, y param = 0.0):
' ' ' Create x and y a t t r i b u t e s . Default s are 0 .0 ' ' '
self.x = x param
self.y = y param

def distance (self,param pt):
""" Distance between s e l f and a Point """
x diff = self.x - param pt.x # (x1 − x2)
y diff = self.y - param pt.y # (y1 − y2)
square d i f f e r en c e s , sum, and take s q r t
return math.sqrt(x diff**2 + y diff**2)

def sum (self,param pt):
""" Vector Sum of s e l f and a Point

return a Point in s tance """
new pt = Point()
new pt.x = self.x + param pt.x
new pt.y = self.y + param pt.y
return new pt

def str (self):
""" Print as a coordinate pair . """
print("called the str method")
return "({:.2f}, {:.2f})".format(self.x,self.y)

Let’s look at a session using our improved Point class with the ability to print:

>>> p1 = Point(2.0, 4.0)
>>> print(p1)
called the str method
(2.00, 4.00)

1 1 . 6 • E X A M P L E : P O I N T C L A S S 505

In this example, we create a p1 instance as before with initial values for x and y ,
2.0 and 4.0, respectively. With the new str method, when can now call the print
function, as in print(p1), and print a reasonable representation of a point. As we will
do occasionally to make flow of control more obvious, we have placed a print in the

str method to indicate when it gets called. These statements should be removed
(or at least commented out) when the class is finished, but it helps us, the class designer,
understand the flow of control when we are creating our class. Note that when we call the
print function, the str method is implicitly called (as demonstrated by our printing
the “called” string), with self being set to the argument p1 object. This syntax gives us
access to the instance’s attributes and allows us to create a string, which must be returned by
this method. We are free to format this string in any way we feel is suitable for the object
we are creating. This returned string is then printed.

Updated Point Class
Now let’s take a final look at the whole class in Code Listing 11.7. This review provides
us an opportunity to refactor the code to make it better. For example, we could refactor
the sum method. With initialization of values in the init method, we can simplify
the sum method by creating the new point using initialization. Having done that, we can
just return this new point, combining all the previous statements into one. The previous
statements are commented so that you might compare the two approaches. Which is more
readable? What do you think, and why?

Code Listing 11.7

import math # need sq r t (square roo t)

a Point i s a Cartes ion point (x , y)
a l l va lue s are f l o a t un l e s s o therwi se s t a t ed
class Point(object):

def init (self, x param = 0.0, y param = 0.0):
' ' ' Create x and y a t t r i b u t e s . Default s are 0 .0 ' ' '
self.x = x param
self.y = y param

def distance (self,param pt):
""" Distance between s e l f and a Point """
x diff = self.x - param pt.x # (x1 − x2)
y diff = self.y - param pt.y # (y1 − y2)
square d i f f e r en c e s , sum, and take s q r t
return math.sqrt(x diff**2 + y diff**2)

506 C H A P T E R 1 1 • I N T R O D U C T I O N T O C L A S S E S

def sum (self,param pt):
""" Vector Sum of s e l f and a Point

return a Point in s tance """
new pt = Point ()
new pt . x = s e l f . x + param pt . x
new pt . y = s e l f . x + param pt . x
return Point(self.x + param pt.x, self.x + param pt.x)

def str (self):
""" Print as a coordinate pair . """
print (" c a l l e d the str method ")
return "({:.2f}, {:.2f})".format(self.x,self.y)

11.7 P Y T H O N A N D O O P
In the introduction, we noted that object-oriented programming (OOP) has three concepts:

� Encapsulation
� Inheritance
� Polymorphism

Python addresses all these issues, though we may not fully explore all of those issues in this
introductory book. It is worth noting that different languages might address the issues in
ways that differ from Python.

11.7.1 Encapsulation
Python, and really all languages with OOP support, addresses the issue of encapsulation.
That is, understanding the details of underlying class structure should not be necessary to
utilize an instance of a class. Python gives the class designer the ability to create methods as
the interface to a class’s instances. If the class is well designed, then a user of the class need
only use the provided methods to use the a class instance. The class designer is free to place
information in the class that is important to the design, but not the use, of the class. That
is, the class designer can hide implementation details of the class, providing the methods as
the public face of the class.

11.7.2 Inheritance
Inheritance allows the class designer to utilize the design of an existing class to create a
new class. That is, we can create a new class that specializes an existing class by utilizing
the existing class’s attributes, specializing only those attributes that distinguish the new
class. In this way, classes can share common elements and change only those attributes that
distinguish the new class.

1 1 . 8 • A N A S I D E : P Y T H O N A N D O T H E R O O P L A N G U A G E S 507

How do we do this? Essentially, there are two important elements. First, we impose
a relationship on our classes, much like the relationship found between instance and class,
that is, a parent-child relationship. Second, we create an approach that allows us to search
for an attribute, not only in an instance or its parent class, but utilizing the relationship
between classes as well. This relationship allows us to inherit attributes found in a class
that is above it in the relationship scheme. By inheriting those attributes, we can share
common code. Consider the car analogy we discussed earlier. Imagine there exists aVehicle
class with attributes such as number of wheels, engine size, fuel source, etc.
A specialization of Vehicle could be a more specialized kind of vehicle—for example, a
Truck class. If the Truck class has as its parent the Vehicle class, then Truck can inherit
attributes common to both. That is, we do not need to add attributes to the Truck class that
already exist in the Vehicle class. However, we are free to add more particular attributes to
Truck, such as carrying capacity, trailer size. A different specialization might
be a Sedan class that also inherits the same common attributes of Vehicle but adds a
different set of special attributes (e.g., trunk size). Chapter 12 covers inheritance in
more detail.

11.7.3 Polymorphism
Polymorphism is the process of using an operator (such as plus [+]) or method (such as
count) to perform different operations depending on the types that invoke them. We have
shown that Python has this ability. For example, plus is the addition operation with integers
or floats but it performs concatenation with strings or lists. In the next chapter, you will see
how to write class methods with polymorphism.

11.8 A N A S I D E : P Y T H O N A N D O T H E R
O O P L A N G U A G E S

Although Python does provide class and OOP support, it differs from some other OOP
languages in some of the details. We review those here.

11.8.1 Public Versus Private
Given the nature of the two groups using a class (class designer and programmer), one can
differentiate the access that a member of each group can have. That is, the class designer may
want to control and protect internal class structure from access other than that provided by
methods. In so doing, the designer guarantees (or attempts to guarantee) that the provided
interface remains constant, but the designer can still modify the internal structure otherwise
to meet changing demand. This demarcation of roles, designer and programmer, makes
changes to code more manageable.

508 C H A P T E R 1 1 • I N T R O D U C T I O N T O C L A S S E S

In OOP terminology, this protection is often discussed in terms of public versus private
attributes:

� Public attributes (variables, methods) are available to everyone (designer and pro-
grammer).

� Private attributes (variables, methods) are available only to the designer.

The impetus for separation is to help with large software development. Guarantees of
public access to an object, while providing flexibility on private aspects of the object, allow
code to be written that can be more easily adapted to changing demands and requirements.
Note that large can be quite large indeed. For example, an operating system such as Microsoft
Windows 7 will have tens of millions of lines of code. Partitioning responsibility is critical
for containing potential chaos.

11.8.2 Indicating Privacy Using Double Underscores ()
Python does not enforce this separation between the designer and programmer. All methods
and instance variables are public, so both designers and programmers have access. Python
does provide support for the designer to indicate attributes that the programmer should not
modify directly.

Whenever a class designer names an attribute with two leading underscores, this is a
message to anyone using the class that the designer considers this a private variable. No one
should change or modify its value. To prevent this change from accidentally happening,
Python mangles the name of the attribute for outside use (outside of the class). The verb
mangle here means that the attribute name is actually changed. The transformation is as
follows: an attribute named attribute is changed to be ClassName attribute
for outside use. Look at the code and session in Code Listing 11.8.

Code Listing 11.8

class NewClass (object):
def init (self, attribute='default', name='Instance'):

self.name = name # public a t t r i bu t e
self. attribute = attribute # a " pr iva t e " a t t r i bu t e

def str (self):
return '{} has attribute {}'.format(self.name, self. attribute)

>>> inst1 = NewClass(name='Monty', attribute='Python')
>>> print(inst1)
Monty has attribute Python
>>> print(inst1.name)
Monty
>>> print(inst1. attribute)

1 1 . 8 • A N A S I D E : P Y T H O N A N D O T H E R O O P L A N G U A G E S 509

Traceback (most recent call last):
File "<pyshell#3>", line 1, in <module>
print(inst1. attribute)

AttributeError: 'newClass' object has no attribute ' attribute'
>>> dir(inst1)
' NewClass attribute', ' class ', ... , 'name']

>>> print(inst1. NewClass attribute)
Python

In the init method, we assign two attributes: name and attribute. By
preceding the second with two underscores, we are indicating that attribute is private
and should not be accessed. Python changes that attribute name so that, if the provided
attribute name (attribute) is referenced outside of the class, an error is thrown.
However, using the original attribute name within the class, such as in a method of the class
(e.g., str), is allowed.

Look at the str method. It makes reference to the name directly as self.
attribute. The str method is permitted this access, as it is within the class.

However, in the session we see that if we try to print inst1. attribute , we get an
error. Printing in the interpreter is a use of the attribute outside the class, and the name is
no longer correct. Interestingly, if we do dir(inst1) we see that, indeed, the name has
been changed (mangled) to NewClass attribute.

This change of name does not prevent the programmer from accessing the attribute
value. It only provides a layer of obfuscation. The programmer can get around the class
designer if they choose, but they do so in violation of the designer’s intent. Perhaps in the
future the class will change and the programmer’s code will no longer work because of their
disregard for the rules. When an attribute is marked with the double-underscore prefix, it
means leave it alone!

11.8.3 Python’s Philosophy
The philosophy that Python promotes is best summarized by the phrase “We are all adults
here.” If the designer indicates something should be private, then a programmer violates
privacy at his or her own peril. By reducing the overhead of indicating what is and what is
not private, the code is simpler, and, using some simple rules, what should be private can be
easily indicated.

11.8.4 Modifying an Instance
Many OOP languages use the class to define the state of the instance: what methods are
defined that the instance can use and what attributes are parts of the instance. Their class
model supports this view. Once the instance is made, it cannot be modified. Attributes
cannot be added or removed.

510 C H A P T E R 1 1 • I N T R O D U C T I O N T O C L A S S E S

Python, on the other hand, takes a less restrictive stance. A Python class, like the other
OOP languages, provides the template for the initial state (variables and methods). However,
after the instance is created, that instance can be modified as the programmer sees fit. Again,
the phrase “We are all adults here” applies. Why restrict what the programmer might do? As
class designers, we indicated what we think a programmer should do, but trying to prevent
a programmer from doing something clutters the language. Besides, if a programmer really
does want to do something, even if the designer does not, there is always a way.

Summary
Object-oriented programming is a powerful development tool. It is particularly supportive
of the divide-and-conquer style of problem solving. If you can organize your design thoughts
around OOP, you can design large programs around basic objects.

The concept of self is important in understanding how class objects work, especially
in the creation and use of instances. Reread this chapter if you feel that you have not yet
grasped the concept of self in Python classes.

Classes
� Classes are objects.

� Object-oriented programming (OOP) has three concepts: encapsulation, inheritance,
polymorphism.

� Creating a new class creates a new type.

� A class is to its instance as a cookie cutter is to a cookie.

� Classes have attributes and methods that act on those attributes.

� Attributes are usually created within the init method.

� The identifier self refers to the current instance.

� The first parameter of methods is self.

� Class structure

class ClassName(object):
def init (self,param1=4):

self.att = param1 # create attribute.
def str (self):

return "some string" # return a string for printing
def some method(self,param):

do something

E X E R C I S E S 511

Rules
� RULE 1: Think before you program!

� RULE 2: A program is a human-readable essay on problem solving that also happens
to execute on a computer.

� RULE 3: The best way to improve your programming and problem skills is to practice!

� RULE 4: A foolish consistency is the hobgoblin of little minds.

� RULE 5: Test your code, often and thoroughly!

� RULE 6: If it was hard to write, it is probably hard to read. Add a comment.

� RULE 7: All input is evil, until proven otherwise.

� RULE 8: A function should do one thing.

� RULE 9: Make sure your new class does the right thing.

Exercises
1. In your own words, describe the purpose of the init method.

2. Write a shopping cart class to implement a shopping cart that you often find on websites
where you could purchase some goods. Think about what things you could store in a
cart and also what operations you could perform on the cart.

To simplify matters, you could consider the website to be an electronics e-store that
has goods like flat-panel TVs, boomboxes, iPods, camcorders, and so on.

3. Consider a table fan. Write a table fan class. What would be the attributes of this class?
Examples of attributes could be speed levels of fan, side-to-side movement (on/off, and
degrees of movement), manufacturer name, cost, used/new, and so on. Think about it
this way. You want to be able to get information about the fan; e.g., if you want to buy
or sell a fan from some website such as Craigslist, what features would you be interested
in? Also, consider control (operations) you might want to have over the fan, such as
setting the fan speed or having it pan from side to side.

4. There are many websites where you could listen to music—e.g., rhapsody.com. A music
album contains many tracks, and each track has a name, time duration, name of artist,
year, and other data.

Design classes for the album and tracks. Think about the methods appropriate for
the classes. For the tracks, some methods could be play, pause, stop, etc.

5. Design a class for an airline ticket. Some of the fields of an airline ticket are start,
destination, date of travel, class (economy, first class, business class), price of ticket,

512 C H A P T E R 1 1 • I N T R O D U C T I O N T O C L A S S E S

number of people traveling, and name of the primary person. Think about the methods
appropriate for the class.

6. Design a class for a book that an online retailer (such as Amazon.com) might use to
keep track of the book. Fields might include name of the book, publisher, price, author,
and ISBN. Think about the methods appropriate for the class that an online retailer
might use.

7. Consider a hospital scenario. Design classes for:
� Patients. The class might have fields like unique ID for the patient, name, male or

female, age, address, phone number, date of birth, height, and weight.
� Doctor. Fields might include the doctor’s name, unique registration number, qual-

ification (DO or MD), specialization (surgeon, pediatrician, etc.), phone number,
office hours, and office location.

� Patients’ records in a hospital. The record might have fields like last date of checkup,
doctor’s unique ID, patient’s unique ID, list of health problems in the patient, list of
medicines prescribed, cost of the checkup, final report, and so on.

Methods of these classes would be mostly get and set methods for the corresponding
fields.

8. Consider the design of a class for managing the Olympics—to simplify things, consider
management of Olympic medal awards. Design a medal class.
� Fields: Name of the athlete, country, event, medal type (gold, silver, bronze)
� Methods: get, set, and so on.

9. Design a schedule class for classes that a student (you!) take during a semester.

10. In a supermarket, all vegetables have a product code, name, some description, and price
per unit. Design a class called Vegetable to represent the vegetables. Provide get
and set methods for the class.

11. Design a class called Sentence that has a constructor that takes a string representing
the sentence as input. The class should have the following methods:
� get first word
� get all words
� replace(index, new word)—Change a word at a particular index to

“new word.” E.g. If the sentence is “I’m going back.” and set word at index
(2, "home"), then the sentence becomes “I’m going home.”

Programming Projects
1. Solitaire: Using Classes

Writing a program to play the popular card game of solitaire offers an opportunity to
work with classes while developing problem-solving skills. A large number of variations

P R O G R A M M I N G P R O J E C T S 513

of solitaire exist—the website http://worldofsolitaire.com alone has over 50
variations. In this exercise your program will enforce the rules of the game—the user
will be playing the game.

We provide a modulecards.py that contains two classes:Card andDeck. ADeck
is a collection of Cards. We also provide a sample piece of code that demonstrates
how to use the cards module. The Card and Deck classes are general purpose for
developing card games, so they contain many methods that may not be used in any
particular implementation.

Each Card has two primary attributes: rank and suit. In an English deck, there
are four suits—spades, diamonds, hearts, and clubs—that we represent by their first
letters: 'S', 'D', 'H', 'C'. Each suit has thirteen cards—ace, 2–10, jack, queen,
and king—with ranks 1–13, in that order. Each card has a value that for most cards is
the same as its rank, but for face cards (jack, queen, king), the value is 10.

Some card games such as poker have an ace with a rank greater than a king; other
games such as blackjack allow the ace to have a value of 1 or 11. The Card class does not
incorporate those alternative ranks and values, so those differences need to be added to
the class for those games or incorporated into the game program itself.

The primary methods for the Card class are:
� get rank returns the rank of a card (int).
� get suit returns the suit of a card (string).
� get value returns the value of a card (int).

There are other methods that are explained in the module, but two are worth mentioning
because they are useful when debugging: set rank and set suit. They allow you
as the programmer to set up particular scenarios when testing your code.

A Deck is a collection of cards; in fact it is a sequence, because we expect a deck to
be ordered.

Although there are many methods in the class, the primary methods for the Deck
class are:
� shuffle randomly rearranges the cards in the deck (returns nothing).
� deal returns one card and removes the card from the deck (Card).
� empty returns True if there are no cards in the deck (bool).

Both classes have str and repr defined to make printing easy.
Here is a sample session illustrating a few Card and Deck methods:

>>> import cards
>>> a deck = cards.Deck()
>>> a deck.shuffle()
>>> a card = a deck.deal()
>>> print a card
8D
>>> a card.get suit()
'D'

http://worldofsolitaire.com

514 C H A P T E R 1 1 • I N T R O D U C T I O N T O C L A S S E S

>>> a card.get rank()
8
>>> jack of clubs = cards.Card('J','C')
>>> print jack of clubs
JC
>>> print a deck

5C QS 6S 2D 4D 10C 8H 6D 4C AH 9S AD 8C
9H 4H 7S 3H 10H QD 7C 6C 2H 5S 3S AS QC
KC 3C 8S 7H JH KD KH JD 7D AC 9C 2C JS
2S KS 10S 5H 9D 3D 5D 10D QH 6H JC 4S

Every solitaire game has three main components: the stock, the tableau, and
the foundation. The stock is the source of new cards—i.e., the deck of cards. The
foundation is where the cards get stacked in four stacks (one for each suit) in order
from ace to king—four complete stacks in the foundation indicate winning the game.
The tableau is where the main part of solitaire is played and varies significantly from
game to game. A losing game is when no more moves can be made in the tableau and
the stock is empty.

Write a program to play the Easthaven version of solitaire—complete rules and
versions to play can be found online (e.g., http:// worldofsolitaire.com).

Easthaven solitaire (tableau rules):
� The tableau begins with seven columns with three cards in each column. In each

column, initially, only the top card is visible.
� Build down by rank and by alternating color. For example, you can play a 2 of hearts

on a 3 of spades (the column goes down by rank and alternates colors).
� Either the top card may be moved or complete or partial correctly ranked piles may

be moved as a pile. If a pile is moved, the top card of the pile must follow the rules
(down rank and alternating color), and all the rest of cards in the pile must also follow
the rules.

� An exposed facedown card may be turned face up.
� An empty spot may be filled with any card or correctly ranked pile.
� If you cannot make any moves on the tableau, or any moves from the tableau to the

foundation, you can take cards from the stock.
� Different! When the stock is used, a card is added to the end of each tableau column.
� Any fully exposed card can be moved to the foundation as long as the foundation

rules are adhered to: placement in the foundation must follow both suit and rank
(ace up to king).

Create a main program that is a loop that drives the game. Repeatedly prompt
for commands such as move within tableau, move to foundation, and
deal from stock. Each command suggests its own method, but you are likely to
want many more helping methods.

http://worldofsolitaire.com

P R O G R A M M I N G P R O J E C T S 515

Note: This setup can be used for any of the solitaire games, so this exercise provides
a framework for many, many exercises: simply adjust the tableau rules appropriately.
The cards.py module can be also used for any card game, but the single-player
solitaire is an excellent exercise.

2. GPS Unit for Hikers
GPS has been built into a wide variety of consumer devices. These units share many
features but differ in details. Here we consider the GPS unit used by hikers and back-
country explorers. An important feature of such units is the ability to mark waypoints,
including the ability to collect them into a path that can be retrieved later. Another
important feature is distance and bearing to a waypoint: you have a target waypoint
and you want to know what direction it is in and the distance to that target. This last
feature is particularly useful in geocaching or locating your starting point, if you are
lost.

When queried, the GPS hardware generates the current longitude and latitude: a
pair of floating-point values. The range of longitude is −180 degrees to +180 degrees
(the reference point, 0, is the meridian through Greenwich, England). The range of
latitude is −90 degrees to +90 degrees (the reference point, 0, is the equator with positive
values in the northern hemisphere). For example, according to the Farmer’s Almanac
the “middle” of the United States is at latitude 39.83333 degrees, longitude −98.5833
degrees. That is near the town of Lebanon, in Smith County, Kansas. We need to
simulate that capability in this exercise. Write a method named gps get long lat
that returns a longitude and latitude pair. The method uses the Python randommodule
to generate the pair.

A waypoint will be a position, a longitude/latitude pair, with a name.
Implement the following capabilities:

� Your GPS unit should be able to save the current waypoint; i.e., save the current
position as a waypoint and associate a name with the position.

� Your GPS unit should be able to save and retrieve named paths consisting of a
sequence of waypoints.

� It should also be able to find the length of a given path—assuming a straight line
between each waypoint.

� Your GPS unit should be able to calculate the distance to a waypoint (from the
current location).

Write a main program that loops and prompts the user for functionality provided by
the GPS unit. Create a session that tests all methods.

Optional: Add a method to calculate a bearing between the current position and
a waypoint. Hint: Use the math inverse tangent (atan) function, but the atan2
function may be slightly easier to work with.

This page intentionally left blank

•12C H A P T E R

More on Classes

It is only in the world of objects that we have time and space and selves.

T. S. Eliot, poet

OBJECT-ORIENTED PROGRAMMING NOT ONLY HELPS YOU CREATE AND ORGANIZE NEW

data structures, but it also affects how you think about problem solving. In this chapter, we
take a look at more capabilities provided by object-oriented thinking.

12.1 M O R E A B O U T C L A S S P R O P E R T I E S
As mentioned in Chapter 11, there are three major object-oriented programming (OOP)
characteristics: encapsulation, inheritance, and polymorphism.

We have focused so far on encapsulation, which:

� Hides details of implementation to aid reading and understanding
� Provides modularity that makes it easier to use a class in other contexts
� Provides an interface in the form of methods to access and manipulate a class instance

We add a new concept to encapsulation: consistency. There are two characteristics to
consider with respect to consistency:

� A new class should be consistent with the rules and syntax of the language.
� A new class should respond to “standard methods” (such as construction, printing,

iteration, etc.) that are appropriate for the object.

This is really just an expansion on RULE 9. New classes should “do the right thing.” A
class you create should behave like any other object so that it can be used in a natural way—
just like they have used other objects. In a similar vein, one would expect familiar methods to
work in familiar ways. For example, the “+” operator sums integers and concatenates strings.
The operations are quite different, but each operation is appropriate for its specific type.

517

518 C H A P T E R 1 2 • M O R E O N C L A S S E S

In this section, you will see how to make the classes we create behave in a way that is
consistent with built-in objects.

12.1.1 Rational Number (Fraction) Class Example
Python, like most computer languages, has built-in objects for integers and “decimals”
(floating points). However, only with the release of Python 2.6 did Python provide support
for rational numbers with the fractionsmodule and the Fraction class. We implement
here a rational numbers class of our own design, which, when it is completed, you can
compare to Python’s built-in class.

Rational numbers have two parts, a numerator and a denominator, that our class
implementation must represent. Furthermore, the class should behave in a way that is
consistent with other number objects we have become familiar with such, as int and float.
In particular, the following kinds of operations should be applicable to a rational number:

� Construction
� Printing
� Arithmetic operators (+, −, *, /)
� Comparison operators (<, >, ==, etc.)

Assuming that we have written the class (or are using the built-in Fraction class), a
rational number should have the kinds of behavior shown in the following session. Later
in this chapter we see how you can build the class to achieve this consistency. This session
establishes, before we even design the class, what “do the right thing” means for a rational
number class.

ge t our ra t iona l number c l a s s named f r a c c l a s s
>>> from frac class import *
>>> r1 = Rational(1,2) # c r ea t e the f r a c t i on 1 /2
>>> r2 = Rational(3,2) # c r ea t e the f r a c t i on 3 /2
>>> r3 = Rational(3) # de fau l t denominator i s 1 , so r e a l l y c r ea t ing 3 /1
>>> r sum = r1 + r2 # use "+" in a famil iar way
>>> print(r sum) # use " pr int " in a famil iar way
4/2
>>> r sum # di sp la y value in s e s s i o n in a famil iar way
4/2
>>> if r1 == r1: # use equa l i t y check "==" in a famil iar way
... print('equal')
... else:
... print('not equal')
...
equal
>>> print(r3 - r2) # combine ar i thmet ic and print ing in a famil iar way
3/2

1 2 . 1 • M O R E A B O U T C L A S S P R O P E R T I E S 519

In this session, a Rational instance looks like any other number. It responds syntac-
tically to methods as we expect and uses operators as we expect. It is consistent and does
the right thing. One thing to note about the right thing to do. We get to make choices as
to what we, the class designers, think is right. For example, when a a rational number is
printed, it has not been reduced—e.g., 4/2 is printed instead of the reduced value 2. Not
reducing the value is a design decision made by the designer of the class (the text authors, in
this case). It would be equally reasonable to have decided that all values should be reduced
before printing.

Variation on import, from
In the previous session, the import line is somewhat different. That first line uses the general
form from module import *. This is a variation on the syntax we have been using up
to this point. A normal import frac class would require us to precede every member
of that module with the module name—for example frac class.Rational() to call
a constructor. While this is a very clear statement—we want the Rational() constructor
in the frac class method—it is also tedious to repeatedly type. This alternate syntax
imports contents of the module directly into the top level of Python. That is, every element
of the module becomes part of the global scope of the Python interpreter. The following
session shows a more concrete example using the math module.

>>> globals()
{' builtins ': <module 'builtins' (built-in)>, ' name ': ' main ', ' doc ':
None, ' package ': None}
>>> import math
>>> globals()
{' builtins ': <module 'builtins' (built-in)>, ' name ': ' main ', ' doc ':
None, 'math': <module 'math' from '/Library/Frameworks/Python.framework/Versions/
3.2/lib/python3.2/lib-dynload/math.so'>, ' package ': None}
>>> math.sqrt(4)
2.0
>>> from math import *
>>> globals()
{' builtins ': <module 'builtins' (built-in)>, ' name ': ' main ', ' doc ':
None, 'math': <module 'math' from '/Library/Frameworks/Python.framework/Versions/
3.2/lib/python3.2/lib-dynload/math.so'>, ' package ': None , 'sqrt': <built-in
function sqrt>, 'pow': <built-in function pow>, 'fsum': <built-in function fsum>,
'cosh': <built-in function cosh>, 'pi': 3.141592653589793, 'e': 2.718281828459045,
'tanh': <built-in function tanh>, ...}
>>> sqrt(4)
2.0
>>>

This session shows how the global value dictionary (returned by the function globals)
changes using the two types of import. After the first import, the only change to the global
dictionary is the inclusion of the math package name (with a value pointing to the math

520 C H A P T E R 1 2 • M O R E O N C L A S S E S

package library). Having done so, we can invoke the sqrt function in the module using
math.sqrt(4). However, if we use the new import syntax, look at change to the global
dictionary. All of the elements of math are now directly available without the package prefix
(not all are shown; it’s a long list). They are all now part of the global namespace of Python.
We can now type sqrt(4) and the appropriate operation will occur.

As with all things, there are good and bad points to this new syntax. Clearly the good is
the shortened name for everything. Instead of typing frac class.Rational(), we can
type Rational() to run the constructor. The bad is the pollution of the global namespace.
What if the module you import has a function with the same name as one in the global
namespace? Imagine if the math module had a sum method.1 When we did the second
kind of import, the math version would override the default version. We would change
how sum works. This could be very bad indeed.

The syntax is such that you can be more specific. You are allowed to say what you want
to import from a module. For example, we could have said from math import sqrt.
In that case, only the sqrt function would have been imported into the global namespace.
This is a good compromise if you know what you need from a module.

The bottom line is: be careful when you do afrom module import *. It is preferable
to import module or to specifically import names with from module import name1,
name2.

12.2 H O W D O E S P Y T H O N K N O W ?
How can Python “know” what operators and methods can apply to a new class we create?

� Python can distinguish operators and methods to apply based on the type of the objects
being used.

� Python provides some special method names that represent typical operators (binary
operators, standard functions, etc.) in the language.

12.2.1 Classes, Types, and Introspection
When we first introduced classes, we stated that a class is just a type. When we create a
new class, we are effectively creating a new type. With numbers we had int as a type, and
now we have created our own class, Rational, that can be used as a type. Remember that
type does not go with a variable name but instead with the object with which the name is
associated.

Because the type associated with any variable name can change, it is useful to be able
to inquire about the type of the object presently associated with a variable. This process
is called introspection. That is, while the program is running, we can ask an object (or a
variable associated with an object) what type the object is.

1 It doesn’t, but we’re pretending here.

1 2 . 2 • H O W D O E S P Y T H O N K N O W ? 521

Python provides two different introspection functions, one of which we have seen
before:

� We have discussed the type function a number of times (e.g., Section 1.6). Again, type
(some variable) returns the type of the object associated with some variable.
Though we have seen this in sessions, we have not used it in programs. We will here!

� A slightly different version of introspection is the isinstance function.
isinstance(some variable,some type) returns a Boolean indicating whether
some variable is of type some type.

Here is a session showing these functions in action:

>>> import math # ge t some o b j e c t s to play with
>>> float # what i s the " value " o f " f l o a t " ?
<class 'float'>
>>> list # l i s t ?
<class 'list'>
>>> type(math.pi) # t r y the in t r o s p e c t i on func t ion s
<class 'float'>
>>> isinstance(math.pi,float)
True
>>> isinstance(math.pi,list)
False
>>> type(float) # ask what the type o f f l o a t i s ? i t i s a " type " !
<class 'type'>
>>> type(list)
<class 'type'>
>>> class MyClass(object): # c r ea t e a new c l a s s with nothing in i t
... pass # (" pa s s " does that)
...
>>> my instance = MyClass() # c r ea t e an in s tance o f our new c l a s s
>>> type(my instance) # check the type o f our new ins tance
<class ' main .MyClass'>
>>> type(MyClass) # a c l a s s i s a type !
<class 'type'>
>>> isinstance(my instance,MyClass)
True

Things to note from the session:

� Every type has a name, and that name is associated with a Python object. For example,
float and list are names associated with types <class 'float'> and <class
'list'>, respectively. These are the names you may use when doing a comparison
such as isinstance().

� The result of using the type function on float or list is type (specifically <class
'type'>. How about that: the type of Python types is <class 'type'>.

522 C H A P T E R 1 2 • M O R E O N C L A S S E S

� The type of math.pi is float, because the object associated with that variable is the
value of π , a floating-point number.

� We make an empty class called MyClass. It is empty because it has no structure or any
associated methods—only the filler statement pass. It is still a class.

� Even though we don’t define a constructor for MyClass, one is provided by de-
fault, and we can make an instance, called my instance, using the class name as a
constructor.

� Very important: what is the type of my instance? It is of type MyClass.
� Finally, MyClass is of type type, just like float and list.

We can write code that takes advantage of the types of variables to produce different
results. Code Listing 12.1 is a function that does addition for both integers and strings of
integers. It returns a 0 for any other type.

Code Listing 12.1

1 def special sum(a,b):
2 ' ' ' sum two i n t s or convert params to i n t s
3 and add . return 0 i f conver s ion f a i l s ' ' '
4 if type(a)==int and type(b)==int:
5 result = a + b
6 else:
7 try:
8 result = int(a) + int(b)
9 except ValueError:

10 result = 0
11 return result

Notes on the special sum function:

� Lines 4–5: The function checks the types of the two parameters. If they are both
integers, the function adds the two integers and assigns the resulting sum to the
result variable.

� Line 7–8: Otherwise, it tries to convert both parameters to integers and add them after
conversion. This will work for a float (with truncation) or with a string of digits.

� Line 9–10: Otherwise, the int() conversion will throw a ValueError and set the
result variable to 0.

� Line 11: The result is returned.

The choice of returning a zero value upon error is a programmer choice. Depending on
the circumstances, that may not be the correct decision (maybe Nonewould be appropriate).
In any event, it needs to be documented in the docstring (lines 2–3).

1 2 . 3 • C R E A T I N G Y O U R O W N O P E R A T O R O V E R L O A D I N G 523

12.2.2 Remember Operator Overloading
We first mentioned the topic of overloading in Section 1.7 and further showed its effects
on strings in Section 4.2.2. Remember the concept:

� 4 + 3 is integer addition, producing an integer result.
� 'four' + 'three' is string concatenation, producing a string result.
� 'four'+ 3 is undefined—no + operation is defined for those mixed types.

How can Python tell which operation to use when presented with the + operator?
Python does so in a way similar to our special sum function: it examines the types of
the arguments using introspection. By examining the types, it can look up the appropriate
operation. If no such operation is found (no operation exists for that particular combination
of values), an error is raised.

12.3 C R E A T I N G Y O U R O W N O P E R A T O R
O V E R L O A D I N G

You can create your own operator overloads for the new class (type) you have created. In the
previous section (Section 12.2), we said there were two requirements for such overloading: a
way to do introspection and a way to relate operators and methods. We have already discussed
introspection, so now we need to understand how Python relates operators and methods.

Python establishes a relationship between operators and methods as part of its standard
class mechanism. The relationship is fixed by Python: which operators you can use and
the method name that Python associates with each operator. If you provide one of these
special method names in your class, then instances of that class can respond to the associated
operator through this method name.

Consider the example of var1 + var2. Python associates the + operator with the
special method name add . As mentioned, performing this operation has two steps.
First, Python determines the type of var1. Once determined, Python looks for the special
method add in the class of var1. The details of how the Python does the invocation
are discussed below, in Section 12.3.1.

Overall, Python associates special method names with operators of the following three
general classes:

� Math-like operators, such as +, -, *, /
� Collection operators, such as [], len
� General class operators, such as methods for printing, construction, etc.

Table 12.1 lists some of the more commonly overloaded operators.2

2 For a full list, see http://docs.python.org/py3k/reference/datamodel.html#special-method-namesl.

http://docs.python.org/py3k/reference/datamodel.html#special-method-namesl

524 C H A P T E R 1 2 • M O R E O N C L A S S E S

Math-like Operators
Expression Method name Description
x + y add () Addition
x − y sub () Subtraction
x * y mul () Multiplication
x / y div () Division
x == y eq () Equality
x > y gt () Greater than
x >= y ge () Greater than or equal
x < y lt () Less than
x <= y le () Less than or equal
x != y ne () Not equal

Sequence Operators
len(x) len () Length of the sequence
x in y contains () Does the sequence y contain x?
x[key] getitem () Access element key of sequence x
x[key]=y setitem () Set element key of sequence x to value y

General Class Operations
x=myClass() init () Constructor
print (x), str(x) str () Convert to a readable string

repr () Print a Representation of x
del () Finalizer, called when x is garbage collected

TABLE 12.1 Python Special Method Names

12.3.1 Mapping Operators to Special Methods
The details of how + get mapped to add are particular to Python’s standard class
structure. We, as class designers, have to fit into the Python mold for this mapping by
providing the appropriate methods. An example mapping:

var1 + var2 ⇒ var1. add (var2)

These are equivalent expressions. Either one does exactly the same thing, but the first
is more familiar.

The first variable in a binary operation (in this case, var1) becomes the variable that
calls the associated method (in this case, add), and the second variable becomes the
argument (in parentheses). For example, if we reverse the operands:

var2 + var1 ⇒ var2. add (var1)

Order matters, so we will have to pay attention to it! We will have more to say about order
in Section 12.5.2.

1 2 . 3 • C R E A T I N G Y O U R O W N O P E R A T O R O V E R L O A D I N G 525

Let’s examine a simple example that illustrates how these special methods can be defined.
In Code Listing 12.2, there is one “math-like” method that performs addition (add)
and one general method that performs conversion to a string (str). A few extra
print statements have been added to the methods to illustrate when these functions are
called. As we have shown before, such print statements can help when developing and
debugging functions and should be removed once the code is working correctly.

Code Listing 12.2

1 class MyClass(object):
2 def init (self, param1=0):
3 ' ' ' c on s t ruc tor , s e t s a t t r i bu t e value to
4 param1 , de fau l t i s 0 ' ' '
5 print('in constructor')
6 self.value = param1
7

8 def str (self):
9 ' ' ' Convert val a t t r i bu t e to s t r i n g . ' ' '

10 print('in str')
11 return 'Val is: {}'.format(str(self.value))
12

13 def add (self,param2):
14 ' ' ' Perform addition with param2 , a MyClass in s tance .
15 Return a new MyClass in s tance with sum as value a t t r i bu t e ' ' '
16 print('in add')
17 result = self.value + param2.value
18 return MyClass(result)

Let’s examine a few lines in the example:

� Line 6: The constructor sets a local instance variable named value to the value of
param1. param1 has a default value of 0. We will assume it is a number (not safe, but
this is a simple example).

� Line 11: The string conversion method must return a string! We use str.
� Line 13: The add method. The name self is bound to the variable that calls the

method (the first operand in the binary expression), and param2 is bound to the
second operand in the binary expression. That is, x + y associates x with, self and
associates y with param2.

� Line 18: After calculating the sum, we create a new MyClass instance and return it
after setting that instance’s value attribute to the sum. Again, it makes sense to return
an instance of MyClass from addition.

526 C H A P T E R 1 2 • M O R E O N C L A S S E S

Here is a session that exercises the little class:

>>> from program12 2 import * # shor t cu t to r e f e r en c e con t en t s d i r e c t l y
>>> inst1 = MyClass(27)
in constructor
>>> type(inst1)
<class 'program12 2.MyClass'>
>>> type(MyClass)
<class 'type'>
>>> print(inst1) # c a l l s str
in str
Val is: 27
>>> a sum = inst1 + inst1 # c a l l s add
in add
in constructor
>>> print(a sum)
in str
Val is: 54
>>> type(a sum)
<class 'program12 2.MyClass'>
>>>

Here are a few observations about the session:
� When we created inst1, the constructor (via the init method) was called, and

we see the associated print statement “in constructor” printed in the session.
� The name inst1 is of type MyClass, and MyClass is of type type. We have made

a new type!
� The statement print(inst1) calls str to convert the instance to a string. We

see the “in str” line in the session as a result.
� When we invoke the line a sum = inst1 + inst1, we see that we get a call to the

add method (Python translates “+” to add as described above) as well as a call to
the constructor when we make a new instance of MyClass in add (in line 18
of the code).

� The variable a sum is assigned to an object of type MyClass since add returned
a new MyClass instance.

Again, the print statements showing “in constructor,” “in add,” and “in str” help
show where these functions are called.

12.4 B U I L D I N G T H E R A T I O N A L N U M B E R C L A S S
At the beginning of this chapter, we showed a session in which rational numbers were used
in a standard way, responding to standard operations. In that session, we explicitly used
the +, -, and == operators. Therefore, to implement the Rational class used in that
session, we need to have the following methods:

1 2 . 4 • B U I L D I N G T H E R A T I O N A L N U M B E R C L A S S 527

� init () which we always need
� str () which we also always need
� add () for the “+” operator
� sub () for the “-” operator
� eq () for the “==” operator
� And any other supporting functions

12.4.1 Making the Class
The first step in designing a class is to define the structure of the class; in particular, define the

init method that establishes the attributes included in each instance. For the rational
number class, each instance will have a numerator and a denominator, both integers. We
also need to print a rational number instance in a nice way. We must implement init
and str to accomplish both of those tasks. Let’s take a first cut at our rational number
class implementing those methods. As before, we include some print statements to help
us recognize when these methods are called.

Within the interpreter, we also expect to be able to type the name of a variable and
have its associated object displayed. The method that Python calls to accomplish this is
named repr (short for representation). If we do not have the repr method,
then Python types a default value. For clarity, it is good to include it in our basic class. Our

repr implementation simply calls the str method, which is sufficient for most
cases when you are first learning to construct classes. Note the dot notation and the use of
self in the call to the str method in Code Listing 12.3.

Code Listing 12.3

1 class Rational(object):
2 """ Rational with numerator and denominator . Denominator
3 parameter d e f au l t s to 1"""
4 def init (self,numer,denom=1):
5 print('in constructor')
6 self.numer = numer
7 self.denom = denom
8

9 def str (self):
10 """ Str ing r ep r e s en ta t i on f o r pr int ing """
11 print('in str')
12 return str(self.numer)+'/'+str(self.denom)
13

14 def repr (self):
15 """ Used in i n t e r p r e t e r . Call str f o r now """
16 print('in repr')
17 return self. str ()

528 C H A P T E R 1 2 • M O R E O N C L A S S E S

Things to note in our first pass at a rational number class:

� init assigns the two attributes to each instance, numer and denom.
� init also takes a default argument on parameter two, denom. If only the nu-

merator is provided, the denominator will be 1, meaning that the fractional value will
be the value of the numerator (this default will be very useful later on).

� str creates a new string by concatenation. It converts the numerator and de-
nominator to strings and places a slash (/) between them. It then returns that combined
string.

� The repr method, called when an instance value is required by the interpreter,
simply calls the str method. Note how it is called. The variable self is the
instance being printed. We get the string by invoking self. str (), an explicit
call (not implicit through print) to str .

� We add debugging print calls at lines 5, 11, and 16, so we may see when the methods
are called.

Let’s exercise these methods in a session. As before, the embedded print statements help
illustrate when each method is called.

>>> from program12 3 import * # shor t cut , c a l l Rational d i r e c t l y
>>> inst1 Rational = Rational(1,2)
in constructor
>>> print(inst1 Rational)
in str
1/2
>>> inst1 Rational # i n t e r p r e t e r c a l l s repr to print
in repr
in str
1/2
>>> inst2 Rational = Rational(2)
in constructor
>>> inst2 Rational
in repr
in str
2/1
>>> type(inst2 Rational)
<class 'program12 3.Rational'>
>>>

This session reinforces what we have seen before, namely:

� When a new Rational instance is created, the constructor (init) is called,
indicated by the print statement “in constructor.”

� When a Rational instance is printed, the str is called.

1 2 . 4 • B U I L D I N G T H E R A T I O N A L N U M B E R C L A S S 529

� When we type a variable name in the shell containing a Rational instance, Python
calls repr (which we have programmed to call str).

� If only one value is provided to the Rational constructor, it is assumed to be the
numerator, so the denominator is set to 1 by default.

� The type of a Rational instance is the Rational class.

Now that we have the basics of a class, let’s include addition.

12.4.2 Review Fraction Addition
Do you remember how to add fractions? An important component is the common denom-
inator. We’ll review the elementary arithmetic and then use what we remember to create an
algorithm for adding fractions.

How do you add 1
5 + 2

5 ? How about 1
5 + 1

3 ?

� The first case is easy, because both fractions have a common denominator. If the
denominators are the same, we simply add the numerators and keep the common
denominator in the answer: 1

5 + 2
5 = 3

5 .
� The second case does not have a common denominator, so we have to manipulate the

fractions so that they have a common denominator. Once accomplished, addition is
simple, like in the first case. One method to determine the common denominator is the
least common multiple (a.k.a. LCM) of the two denominators. The LCM is the smallest
number that each of the denominators divides into evenly—i.e., without a remainder.
By inspection, we know that in this case that number is 15, but what algorithm can we
use to find it in general?

The LCM is most easily computed in terms of another value, the greatest common divisor
(a.k.a. GCD). The GCD is the largest value that divides two values without a remainder.
The relation between LCM and GCD is shown in Equation 12.1.

LCM(a , b) =
a ∗ b

GCD(a , b)
(12.1)

Just to be clear, here are some examples:

� By inspection, the lowest common multiple (LCM) of 6 and 15 is 30 and is expressed as
LCM(6, 15) = 30. Let’s see if the LCM using Equation 12.1 is also 30. To begin with,
the greatest common divisor GCD of 6 and 15 is 3; represented as GCD(6, 15) = 3.
Plugging a = 6 and b = 15 into the LCM Equation 12.1, we get LCM(6, 15) =
(6 ∗ 15)/GCD(6, 15) = (90)/3 = 30, the expected value.

� Similarly, by inspection, the LCM of 8 and 20 is 40 and is expressed as LCM(8, 20) = 40.
Let’s check those values in the LCM Equation 12.1. Beginning again with the GCD,
the GCD of 8 and 20 is 4 and is expressed as GCD(8, 20) = 4. Again, using the

530 C H A P T E R 1 2 • M O R E O N C L A S S E S

LCM Equation 12.1, we plug in a = 8 and b = 20 to get LCM(8, 20) = (8 ∗
20)/GCD(8, 20) = (160)/4 = 40, the expected value.

Our task has been reduced to finding an algorithm for the GCD. Once we have that
algorithm, we can use Equation 12.1 to find the LCM, which we can use as a common
denominator.

Euclid and the GCD
It turns out that one of the oldest known algorithms is a method to calculate the GCD of two
numbers. It was first recorded by Euclid in his book titled Elements, written approximately
300 BCE, but it was likely known earlier than that.

Euclid happened to have used geometry to derive it, but the algorithm is the same.
Euclid’s algorithm uses two positive integers, where both are not 0.

Euclid’s GCD algorithm (on two positive integers) is as follows:

1. If one of the numbers is 0, return the other number and halt.
2. Otherwise, find the integer remainder of the larger number divided by the smaller

number.
3. Reapply the algorithm to the smaller number from the previous iteration and the

just-calculated remainder.

Using the values from the previous example, let’s apply Euclid’s algorithm to find
GCD(8,20).

Step 1 Neither number is 0; proceed.
Step 2 The integer remainder of 20/8 is 4 (i.e., 20%8 = 4).
Step 3 Reapply the algorithm using the previous smaller number (8) and the remainder (4)

to find the GCD(8,4).
Step 4 Neither number is 0; proceed.
Step 5 Remainder of 8/4 is 0 (i.e., 8%4 = 0).
Step 6 Reapply the algorithm to find the GCD(4,0).
Step 7 One number is 0; return the other (4) and halt.

The final result is that GCD(8,20) is 4, as expected.
This algorithm can easily be implemented in a recursive function, but we aren’t quite

there yet (see Chapter 16).
Let’s rewrite our GCD algorithm so that it is easier to implement in Python.

We’ll begin by naming the two positive integers bigger and smaller to help
keep them straight. Also, because the algorithm refers to one number as the smaller
number, let’s arbitrarily assume that bigger > smaller (if bigger < smaller,
we can swap their values). Here is an updated version of the algorithm:

1 2 . 4 • B U I L D I N G T H E R A T I O N A L N U M B E R C L A S S 531

Euclid’s GCD algorithm (on two positive integers, bigger and smaller, such that
bigger > smaller):

1. If smaller == 0, return bigger and halt.
2. Find the remainder of bigger divided by smaller: bigger% smaller.
3. Reapply the algorithm using smaller and the remainder.

Notice that the algorithm continues until smaller == 0, which is equivalent to
continuing while smaller != 0.

After we find a remainder in step 2, we reapply the algorithm using smaller and the
remainder. That is, we must set bigger and smaller to be respectively smaller and
remainder from the previous iteration. To accomplish this, we use multiple assignment
(Section 2.2.7). We include a print statement in line 7 so we can observe how the function
is working—it can be removed later. The code is shown in Code Listing 12.4.

Code Listing 12.4

1 def gcd(bigger, smaller):
2 """ Calculate the g r e a t e s t common d iv i s o r o f two p o s i t i v e i n t e g e r s . """
3 if not bigger > smaller: # swap i f n e c e s s a r y so b igger > smal l e r
4 bigger, smaller = smaller, bigger
5 while smaller != 0: # 1 . i f smal l e r == 0, hal t
6 remainder = bigger % smaller # 2 . find remainder
7 print('calculation, big:{}, small:{}, rem:{}'.\
8 format(bigger, smaller, remainder)) # debugging
9 bigger, smaller = smaller, remainder # 3 . reapply

10 return bigger

Let’s observe our gcd function in operation:

>>> from program12 4 import gcd
>>> gcd(8,20)
calculation, big:20, small:8, rem:4
calculation, big:8, small:4, rem:0
4
>>> gcd(22,8)
calculation, big:22, small:8, rem:6
calculation, big:8, small:6, rem:2
calculation, big:6, small:2, rem:0
2
>>>

Once we have a gcd function, we can use our LCM relation from Equation 12.1 to
write an lcm function. Note the integer division (//), so an integer quotient is returned.

532 C H A P T E R 1 2 • M O R E O N C L A S S E S

Remember that we need to have the gcd function loaded before we can call the lcm function
because gcd is used in lcm. Note that in Code Listing 12.5 we commented out the print
in gcd because we have completed development of the gcd function and no longer need
to debug it—at least not now!

P R O G R A M M I N G T I P

If you write print statements in your code for debugging purposes, you can comment or
uncomment them as needed. Commenting them reduces the “print load” you get when
your algorithm runs, but they are always good to have around, if you want to uncomment
them and test something out again.

Code Listing 12.5

1

2 def lcm (a,b):
3 """ Calculate the lowe s t common multiple o f two p o s i t i v e i n t e g e r s . """
4 return (a*b)//gcd(a,b) # Equation 12 .1 , / / en sure s an int i s returned

Here is a session using the same values from the previous exercise:

>>> from lcm import lcm
>>> lcm(8,20)
40
>>> lcm(22,8)
88

12.4.3 Back to Adding Fractions
Armed with some basic arithmetic, we can return to the original problem of adding two
fractions. In the add method, we need to do the following:

1. Find the LCM of the two Rational instance denominators.
2. Modify the two Rational instances:

� To have the LCM as the denominator
� If the new numerator is the LCM times the rational number

3. Now we can find the sum of the modified numerators. Note the int conversion so the
number will correctly be an int. Effectively, we are truncating away any floating-point
rounding errors.

4. Create a new Rational, with the sum as the numerator and the LCM as the denom-
inator, and return it.

1 2 . 4 • B U I L D I N G T H E R A T I O N A L N U M B E R C L A S S 533

Subtraction is basically the same. We show the next version of the class in Code
Listing 12.6.

Code Listing 12.6

1 def gcd(bigger, smaller):
2 """ Calculate the g r e a t e s t common d iv i s o r o f two p o s i t i v e i n t e g e r s . """
3 print('in gcd')
4 if not bigger > smaller: # swap i f n e c e s s a r y so b igger > smal l e r
5 bigger, smaller = smaller, bigger
6 while smaller != 0: # 1 . i f smal l e r == 0, hal t
7 remainder = bigger % smaller # 2 . find remainder
8 # print (' ca l cu la t ion , big :{} , small :{} , rem :{} ' .\
9 # format (bigger , smaller , remainder)) # debugging

10 bigger, smaller = smaller, remainder # 3 . reapply
11 return bigger
12

13 def lcm (a,b):
14 """ Calculate the lowe s t common multiple o f two p o s i t i v e i n t e g e r s . """
15 print('in lcm')
16 return (a*b)//gcd(a,b) # Equation 12 .1 , / / en sure s an int i s returned
17

18

19 class Rational(object):
20 """ Rational with numerator and denominator . Denominator
21 parameter d e f au l t s to 1"""
22 def init (self,numer,denom=1):
23 print('in constructor')
24 self.numer = numer
25 self.denom = denom
26

27 def str (self):
28 """ Str ing r ep r e s en ta t i on f o r pr int ing """
29 print('in str')
30 return str(self.numer)+'/'+str(self.denom)
31

32 def repr (self):
33 """ Used in i n t e r p r e t e r . Call str f o r now """
34 print('in repr')
35 return self. str ()
36

37

38 def add (self, param Rational):
39 """ Add two Rational s """
40 print('in add')

534 C H A P T E R 1 2 • M O R E O N C L A S S E S

41 # find a common denominator (lcm)
42 the lcm = lcm(self.denom, param Rational.denom)
43 # multiply each by the lcm , then add
44 numerator sum = (the lcm * self.numer/self.denom) + \
45 (the lcm * param Rational.numer/param Rational.denom)
46 return Rational(int(numerator sum), the lcm)
47

48 def sub (self, param Rational):
49 """ Subtract two Rational s """
50 print('in sub')
51 # subtrac t ion i s the same but with '− ' in s t ead o f '+ '
52 the lcm = lcm(self.denom, param Rational.denom)
53 numerator diff = (the lcm * self.numer/self.denom) - \
54 (the lcm * param Rational.numer/param Rational.denom)
55 return Rational(int(numerator diff), the lcm)

Comments on the Rational class so far:

� Line 42 calculates the lcm.
� Line 44 both modifies each numerator and then sums them as the new numerator.
� Line 46 returns a new instance of a Rational, because the sum of two rational

numbers is a rational number. The new instance is created by calling the Rational
constructor with the two new values for numerator and denominator.

� In our example code, every method and function prints out a line when it is called.
Tracking code is easier, but it must be commented out when done debugging.

Let’s look at an output session to see how this expanded example works:

>>> from program12 6 import *
>>> one half = Rational(1,2)
in constructor
>>> type(one half)
<class 'program12 6.Rational'>
>>> two fifths = Rational(2,5)
in constructor
>>> sum Rational = one half + two fifths
in add
in lcm
in gcd
in constructor
>>> print(sum Rational)
in str
9/10
>>> sum Rational
in repr

1 2 . 4 • B U I L D I N G T H E R A T I O N A L N U M B E R C L A S S 535

in str
9/10
>>> type(sum Rational)
<class 'program12 6.Rational'>
>>> two = Rational(2)
in constructor
>>> print(two - one half)
in sub
in lcm
in gcd
in constructor
in str
3/2
>>>

Here are some observations on that session:

� We begin by creating two rationals, one half = Rational(1,2) and
two fifths = Rational(2,5).

� When we add one half and two fifths, note how many functions and methods
get called. First, the system converts the binary operation into a method call by calling

add with one half bound to self and two fifths as param Rational.
The add method calls lcm, which in turn calls gcd. The lcm value is then
returned to the add method. Because we need to return a Rational, a call is
made to the Rational constructor to construct the result. Note that we convert the
numerator to an int before calling the constructor; lcm returned an int so it didn’t
need conversion.

� We test the default denominator in the constructor by creating a Rational number
object 2

1 using the constructor call Rational(2).
� Finally, we test that subtraction of 2 − 1

2 correctly produces the result 3
2 .

The overall process is a bit complicated, but each step is fairly simple and the organi-
zation is accomplished by us, the class designers.

Assignment
You likely noticed that we used assignment (=) with rational numbers in the sessions without
defining an assignment operator within the Rational class. Assignment is different than
the other operators because it is simply a manipulation of the namespace. Assignment
only associates an object with a name, so, no matter the object, assignment establish
that association. No special operator is needed for assignment based on an object type.
Assignment works, as is, with all objects.

536 C H A P T E R 1 2 • M O R E O N C L A S S E S

Check Yourself: Check Defining Your Own Operators

1. Provide the indicated output for the following code:

class TestClass(object):
def __init__(self,param_str=''):

self.the_str=''
for c in param_str:

if c.isalpha():
self.the_str += c

def __add_ _(self,param):
if type(param)==TestClass:

the_str = self.the_str + param.the_str
return TestClass(the_str)

else:
return self

def __str_ _(self):
return 'Value: {}'.format(self.the_str)

inst1 = TestClass('abc')
inst2 = TestClass('123ijk')
sumInst1 = inst1 + inst2
sumInst2 = inst1 + 'xyz'
print(inst1) # Line 1
print(sumInst1) # Line 2
print(sumInst2) # Line 3
print(isinstance(sumInst2,TestClass)) # Line 4

(a) What output is produced by Line 1 when executing the indicated code?
(b) What output is produced by Line 2 when executing the indicated code?
(c) What output is produced by Line 3 when executing the indicated code?
(d) What output is produced by Line 4 when executing the indicated code?

12.4.4 Equality and Reducing Rationals
In this section, we consider the task of comparing two rational numbers to see whether they
are equal. Note that, even if you do not provide a comparison operator, Python will allow
you to compare two instances of your class though the results of this default comparison
are almost certainly not what you want. Therefore, you must implement every comparison
you think is important for your class.

The simple case is to compare the two numerators and two denominators. If both are
the same, then the fractions are the same. So is 1

2 == 1
2 ? Sure.

However, checking equality is complicated by the fact that two different rational
numbers can be equal because their reduced values are equal, e.g., 12

16 == 6
8 because they

both reduce to 3
4 .

1 2 . 4 • B U I L D I N G T H E R A T I O N A L N U M B E R C L A S S 537

Therefore, to check for equality we need to reduce the fractions. That begs for a
reduction function. To check for equality, we will reduce both fractions and then compare.

Fortunately, we already have the tools (functions) to accomplish this task. The first
step in reducing a fraction is to find the greatest number that will divide into both the
numerator and denominator. That is, the GCD and we already have that function. Having
found that divisor, we divide both the numerator and denominator by that value, creating
a new Rational instance that has been reduced.

Once we can reduce a fraction, we can then compare the numerators and denominators.
The methods in question are shown in Code Listing 12.7.

Code Listing 12.7

1 def reduce rational(self):
2 """ Return the reduced f r a c t i ona l value as a Rational """
3 print('in reduce')
4 # find the gcd and then divide numerator and denominator by gcd
5 the gcd = gcd(self.numer,self.denom)
6 return Rational(self.numer//the gcd, self.denom//the gcd)
7

8 def eq (self,param Rational):
9 """ Compare two Rational s f o r equal i ty , return Boolean """

10 print('in eq')
11 # reduce both ; then check that numerators and denominators are equal
12 reduced self = self.reduce rational()
13 reduced param = param Rational.reduce rational()
14 return reduced self.numer == reduced param.numer and\
15 reduced self.denom == reduced param.denom

Comments on our Rational class:

Line 5: reduce rational finds the GCD of the provided Rational object now asso-
ciated with self.

Line 6: A new Rational object is created and returned in reduced form. The numerator
and denominator of this new object are made by dividing self.numer and self.
denom by the gcd.

Lines 12–13: The method reduce rational is called on both self and
param Rational. Both return new Rational objects, which are assigned to
reduced self and reduced param, respectively. Neither param Rational nor
self is modified! The result of testing two rational numbers should not modify those
numbers.

Lines 14–15: Finally, we return the result of the and of two comparisons: the equality
of both the reduced numerators and the reduced denominators. This is a Boolean, as
should be returned by a comparison.

538 C H A P T E R 1 2 • M O R E O N C L A S S E S

For the reduce rational method, if the fraction is already in its reduced form,
then the gcd is 1. We still divide, even if it is 1, as that is simpler to do than to check for
that special case.

An alternate way to design a rational number class would be to always keep fractions
in reduced form. That is, if you create a fraction 12

16 , it will be reduced to 3
4 when the

fraction is created. Arithmetic operations would operate similarly. It is not obvious that one
design is better than the other: both have merits. If you work with the Fraction class in
Python 2.6 fractions module, you will see that they always reduce their fractions.

The session that exercises Code Listing 12.7 is interesting:

>>> from program12 7 import *
>>> one half = Rational(1,2)
in constructor
>>> five tenths = Rational(5,10)
in constructor
>>> five tenths.reduce rational()
in reduce
in gcd
in constructor
in repr
in str
1/2
>>> one half == five tenths
in eq
in reduce
in gcd
in constructor
in reduce
in gcd
in constructor
True
>>>

� The method five tenths.reduce rational() returns the appropriate
result, 1

2 . The value in five tenths is not modified.
� Can you follow the sequence of invocations of functions and methods for
five tenths.reduce rational()?
- reduce rational method is called.
- gcd is called from reduce rational.
- Once reduced, a newRational is created by calling the constructor. ThisRational

instance is returned.
- The returned Rational is to be displayed by the shell, which calls repr to do

that.
- repr calls str .

1 2 . 5 • W H A T D O E S N ’ T W O R K (Y E T) 539

� one half == five tenths converts to one half. eq (five tenths),
which produces True. Neither value is modified. Note that reduce rational is
called twice, once for self and once for param Rational.

VideoNote 12.1
Augmenting
a Class

12.4.5 Divide and Conquer at Work
Notice again how we applied a divide-and-conquer approach to solving this problem. We
broke the problem of performing operations on rational numbers into smaller pieces, each
of which was easily testable—e.g., lcm, gcd, and reduce rational. We then combined
the parts to solve the problem at hand. Reemphasizing this approach is important, especially
when building your own classes. Many small functions are easier to develop and debug than
a few large ones. The interactive nature of Python makes testing of small functions and
methods easy. It is a hallmark of object-oriented code to build in this way.

12.5 W H A T D O E S N ’ T W O R K (Y E T)
Our testing sessions seem to indicate that our class is sufficient, but look at the following
session. Why don’t these expressions work?

>>> from rationalNumber3 import *
>>> one half = Rational(1,2)
in constructor
>>> one half + 1
in add
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "rationalNumber3.py", line 35, in add
the lcm = lcm(self.denom,f.denom)

AttributeError: 'int' object has no attribute 'denom'
>>>
>>> 1 + one half
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: unsupported operand type(s) for +: 'int' and 'Rational'

First, it is reasonable to expect that we should be able to mix other numeric types with
our new Rational class, but at this point it seems we cannot. Second, we get two different
error messages for the the expressions:

� one half + 1: error is trying to find denom in 1.
� 1 + one half: error is unsupported types for +.

It is useful to try to interpret what these error messages are telling us. Let’s begin by
reviewing how these expressions get translated. The first expression translates as

one half + 1 ⇒ one half. add (1)

540 C H A P T E R 1 2 • M O R E O N C L A S S E S

However, in our add method, we assume that the argument being passed is of
type Rational. In this case, it isn’t: 1 is of type int so it doesn’t have a denom attribute.

In the second example, 1 + one half doesn’t even make it to our add method.
This second expression translates as

1 + one half ⇒ 1. add (one half)

In this case, the first argument is an int, so the system looks in the int type for operations
defined on int ’s and ’s. This is none, so this is an error, different from the previous error.

We need to fix both errors, but they will each require their own solution.

12.5.1 Introspection
To fix the first problem, namely one half + 1, we need to fix our assumptions about the

add method. Take a look at that code. When we designed the method, we assumed
that the type of the passed parameter is Rational. We try to access the numer and
denom attributes of the parameter. What if the parameter is not a Rational? We, the
class designers, need to check the type first and then take appropriate action. We need to
utilize introspection. Remember, we discussed introspection in Section 12.2.1. Introspection
allows us to query the type of a variable while the program is running and take appropriate
action.

Our add method presently works correctly with two Rational parameters.
What other types might it work with? Clearly it should work with integers. We might do
other types as well, but let’s work with int for now.

We need to check the type of the parameter as it comes in. If the parameter is an int,
then we need to convert the int to a Rational. Once converted, we can continue as
before. Conveniently, if we call the Rational constructor with a single-integer argument,
it does create a Rational (with a default denominator of 1)—good design!

To save space, we show only relevant parts of the class in Code Listing 12.8.

Code Listing 12.8

1 def add (self, param):
2 """ Add two Rational s . Allows int as a parameter """
3 print('in add')
4 if type(param) == int: # convert i n t s to Rational s
5 param = Rational(param)
6 if type(param) == Rational:
7 # find a common denominator (lcm)
8 the lcm = lcm(self.denom, param.denom)
9 # multiply each by the lcm , then add

10 numerator sum = (the lcm * self.numer/self.denom) + \

1 2 . 5 • W H A T D O E S N ’ T W O R K (Y E T) 541

11 (the lcm * param.numer/param.denom)
12 return Rational(int(numerator sum),the lcm)
13 else:
14 print('wrong type') # problem : some type we cannot handle
15 raise(TypeError)

Line 4: We check the parameter’s type with the type function. If it is of type int, then the
parameter is converted to a Rational by calling the Rational constructor, passing
the param as the single argument. It reassigns param to the returned Rational.

Line 6: We have either converted an int to a Rational or had received a Rational
initially to get past this if statement. If so, we then do what we did previously to add
the two fractions.

Line 13: If we get to this line, then we did not end up with a Rational type for the passed
parameter. We print an error message then raise an error. The command raise is a way
to signal to Python that an error has occurred that will be dealt with if possible. We
have dealt with handling exceptions, but this is the first time that we raised one on our
own. More detail about raising exceptions will be explained in Chapter 14.

Let’s test it!

>>> from program12 8 import *
>>> one half = Rational(1,2)
in constructor
>>> one half + one half
in add
in lcm
in gcd
in constructor
in repr
in str
2/2
>>> one half + 1
in add
in constructor
in lcm
in gcd
in constructor
in repr
in str
3/2
>>> one half + 3.14159
in add
wrong type

542 C H A P T E R 1 2 • M O R E O N C L A S S E S

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "program12 6.py", line 52, in add
raise(TypeError)

TypeError
>>> 1 + one half
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: unsupported operand type(s) for +: 'int' and 'Rational'
>>>

In our session, testing indicates that regular Rational addition still works (we didn’t
break it!), as does Rational + int. Rational + anything else raises the TypeError
exception—correctly, as that’s how we designed it. However, int + Rational still does
not work, so we have more to do.

VideoNote 12.2
Create a Class

12.5.2 Repairing int + Rational Errors
Introspection allows us to examine the type of the parameter(s) passed into a method, but
we still cannot address the problem of an expression such as 1 + one half. The problem
is that, because the first element of the binary operation is an int, there is no way for us
to automatically route the addition (+) operation to the add method of Rational.
This is because our translation of binary operator to method depends on the type of the first
operand. The first operand is an int, and we cannot (and likely wouldn’t want to) change
the underlying functionality of int’s for every new type (class) we define.

Python provides a way around this problem. For each math-like method predefined
by the system, a reversed method exists: radd , rsub , rmul , rdiv ,

rand , ror .3 The Python process here is a little complicated, so follow carefully
for the expression 1 + Rational(1,2).

1. Python tries to find an appropriate add method for int’s. However, no such
method exists with a parameter of type Rational.

2. Given that error, Python looks for the existence of an radd method in the second
operand (Rational, in this case). If it exists, then Python automatically reverses the
expression and calls radd . In this case, that expression will be Rational(1,2).
radd (1).

3. If neither of these works, Python raises an error.

In our case of int + Rational, the radd maps the Rational to self and the
int to the parameter. For addition, because addition is commutative (order doesn’t matter),
we just call the existing non-reversed add with the now properly ordered expression.

3 Others exist for mod, shift, etc., but not for comparison operations.

1 2 . 5 • W H A T D O E S N ’ T W O R K (Y E T) 543

Because introspection allows us to have int’s as a parameter, all should be well. Let’s take a
look at just that method in Code Listing 12.9.

Code Listing 12.9

1 def radd (self,param):
2 """ Add two Rational s (r e v e r s ed) """
3 # mapping i s r e v e r s ed : i f "1 + x" , x maps to s e l f , and 1 maps to f
4 print("in radd")
5 # mapping i s a lready r ev e r s ed so s e l f wi l l be Rational ; c a l l add
6 return self. add (param)

Take a look at a session to see that it works:

>>> from program12 9 import *
>>> one half = Rational(1,2)
in constructor
>>> one half + one half
in add
in lcm
in gcd
in constructor
in repr
in str
2/2
>>> one half + 1
in add
in constructor
in lcm
in gcd
in constructor
in repr
in str
3/2
>>> 1 + one half
in radd
in add
in constructor
in lcm
in gcd
in constructor
in repr
in str
3/2
>>>

544 C H A P T E R 1 2 • M O R E O N C L A S S E S

Make sure you can follow along. The 1 + one half begins with a call to radd
because an ‘‘int + Rational’’ method doesn’t exist. If a radd method exists in one half,
Python invokes that method and reverses the order of the original binary operation, mapping
one half to self and 1 to the parameter. Read the previous sentence again carefully! Python
reverses the order of the operands when it calls a reverse method.

Because addition is commutative, we can simply call the non-reversed method using
the now properly ordered arguments: self. add (param). That is, 1 + one half
through radd will map one half to self and 1 to param, which our add
can handle. We see “in add” printed followed by the first “in constructor,” where the int 1
is converted to a Rational. The final “in constructor” is when we construct a Rational
to return. Phew!

Mixed-Type Comparisons
What about handling mixed-type comparisons? Unfortunately, comparisons do not have
“reversed” versions of methods, so something that does a comparison between an int and
a Rational cannot be solved so easily. That is, 1 == oneHalf, which compares an
int with a Rational , will fail, and a reversed equality operator does not exist to help
us out. A solution exists, but it is messy and beyond the scope of this introductory text.
The complexity comes from the fact that comparisons behave quite differently from simple
arithmetic, and the concept of “equality” or “greaterthan” can get messy at the language-
implementation level. Therefore, at this stage, mixed-type comparisons such as “equal,”
“greaterthan,” “lessthan,” “notequal,” and so on are left for a more-advanced text.

Collection Operators and Iteration
If the class we are constructing is a collection, we can also define operators such as indexing
([]) and iteration. Please see the Python manual for details.

12.6 I N H E R I T A N C E
As we have mentioned, one of the hallmarks of an OOP system is inheritance. Let us finally
get down to details and examine what inheritance means. We’ll first see what it is and then
get into why it is a good idea.

12.6.1 The “Find the Attribute” Game
In Section 11.3.4 we discussed how information is shared between instances and classes.
Remember:

� A single class can have many instances, where each instance is initialized by the class’s
constructor method, init .

� When constructed, one of the instance’s attributes is the class attribute, indicat-
ing the class the instance was created from. This establishes the instance-of relationship.
Every instance remembers what class it is an instance of.

1 2 . 6 • I N H E R I T A N C E 545

� When referencing a value in an attribute (e.g., my instance.attribute name),
Python first looks in the instance for the attribute, and, if not found there, it then looks
in the class the instance was derived from. In this way, attributes stored in the class are
available to every instance derived from that class.

We want to extend the “find the attribute” search algorithm from Section 11.3.4 to
include other classes besides the one the instance is derived from. But how? As it turns out,
classes can also have a relationship with other classes, a relationship independent of the
class-instance relationship. Let’s explore that a bit.

Class “is-a” Relationship and the Class Hierarchy
Remember when we wrote our first class, shown in Figure 11.2? In every definition of a
Python class, the final element is a parenthetical list of classes that we called the “parent
object.” We noted at that time that, until we got to inheritance, this list was always to contain
the special class object. Now that we are at inheritance, we can explain this argument in
more detail.

Every class maintains at least one parent class. The two classes are said to have a “parent-
child,” “superclass-subclass,” or “base-derived class” relationship, depending on who is doing
the describing. However you describe the two classes, the relationship is meant to represent
the specialization of an object. It is often called an is-a relationship. For example, if you create
a Car class, then a Ford class “is-a” Car, but a more particular kind of Car. Subsequently, a
Mustang class “is-a” Ford class, but a more particular kind of Ford. Remember, these are
still classes, not instances! A Mustang is a general class of Car, not a single, particular car,
such as “Bill’s 1967 Green Shelby Cobra Mustang” (don’t I wish!), which is an individual
car, an instance. Car, Ford , and Mustang are still classes of vehicles—templates from
which individual instances are derived.

The “is-a” relationship is one-way, much as the “instance-of” relationship is one-way.
The instance remembers who its class is, but the class does not track its instances. A class
remembers who its parent class is, but the parent class does not track its child classes.

Each Python class indicates specifically in its class definition who its parent class is.
This relationship gets recorded in the bases attribute of each class.

Taken together, all the classes and their parent relationships form a hierarchy of classes.
The Oxford English Dictionary includes as one of the definitions of hierarchy the following:

hierarchy: A body of persons or things ranked in grades, orders, or classes, one
above another.

A hierarchy of Python classes is an organization, through the parent class of each class,
indicating how classes are related to one another via an “is-a” relation. Figure 12.1 shows
the situation.

The figure shows three, rather empty, classes. The important point is that this fig-
ure shows that the parent class value in each class establishes an “is-a” relationship and
how, taken together, the “is-a” relationships establish a hierarchy. One class that is shown
in the hierarchy but never defined is object (note the lowercase!). Python provides the

546 C H A P T E R 1 2 • M O R E O N C L A S S E S

Child1Class

C
hild class

P
ar

en
t c

la
ss

Child2Class

object

MyClass

class MyClass (object):
 pass

class Child1Class (MyClass):
 pass

class Child2Class (MyClass):
 pass

FIGURE 12.1 A simple class hierarchy.

object named object as the “top object” in the Python class hierarchy. Every class de-
fined in Python ultimately ends up at object by following the parent class links. All of
the built-in objects (list, set, tuple, dictionary, etc.) are objects whose parent is object.
Code Listing 12.10 shows this. Note who the parent class of object is.

Code Listing 12.10

1 class MyClass (object):
2 ' ' ' parent i s ob j e c t ' ' '
3 pass
4

5 class MyChildClass (MyClass):
6 ' ' ' parent i s MyClass ' ' '
7 pass
8

9 my child instance = MyChildClass()
10 my class instance = MyClass()
11

12 print(MyChildClass. bases) # the parent c l a s s
13 print(MyClass. bases) # d i t t o
14 print(object. bases) # d i t t o
15

16 print(my child instance. class) # c l a s s from which the in s tance came
17 print(type(my child instance)) # same question , asked via funct ion

(<class ' main .MyClass'>,) # print (MyChildClass . bases)
(<class 'object'>,) # print (MyClass . bases)
() # print (ob j e c t . bases)
<class ' main .MyChildClass'> # print (my child instance . class)
<class ' main .MyChildClass'> # print (t ype (my child instance))

1 2 . 6 • I N H E R I T A N C E 547

Back to the Game
Now we know of two relationships: “is-a” between classes and “instance-of” between an
instance and the class it was created from. We can now update the “instance-of” relationship
of Figure 11.3 by including the “is-a” relationship as shown in Figure 12.2. We call the
illustrated process of determining relationship the “find the attribute” game.

my_instance

instanceAttribute (value “world”)

my_instance

instanceAttribute (value “world”)

class object ():

#python defaults

my_instance

instance-of
relationships

instance_attribute (value “world”)

class ParentClass (object):

parent_attribute (value “mom”)

class MyClass (ParentClass):

my_class_attribute (value “hello”)

is-a
relationship

is-a
relationship

FIGURE 12.2 The players in the “find the attribute” game.

The order of search is now the following:

1. Look in the instance; if not found there, go on.
2. Look in the class of the instance (up the “instance-of” relation); if not there, go on.
3. Look up the class parent link, the “is-a” relation, and look in the parent class. Continue

looking up the “is-a” links until the attribute is found or there are no more “is-a” links
to follow (meaning that ultimately you arrived at object and the attribute was not
found).

Using Figure 12.2, how does Python find my instance.parent attribute? Fol-
lowing the rules:

� Python first looks in the instance itself. The attribute is not in the instance, so on to
step 2.

� Python then looks in the class from which it was instantiated, via the “instance-of”
link, MyClass. The attribute is not in the class, so on to step 3.

� Python moves up the class hierarchy via the “is-a” link to ParentClass. It finds the
attribute there and returns it.

If the process gets to the class object and it doesn’t find the attribute, the search fails
and Python generates an error.

548 C H A P T E R 1 2 • M O R E O N C L A S S E S

12.6.2 Using Inheritance
Let’s review. We can now impose a structure on a set of classes using the “is-a” (“parent-of”)
relationship. This organization fits into the already existing “instance-of” relationship and
extends the search process for finding attributes of an instance (and remember, attributes
include methods). So what?

The promise of inheritance as an aspect of OOP relates to the ability to share common
code:

� If a new class is created as part of an existing class hierarchy, then the new class can
reuse existing code from the hierarchy, specializing only those aspects or attributes that
are unique to the new class.

� By sharing code from the class hierarchy, the coding of classes can be somewhat
standardized. If a group of developers must work together, they can establish standard
code to accomplish common tasks and a framework in which to develop new tasks.
This means that the group works together by sharing as much as possible, preventing
errors and incompatibilities in their code.

Group Development and OOP
The last of the previous points is important, because it emphasizes a need that OOP often
fills: group development. One of the main reasons that OOP has been successful is that it
helps in coordinating group development of software. It is a drawback of an introductory
course that group development is often not emphasized (students can only do so much in a
single course!), but OOP works best in a group environment.

More important, a group environment is how modern software is developed. It is
rare that a single programmer (or even a small group of programmers) does an entire
development cycle. It requires too much work and takes too much time. Developers need to
work together to create software, and OOP is a tool to help in that regard. That is why the
term software engineering is so often used in regards to development. Software engineering
is concerned with developing tools to make development, especially group development,
easier to accomplish. OOP is one of those tools.

How does OOP help in a group setting? Let’s look at the various aspects we have
used. Encapsulation means that a class designer can write code for another programmer
to solve a problem. The details of the class are hidden from the programmer; only the
interface is made available. If the class must be modified in some way (to be faster, to
use less memory, to interact with a new device, etc.), then the class designer can modify
the class as long as he or she can maintain the interface, the methods made available to
the programmer. This division of duty—class design and class use—makes it easier to
share code.

Inheritance does much the same thing. By providing standard methods via a class
hierarchy, the group can make decisions as to how their code should be developed and
shared.

1 2 . 6 • I N H E R I T A N C E 549

12.6.3 Example: The Standard Model
Physicists who investigate the nature of the atom have worked for many years to develop
a model of matter and the forces that act on that matter. The results of this research
are currently termed the Standard Model. The Standard Model is a description of all the
fundamental pieces from which matter is constructed and three of the fundamental forces
of nature (gravity not yet being incorporated). It is a crowning achievement of an enormous
amount of work, but its description is relatively easy to provide. Figure 12.3 shows a
summary of the model.4

2.4 MeV

Three Generations of Matter (Fermions)

I II III

mass

u2�3
1�2

up

4.8 MeV

Q
ua

rk
s

Le
pt

on
s

B
os

on
s

(F
or

ce
s)

d
down

104 MeV

s
strange

4.2 GeV

b
bottom

0.511 MeV

e�1

electron

105.7 MeV

�
muon

1.777 GeV

�
tau

�2.2 eV

ve
0

electron
neutrino

�0.17 MeV

v�
muon

neutrino

�15.5 MeV

v�
tau

neutrino

1.27 GeV

c
charm

171.2 GeV

t
top

0

�0

1

photon

0

g0

1

gluon

91.2 GeV

Z0 0
1

weak
force

80.4 GeV

W1

weak
force

1��

��

charge

spin

name

2�3
1�2

2�3
1�2

�1�3
1�2

1�2

1�2

�1

1�2

�1

1�2

0

1�2

0

1�2

�1�3
1�2

�1�3
1�2

FIGURE 12.3 The Standard Model of physics.

Each of the 12 particles shown in the model have a number of attributes, including
mass, spin, charge, and name. They also have intrinsic attributes, such as location (in three-
dimensional space) and velocity (direction of movement in three-dimensional space). This
classification of particles is perfect for a class hierarchy. Let’s try and develop at least part of it.

4 It should be noted that the Standard Model is a working hypothesis, well established but not fully proved. This version of the model
ignores some particles, such as antiparticles.

550 C H A P T E R 1 2 • M O R E O N C L A S S E S

Every particle has both a name and the quantity called spin as well as a position in 3-D
space and a velocity. Our base class then will be called Particle , and the init
and str methods will manipulate those common values. A second class, called
MassParticle , will be a child class of Particle. It will add the quantity mass to
any instance. The final class will be called ChargedParticle. It will add the quan-
tity charge to any instance. An example of this hierarchy is shown in Figure 12.4. An
implementation is shown in Code Listing 12.11.

Particle
 • name
 • position
 • velocity
 • spin
 • ––init––()

 • ––str––()

is-a

is-a

MassParticle
 • mass
 • ––init––()

 • ––str––()

ChargedParticle
 • charge
 • ––init––()

 • ––str––()

FIGURE 12.4 The particle class hierarchy.

Using Parent Class Methods

Code Listing 12.11

class Particle (object):
def init (self, name='', position=(0.0,0.0,0.0), \

velocity=(0.0,0.0,0.0), spin=0.0):
self.position = position
self.velocity = velocity

1 2 . 6 • I N H E R I T A N C E 551

self.name = name
self.spin = spin

def str (self):
print('in particle str')
pos str = '({}:{}:{})'.\

format(self.position[0],self.position[1],self.position[2])
vel str = '({}:{}:{})'.\

format(self.velocity[0],self.velocity[1],self.velocity[2])
result str = "{} at {} with velocity {} and spin {}".\

format(self.name, pos str, vel str, self.spin)
return result str

class MassParticle (Particle):
def init (self, name='',position=(0.0,0.0,0.0), \

velocity=(0.0,0.0,0.0), spin=0.0, mass=0.0):
Particle. init (self, name, position, velocity, spin)
self.mass = mass

def str (self):
print('in mass str')
result str = Particle. str (self)
result str = result str + ' and mass {}'.format(self.mass)
return result str

class ChargedParticle(MassParticle):
def init (self, name='', position=(0.0,0.0,0.0), \

velocity=(0.0,0.0,0.0), spin=0.0,mass=0.0, charge=0.0):
MassParticle. init (self,name,position,velocity,spin,mass)
self.charge = charge

def str (self):
print('in charged str')
result str = MassParticle. str (self)
result str = result str + ' and charge {}'.format(self.charge)
return result str

>>> from program12 11 import *
>>> photon = Particle(name='photon', spin=1.0)
>>> print(photon)
in particle str
photon at (0.0:0.0:0.0) with velocity (0.0:0.0:0.0) and spin 1.0
>>> tau = ChargedParticle(name='tau', spin=0.5, charge=-1.0, mass=1.777)
>>> print(tau)

552 C H A P T E R 1 2 • M O R E O N C L A S S E S

in charged str
in mass str
in particle str
tau at (0.0:0.0:0.0) with velocity (0.0:0.0:0.0) and spin 0.5 and mass 1.777 and
charge -1.0
>>>

As you have seen, Code Listing 12.11 implements our class hierarchy. For simplicity,
we implement only the init and str methods.

If you look carefully at the init and str methods of the two child classes,
you will see something odd. An example would be the init of MassParticle.
It contains the line Particle. init (self, name,position, velocity,
spin). What is that? All of our previous work used instances to call methods. Here,
we are calling the method with a class and passing self in the argument list.

The problem is this: When we make a child class, we want it to have an init
method just like every other class. However, if it is a child class, we also want to make
sure we call its parent class’s init as well. In this way, we do locally to any in-
stance what needs to be done for our class, but we also must do what the parent class
requires.

We cannot do this initialization with something like self. init in the local
class’s init . That just calls the same method again! We need a way to call the parent
class init (and any other inherited method).

Python provides a way to do this. We are used to doing method calls in the context of
a calling object. For example, in inst1.update the object inst1 is calling the method
update. This is called a “bound method.” This usage means that the first parameter of
update, the parameter self, is automatically bound by Python to the object inst1. On
the other hand, the method can be called without automatically assigning the calling object
to self, but the user must then provide the calling instance explicitly. This latter case
is called an “unbound method.” With an unbound method, we specifically indicate the
method (what class, what method) using dot notation and then explicitly pass the argument
that will bind to the self parameter of the method.

In Code Listing 12.11, there are some print statements in each of the str
methods to indicate which method is being called to show which methods are in fact being
used.

Changing Code Using Class Inheritance
The print output of the str method is not very well formatted. The good news is
that we can fix most of the problems by changing the str in Particle. Fixing the
code in Particle updates the formatted output that occurs for all particles (remember
the “find the attribute” rules). An updated version and session output are shown in Code
Listing 12.12.

1 2 . 6 • I N H E R I T A N C E 553

Code Listing 12.12

multi−c l a s s model f o r the standard model , showing
inher i tance along str use .

class Particle (object):
def init (self, name='', position=(0.0,0.0,0.0),\

velocity=(0.0,0.0,0.0), spin=0.0):
self.position = position
self.velocity = velocity
self.name = name
self.spin = spin

def str (self):
print ' in Par t i c l e s t r '
pos str = '({:.2}:{:.2}:{:.2})'.\

format(self.position[0],self.position[1],self.position[2])
vel str = '({:.2}:{:.2}:{:.2})'.\

format(self.velocity[0],self.velocity[1],self.velocity[2])
result str = "{}\n at {}\n with velocity {}\n and spin {}\n".\

format(self.name, pos str, vel str, self.spin)
return result str

class MassParticle (Particle):
def init (self, name='',position=(0.0,0.0,0.0),\

velocity=(0.0,0.0,0.0), spin=0.0, mass=0.0):
Particle. init (self, name, position, velocity, spin)
self.mass = mass

def str (self):
print ' in mass s t r '
result str = Particle. str (self)
result str = result str + ' and mass {}\n'.format(self.mass)
return result str

class ChargedParticle(MassParticle):
def init (self, name='', position=(0.0,0.0,0.0),\

velocity=(0.0,0.0,0.0), spin=0.0,mass=0.0, charge=0.0):
MassParticle. init (self,name,position,velocity,spin,mass)
self.charge = charge

def str (self):
print ' in charged s t r '
result str = MassParticle. str (self)
result str = result str + ' and charge {}'.format(self.charge)
return result str

554 C H A P T E R 1 2 • M O R E O N C L A S S E S

>>> from program12 12 import *
>>> photon = Particle(name='photon', spin=1.0)
>>> tau = ChargedParticle(name='tau', spin=0.5, charge=-1.0, mass=1.777)
>>> print(photon)
photon
at (0.0:0.0:0.0)
with velocity (0.0:0.0:0.0)
and spin 1.0

>>> print(tau)
tau
at (0.0:0.0:0.0)
with velocity (0.0:0.0:0.0)
and spin 0.5
and mass 1.78
and charge -1.0
>>>

This is the beauty of inheritance. If the parent class is doing work, we just call the
parent class method and then, in our local method, add on whatever we need. If we need to
modify any common functionality, we do it in the class where it resides and all inheriting
classes “see” the effect.

In this session, we can see that even though we did not change the str method
of the chargedParticle we inherited the changes made in Particle so the print of
the chargedParticle is also nicely formatted.

Summary
In this chapter, you learned how to increase the capabilities of classes that we design.
You learned the value of consistency, the use of introspection, and how to overload some
operators.

Classes
� Overloading operators:
A + B maps to A. add (B)
which maps to add (self,param)
by mapping A to self and mapping B to param

� Inheritance: inherit properties of the superclass
� Expanded class organization:

class ClassName(object):
def init (self,param):

self.value == param

E X E R C I S E S 555

def add (self,param):
the sum = self.value + param.value
return ClassName(the sum)

def radd (self,param):
return self. add (param)

def eq (self,param):
return self.value == param.value

class ChildClass(ClassName):
def init (self,param):

ClassName. init (self,param)

Rules
� RULE 1: Think before you program!

� RULE 2: A program is a human-readable essay on problem solving that also happens
to execute on a computer.

� RULE 3: The best way to improve your programming and problem skills is to practice!

� RULE 4: A foolish consistency is the hobgoblin of little minds.

� RULE 5: Test your code, often and thoroughly!

� RULE 6: If it was hard to write, it is probably hard to read. Add a comment.

� RULE 7: All input is evil, until proven otherwise.

� RULE 8: A function should do one thing.

� RULE 9: Make sure your new class does the right thing.

Exercises
1. Describe what the isinstance function does, and give an example of its use.

2. Augment the Rational number class to include multiplication and division. Include
the ability to accommodate operands of type int.

3. The human body has many organs (heart, lungs, brain, and kidneys, to name a few).
We could think of the human body as a complex object made up of simpler objects
(organs).

(a) Create classes for heart and brain. Think about what the functions of the heart and
brain are in our body and map these functions into methods.

(b) Create an Organ class as the base class for the organs and derive the classes created
earlier from the base class.

556 C H A P T E R 1 2 • M O R E O N C L A S S E S

4. There are websites such as http://www.vehix.com that provide information about
secondhand vehicles. Design a base class for vehicle with fields such as model year,
total mileage, Vehicle Identification Number (VIN), EPA class, EPA mileage, engine,
transmission, and options.

Design subclasses for car, truck, SUV, and minivan. Think about the specific fields
and methods required for the subclasses.

5. Design a class called Bill that has fields to store the list of items, their prices per unit,
quantity of each item in the bill, and the grand total of the items. Create an overloaded
add operator so that when you add two bills, you get a new bill with all the items in
the two bills (there may be duplicates in the final bill) and a new grand total.

Would you have multiply and divide overloaded operators in this case? Think!
For example, a McDonald’s bill might include 2 burgers @ $4.00 each, 4 strawberry

milkshakes @ $2.50 each.

6. In Newtonian physics, we know that two velocities in the same direction add to each
other; in the opposite direction, they subtract from each other to give a net result in
the direction of the bigger velocity.

Design a simple class called Velocity that has a field for the speed in meters per
second (forget about the direction for now).

The default constructor would work with meters/sec metric.
Write a constructor that takes three parameters: a) distance, b) time, c) whether the

velocity is in meters/sec or feet/sec.
This constructor should accordingly convert the feet/sec into meters/sec. Create

addition and subtraction operators for velocity.
A more advanced version of this class would consider the directions other than

same or opposite directions.

7. Every semester, students take a number of courses, and at the end of the semester, they
get their final grades. Design a class called SemTranscript that stores the name of
the student, list of courses taken by the student and the corresponding grades, and the
average grade for that semester. Also, create a overloaded addition operator so that you
can add two semester grades to get courses taken in two semesters and calculate the
final grade for a year.

Note: In the overloaded operator, you cannot just directly take an average of the
grades of the two SemTranscript objects to get the average final grade of the year.

8. File concatenation: Many operating systems allow one to concatenate files. Design
a class called TextDocument that reads the contents of a text file only. Create a
constructor that takes the path of a text file. Create an overloaded addition operator for
this class that adds (concatenates) two TextDocument objects (appends the second
one at the end of the first one) and creates a new text file. Handle all possible error
cases, such as for file existence.

http://www.vehix.com

E X E R C I S E S 557

9. Consider a specific type of chemical reaction that takes in two compounds and returns
a new compound. Design a class called Compound with fields for the name of the
compound (such as hydrochloric acid) and chemical formula of the compound (HCl).
Create an addition operator for the compound class so that when you add two com-
pounds, you get a new one. In the operator function, just print a string indicating the
two compounds being added.

10. Design a class called Color. The fields of the class are three decimals for Red, Green,
and Blue components in the range 0 to 1, inclusive (0 indicates Black and 1 indi-
cates White). Add checks to ensure that the values are always in the given range.
Provide addition and subtraction operators for the color class. Include saturation in
the addition and subtraction: if any component goes less than 0 or greater than 1,
assign them 0 or 1, respectively.

11. Design a Sound class with a field for decibels. Provide addition and subtraction oper-
ators as well as get and set methods.

12. Design a Logarithm class. Fields should be the base and number. Provide addition
and subtraction operators—remember to adjust bases appropriately. Hint: Use base 2
or 10 as a canonical base for operations.

13. Write a class called WholeNumber class. The whole numbers are the non-negative
integers: 0,1,2, . . . Your class must handle addition, subtraction, and multiplication
of whole numbers—no division or mixed-type (whole number and integer) operations
need be handled. Your class must also handle printing—e.g., if x is an instance of the
WholeNumber class, you must be able to write print x.

Two cases must not be allowed: (1) you must not be able to create a WholeNumber
that has a negative value; (2) an arithmetic operation cannot be allowed to have a
negative result. In both cases, an error message must be printed.

Remember that arithmetic must return a whole number. That is, if x and y are
whole numbers, the result of x + y must be a whole number.

Include sample code that uses your class and demonstrates the use of all methods
as well as error handling.

14. Write a class for linear equations. A generic linear equation is of the form y = mx + b
where m and b are constants. Include the following methods:

(a) init , str , repr .
(b) value(x), which returns the value of the equation given x.
(c) compose(LinearEquation) that composes two linear equations. That is, if

y = x + 1 and z = 2a + 5, then y (z) = 2x + 6 and will be called as y.compose(z).
Note that the compose operation is not commutative.

(d) add returns the sum of two linear equations. That is, if y = ax + b and
z = c x + d , then y + z = (a + c)x + (b + d).

558 C H A P T E R 1 2 • M O R E O N C L A S S E S

Include sample code that uses your class and demonstrates the use of all methods
as well as error handling.

15. Write an Odometer class. An odometer is the gauge on your car that measures distance
traveled. In the United States, an odometer measures miles; elsewhere else, it measures
kilometers. Many vehicles with electronic odometer interfaces have the ability to switch
between miles and kilometers. The accuracy is 1/10 of a mile (kilometer).

Something to consider: if an odometer gets replaced, a new one must be able to be
set to some specified mileage.

Include the following methods:

(a) init , str , repr .
(b) The constructor must take two arguments that both have default values: one is

mileage, and the other specifies units.
(c) Addition and subtraction both have one odometer operand and one numeric

operand, where the numeric operand represents the miles being added/subtracted
(not two odometer operands).

(d) Addition should be commutative (but not subtraction).
(e) Output should always be rounded to 1/10 mile (kilometer), but the odometer itself

should maintain full floating-point accuracy.
Include sample code that uses your class and demonstrates the use of all methods

as well as demonstrating error handling.

16. Write a Clock class that measures hours, minutes, and seconds.
Include the following methods:

(a) init , str , repr .
(b) Addition allows for both clock-to-clock operations and clock-to-integer operations.

If one argument is an integer, the integer is assumed to represent hours. Addition
should be commutative!

(c) Output should always be rounded to the second.
(d) If inappropriate values are passed to the constructor, the created clock instance

should get a value of 0 hours, 0 minutes, and 0 seconds.
Include sample code that uses your class and demonstrates the use of all methods

as well as error handling.

17. Write a Compass class. A compass provides bearings. A bearing is a measure of direction
as indicated by clockwise rotation around a circle. There are 360 degrees in a bearing,
and within each degree are 60 minutes. Thus, a legal bearing would be 270 degrees, 36
minutes (approximately due west). There are never more than 359 degrees in a bearing
or more than 59 minutes in a bearing. Both degrees and minutes are integer values.
Include the following methods:

(a) init , str , repr .

E X E R C I S E S 559

(b) Addition allows for both bearing-to-bearing operations and bearing-to-integer
operations. If one argument is an integer, the integer is assumed to represent
degrees. Addition should be commutative!

(c) Output should always be rounded to the minute.
(d) If inappropriate values are passed to the constructor, the created bearing instance

should get a value of 0 degrees, 0 minutes.
Include sample code that uses your class and demonstrates the use of all methods

as well as error handling.

This page intentionally left blank

•13C H A P T E R

Program Development
with Classes

I paint objects as I think them, not as I see them.

Pablo Picasso

IN THIS CHAPTER, WE WILL DEVELOP A MORE IN-DEPTH EXAMPLE USING CLASSES SO

you can see how problem-solving design can be accomplished using them (objects).

13.1 P R E D A T O R - P R E Y P R O B L E M
For this problem, we will consider a simulation of a natural habitat: a predator-prey problem.
Predator-prey problems are a study of the varying sizes of populations as two groups of
animals interact. One group constitutes the prey, a population of animals that are the
food source for the other population of animals, the predators. The simulation shows the
dynamic interaction of these two populations. It represents a kind of habitat war as the two
populations struggle to survive or thrive.

Typically, both groups have a fixed birthrate. The prey usually procreate faster than
the predators, allowing for a growing prey population. However, as the population of prey
increases, the habitat can support a higher number of predators. This in turn leads to an
increasing predator population and, after some time, a decreasing prey population. Around
that time, the population of predator grows so large as to reach a critical point, the point
where the number of prey can no longer support the present predator population and
the predator population begins to wane. As the predator population declines, the prey
population recovers and the two populations continue this interesting interaction of growth

561

562 C H A P T E R 1 3 • P R O G R A M D E V E L O P M E N T W I T H C L A S S E S

and decay. Though predator-prey relationships have been modeled with equations,1 it is
interesting to simulate the relationships on a computer and observe how they interact. The
classic simulation may be the WAT-OR game, based on a Scientific American article by
A. K. Dewdney.2 We choose a slightly different model here.

As with any simulation, the programmer gets to choose what is represented, as no
reasonably sized computer program could encompass the complexity of a full habitat.
Within such a simulation, the user can adjust the identified parameters, such as birth and
death rates of each population, and observe the impact on each cycle and each population.

An actual example of studying predator-prey relationships in their habitat is the one
between wolves and moose on Isle Royale in Lake Superior, as shown at http://www.
isleroyalewolf.org. Isle Royale is located in the northwest of Lake Superior, and its
population of wolves and moose are isolated to the island (occasionally, Lake Superior does
freeze enough for walking to land). Its isolation creates a perfect laboratory for studying the
effects of predator-prey interaction. A graph of the varying population sizes since 1959 can
be found at: http://www.isleroyalewolf.org/data/data/womoabund.html.

13.1.1 The Rules
These are the rules we will use for our own wolf-moose simulation:

� The habitat updates itself in units of time called clock ticks. During one tick of our
habitat clock, every animal in the island gets an opportunity to do something.

� All animals are given an opportunity to move into an adjacent space, if an empty
adjacent space can be found. One move per clock tick is allowed.

� Both the predators and prey can reproduce. Each animal is assigned a fixed breed time.
If the animal is still alive after breed-time ticks of the clock, it will reproduce. The
animal does so by finding an unoccupied, adjacent space and fills that space with the
new animal—its offspring. The animal’s breed time is then reset to zero. An animal can
breed at most once in a clock tick.

� The predators must eat. They have a fixed starve time. If they cannot find a prey to eat
before starve-time ticks of the clock, they die.

� When a predator eats, it moves into an adjacent space that is occupied by prey (its
meal). The prey is removed and the predator’s starve time is reset to zero. Eating counts
as the predator’s move during that clock tick.

� At the end of every clock tick, each animal’s local event clock is updated. All animals’
breed times are decremented and all predators’ starve times are decremented.

This is the model we will need to support. It doesn’t perfectly model the actual environment,
but it does sufficiently well to provide insight into predator-prey interactions.

1 Lotka–Volterra equations.
2 Scientific American, December 1984.

http://www.isleroyalewolf.org
http://www.isleroyalewolf.org
http://www.isleroyalewolf.org/data/data/womoabund.html

1 3 . 2 • C L A S S E S 563

13.1.2 Simulation Using Object-Oriented Programming
Simulation is perfectly suited for object-oriented programming. In OOP, we need to identify
objects and define their interactions to create a program. Simulations naturally require these
kind of identifications. It is for this reason that OOP evolved out of the programming
language Simula, a programming language for writing simulations.3

What objects do we need for our simulation? We need an island, some moose (the prey),
and a few wolves (the predators). We also need all the methods that govern how they interact
with each other, as well as a main program. Let’s focus on the classes we need for the moment:

� Island class
� Prey class
� Predator class

Having a single Prey class and a single Predator class, we can create many instances of
these classes and have the instances interact. Very efficient!

We now need to identify the following for each class:
� What we need to have represented in each class instance
� How these instances can be manipulated—i.e., what methods are needed

Next, look at each class and try to sketch out what is required.

13.2 C L A S S E S

13.2.1 Island Class
Isle Royale is shaped like an elongated rectangle, but to keep our example simple, we choose
to model an Island instance as a square, an n × n grid. Every element in the grid could
potentially have one of three values. Either it contains nothing, a predator, or a prey.

To begin with, the grid is initialized to be empty at every grid position. The value 0 will
be used to represent an empty grid position. Every class needs a constructor (init),
and it is generally useful to have a str method so that we can easily display an Island
instance. When we create an instance, we need to specify only its size—in our case, we’ll
specify the length of a side since the island is square. This will be an argument to our
constructor. See Code Listing 13.1.

Code Listing 13.1

class Island(object):
""" I s land

n X n grid where zero value ind i c a t e s an unoccupied c e l l . """

3 http://en.wikipedia.org/wiki/Simula

http://en.wikipedia.org/wiki/Simula

564 C H A P T E R 1 3 • P R O G R A M D E V E L O P M E N T W I T H C L A S S E S

def init (self, n):
' ' ' I n i t i a l i z e c e l l to a l l 0 ' s , then f i l l with animals
' ' '
self.grid size = n
self.grid = []
for i in range(n):

row = [0]*n # row i s a l i s t o f n z e ro s
self.grid.append(row)

def str (self):
' ' ' S tr ing r ep r e s en ta t i on f o r pr int ing .

(0 ,0) wi l l be in the lower−l e f t corner .
' ' '
s = ""
for j in range(self.grid size-1,-1,-1): # print row s iz e−1 f i r s t

for i in range(self.grid size): # each row s t a r t s at 0
if not self.grid[i][j]:

print a ' . ' f o r an empty space
s+= "{:<2s}".format('.' + " ")

else:
s+= "{:<2s}".format((str(self.grid[i][j])) + " ")

s+="\n"
return s

>>> from island1 import *
>>> royale = Island(10)
>>> print royale
.
.
.
.
.
.
.
.
.
.

>>>

In the init constructor, we save the size of the instance and the grid that
represents the instance. Those two items are sufficient to represent the present state of the
Island instance—essentially, the location in the grid of all the predators and prey.

1 3 . 2 • C L A S S E S 565

A grid of n rows and n columns can be thought of as a list of n rows—each of length n.
We create a row that is a list of n items of value 0 using the repeat (*) operator. We then add
n rows to our instance grid, making the n × n grid.

The str method prints the contents of each grid element. To keep with standard
Cartesian coordinates, we have the method print in such a way that (0,0) is in the lower-left
corner. This means we have x increasing to the right and y increasing to the top. However,
because printing occurs from the top down, we must print the highest numbered row first.

The output in the previous session shows the creation of a 10 × 10 Island instance
named “royale” followed by printing of the current state of the instance: empty.

13.2.2 Predator and Prey, Kinds of Animals
At this point, it is worth our time to think a little about the rest of our simulation design.
If we look at the requirements for the two kinds of animals in our simulation, predator and
prey, we can see that they share some important characteristics. They occupy locations on
the Island instance, and they must be able to move and breed. Because they share these
characteristics, it makes sense that they inherit those characteristics from a common parent,
the Animal object.

Animal Object
What state does each animal instance need? Each instance needs to know where it is on the
Island instance. The question is: where do we keep that location information—with the
Animal instance, with the Island instance, or with both? Each Animal instance needs
to know where it is, its local information, but it also needs to be aware of what else is in its
surroundings, the global information. In addition, we will probably want to control how
many animals can be at the same place at the same time. For those reasons, an Animal
instance will have as local state its location on the island grid, its x and y coordinates. We
let the Island instance keep global state information on all the inhabitants by marking in
each grid location what is presently there, including nothing.

Therefore, our Animal object will need the following:

� Its name (string, i.e. “moose” or “wolf”)
� Its location: (x , y) coordinates on the island
� The Island instance (i.e., the island the animal is on)

The init constructor will need to take in each of these values as parameters.
The x and y values indicate where on the island the animal will be placed. The Animal
instance will also need to know the island it is located on. Finally, the instance will need its
name: moose and wolf.

We need to inform the Island instance when a new Animal instance is added to
the island. For that purpose we create the register method in the Island class. This
method will “place” (register) the Animal instance in the Island grid at the x and y
coordinates stored in the instance. In this way, we coordinate the local information (x and y

566 C H A P T E R 1 3 • P R O G R A M D E V E L O P M E N T W I T H C L A S S E S

coordinates stored in the Animal instance) with the global information (location of each
instance in the Island instance grid) for the simulation.

Also, each Animal instance will need to know how big the Island instance is so that
it can move around without falling into the surrounding water. For that purpose, we will
also create a size method in the Island class.

Our communication between the animal and the island will be as follows:

� n = island.size() # get the size from the island
instance

� island.register(self) # register an animal (self)
location with the island
instance

Let’s add those two methods to the Island class. Also, let’s create the bare bones of
the Animal class so that we can begin to work with the interaction between animals and
the island. This is shown in Code Listing 13.2.

Code Listing 13.2

class Island (object):
""" I s land

n X n grid where zero value ind i c a t e s not occupied . """
def init (self, n, prey count=0, predator count=0):

' ' ' I n i t i a l i z e gr id to a l l 0 ' s , then f i l l with animals
' ' '
print n,prey count,predator count
self.grid size = n
self.grid = []
for i in range(n):

row = [0]*n # row i s a l i s t o f n z e ro s
self.grid.append(row)

self.init animals(prey count,predator count)

def size(self):
' ' ' Return s i z e o f the i s land : one dimension .
' ' '
return self.grid size

def register(self,animal):
' ' ' R e g i s t e r animal with i s land , i . e . , put i t at the
animal ' s c oord inat e s
' ' '
x = animal.x
y = animal.y
self.grid[x][y] = animal

1 3 . 2 • C L A S S E S 567

def str (self):
' ' ' S tr ing r ep r e s en ta t i on f o r pr int ing .

(0 ,0) wi l l be in the lower l e f t corner .
' ' '
s = ""
for j in range(self.grid size-1,-1,-1): # print row s iz e−1 f i r s t

for i in range(self.grid size): # each row s t a r t s at 0
if not self.grid[i][j]:

print a ' . ' f o r an empty space
s+= "{:<2s}".format('.' + " ")

else:
s+= "{:<2s}".format((str(self.grid[i][j])) + " ")

s+="\n"
return s

class Animal(object):
def init (self, island, x=0, y=0, s="A"):

' ' ' I n i t i a l i z e the animal ' s and th e i r p o s i t i o n s
' ' '
self.island = island
self.name = s
self.x = x
self.y = y

def str (self):
return self.name

>>> royale = Island(10)
>>> animal1 = Animal(island=royale,x=4,y=8,s='a1')
>>> animal2 = Animal(island=royale,x=6,y=4,s='a2')
>>> royale.register(animal1)
>>> royale.register(animal2)
>>> print royale
.
. . . . a1
.
.
.
. a2 . . .
.
.
.
.
>>> print animal1
a1
>>>

568 C H A P T E R 1 3 • P R O G R A M D E V E L O P M E N T W I T H C L A S S E S

Notice how the printing of an Island is accomplished in its str method.
We access the grid with self.island[i][j], but what is located there? Examine the
Island register method. It is passed an Animal instance as a parameter. It is this
instance value that is stored in the grid. Thus, self.island[i][j] is a reference to
that Animal instance, and because that call is within str , it is asking for the string
representation of that particular animal. That is found in the Animal’s str method.
At the end of the session, we show an explicit call to the Animal’s str method by
way of a print statement.

For debugging purposes, it would be nice to confirm that the Animal instance grid
coordinates agree with the island grid location. Printing the Island instance indicates the
location that instance is maintaining for each Animal instance. The opposite, accessing
position information for an Animal instance, requires a new Animal method. Let’s call it
position, and we will have it simply return the Animal instance’s (x , y) coordinate pair.
Code Listing 13.3 shows the method (without the rest of the Animal class). We can see in
the accompanying session that both the Island instance and the Animal instance have
the same location coordinates for that Animal instance.

Code Listing 13.3

def position(self):
""" Return coord inat e s o f current po s i t i on . """
return self.x, self.y

>>> royale = Island(10)
>>> animal1 = Animal(island=royale,x=0,y=8,s='a1')
>>> animal1.position()
(0, 8)
>>> print royale
.
a1
.
.
.
.
.
.
.
.

13.2.3 Predator and Prey Classes
The Predator and Prey classes share many characteristics, which are collected in the
Animal class. We can take advantage of this sharing by having each be a subclass of

1 3 . 2 • C L A S S E S 569

Animal. Each Predator and Prey class will require particular methods, but they can
also share many methods and variables by being subclasses of the Animal class.

In particular, remember that the init method of the subclass must call the
init of the parent class to fully initialize the instance. Code Listing 13.4 shows the

two new classes with just their respective init methods. Note that we do not need to
define a str method for either subclass, as this method already exists in the Animal
class.

Code Listing 13.4

class Animal(object):
def init (self, island, x=0, y=0, s="A"):

' ' ' I n i t i a l i z e the animals and th e i r p o s i t i o n s
' ' '
self.island = island
self.name = s
self.x = x
self.y = y

def str (self):
return self.name

class Prey(Animal):
def init (self, island, x=0,y=0,s="O"):

Animal. init (self,island,x,y,s)

class Predator(Animal):
def init (self, island, x=0,y=0,s="X"):

Animal. init (self,island,x,y,s)

13.2.4 Object Diagram
It is useful to create a diagram of the objects we have created to help understand the
relationships among them. See Figure 13.1.

VideoNote 13.1
Improve
Simulation

13.2.5 Filling the Island
Now that we have the Prey, Predator, and Island classes, we need a way to fill an
Island instance with instances of both Predator and Prey. We could leave this as a
separate function to be written as part of the main program, but it makes sense that the
Island instance should be able to fill itself, given some counts for each class.

570 C H A P T E R 1 3 • P R O G R A M D E V E L O P M E N T W I T H C L A S S E S

Island object

grid[x][y] # locations & occupants
gridSize

Predator object Prey object

Animal object

island
name
x
y

FIGURE 13.1 Objects: Island, Animals, Predators, and Prey.

To accomplish this, we add the init animals method of Island. It takes two
parameters, the predator and prey counts, and fills the island with the correct number of
instances of these two classes.

We would like to place the Animal instances at random spots on the Island instance.
That means that we will need to import the randommodule and use the randintmethod
to get the x and y coordinates to place an animal. The value generated will be between 0
and the island’s size. See Section 17.2.3 for more information on the random module.

The generated values must place the new instance at an unoccupied grid location. If
the present (x , y) is occupied, another pair must be generated.

Querying a Grid Location
We need some way to query an Island instance to see if an Animal instance is at a
location. To do that, the island needs a method to respond to that query. Let’s call that
method animal(). It will take the x and y coordinates as arguments:

def animal(self,x,y):
if 0 <= x < self.size and 0 <= y < self.size:

return self.island[x][y]
else:

return -1 # outside i s land boundary

The method returns either an instance (if one occupies the position), a 0 (if the position
is empty), or a -1 to indicate that the coordinates are off the island (explained later).

Repeat Until Full
With these pieces in hand, we can do the following to fill the island:

� Generate an (x , y) pair using random.randint(0,grid size).
� Check to see whether that position is empty or has an animal instance using the animal

method.

1 3 . 2 • C L A S S E S 571

� If the position is empty:
- Create the new instance, record the x and y values in the instance, then register the

instance.
- Increment the count of created instances. Initialization of that animal (predator or

prey) ends when the count reaches the goal count for the animal (passed as an
argument to the constructor).

� If the position is occupied:
- The while loop continues, but the count of created instances is not incremented.

If the Island instance is very full, this process could be rather inefficient. Perhaps you
could improve it? (See the exercises.)

The remaining detail of this section is to make two small changes to the Island
init method. First, two more parameters are passed to Island: the counts for the

Predator and Prey instances. They default to 0, if not specified. Second, a line is added
to the end of the constructor to call the init animals method. The Island class with
these additions is shown in Code Listing 13.5, but to avoid clutter we have omitted the
unmodified methods: size, register, and str .

Code Listing 13.5

class Island (object):
def init (self, n, prey count=0, predator count=0):

' ' ' I n i t i a l i z e gr id to a l l 0s , then f i l l with animals
' ' '
pr int n , prey count , predator count
self.grid size = n
self.grid = []
for i in range(n):

row = [0]*n # row i s a l i s t o f n z e ro s
self.grid.append(row)

self.init animals(prey count,predator count)

def animal(self,x,y):
' ' ' Return animal at l o ca t i on (x , y) ' ' '
if 0 <= x < self.grid size and 0 <= y < self.grid size:

return self.grid[x][y]
else:

return -1 # out s ide i s land boundary

def init animals(self,prey count, predator count):
' ' ' Put some i n i t i a l animals on the i s land
' ' '
count = 0

572 C H A P T E R 1 3 • P R O G R A M D E V E L O P M E N T W I T H C L A S S E S

while loop cont inues unt i l prey count unoccupied p o s i t i o n s are found
while count < prey count:

x = random.randint(0,self.grid size-1)
y = random.randint(0,self.grid size-1)
if not self.animal(x,y):

new prey=Prey(island=self,x=x,y=y)
count += 1
self.register(new prey)

count = 0
same while loop but f o r predator count
while count < predator count:

x = random.randint(0,self.grid size-1)
y = random.randint(0,self.grid size-1)
if not self.animal(x,y):

new predator=Predator(island=self,x=x,y=y)
count += 1
self.register(new predator)

Unmodified methods not shown : s i z e , r e g i s t e r , str

13.3 A D D I N G B E H A V I O R
We have a start with our simulation. We have an Island instance on which we can place
Predator and Prey instances. Now we need to have these animals do something. Let’s
begin with movement.

13.3.1 Refinement: Add Movement
Neither the Predator nor Prey instances should stay still, so let’s add movement. Im-
mense complexity of movement can be modeled, but we will begin with simple “random”
movement (truly random movement will be added later). Because both kinds of instance
needs to move, we will add a new method to Animal.

The movement we allow is to move to a neighboring region, if it is empty. If no
neighboring locations are empty, the Animal instance cannot move and remains at its
present location.

Our algorithm to find a location to move to is as follows:

1. For each neighboring location:
(a) If neighboring location is empty:

i. Move to neighboring location.
ii. Break (stop looking for a place to move to).

1 3 . 3 • A D D I N G B E H A V I O R 573

What is a “neighboring region”? Any square shares edges with four neighbors but also shares
a corner with another four neighbors (see Figure 13.2). A reasonable argument can be made
for moving only to the four neighboring regions sharing edges. However, let’s allow these
animals more freedom of movement and let them jump to any of the eight neighboring
regions.

(3,7)

(3,8)

(3,6)

(4,7)

(4,8)

(4,6)

(2,7)

(2,8)

(2,6)

(a) Example centered on (3,7) (b) Offset values from location x,y

(x,y)

(0,1)

(0,–1)

(1,0)

(1,1)

(1,–1)

(–1,0)

(–1,1)

(–1,–1)

FIGURE 13.2 Eight neighbors.

If an animal is at a particular location (particular coordinates), what are the coordi-
nates of the eight neighboring locations that it might move to? Figure 13.2(b) shows the
offsets of the eight neighbors. We can add the offset to an animal’s current coordinates
to find the coordinates of a neighbor. For example, if an animal is at (3,7), the location
immediately below it has offset (0,–1), so the neighboring coordinates are (3+0,7–1) = (3,6)
(see Figure 13.2(a)).

To implement movement, we can loop through the neighbors, but what is the best
way to represent neighbors for looping? The offsets provide regularity that can be worked
into a loop. Let’s make a list of offsets and then refer to the offset list each time we want to
determine coordinates for a neighbor. Examining each neighbor becomes a walk through
the offset list, applying each offset to an animal’s current location. A refinement of our
algorithm now looks like this:

1. For each offset:
(a) Neighbor x = current x + offset x
(b) Neighbor y = current y + offset y
(c) If neighboring location is empty:

i. Move to neighboring location.
ii. Break (stop looking for a place to move to).

We now have two new actions to consider. First, how do we know if a neighbor is
empty? We can use the animal method previously defined for the Island class. That
method returns a Predator or Prey instance, if it exists at the specified location.

574 C H A P T E R 1 3 • P R O G R A M D E V E L O P M E N T W I T H C L A S S E S

Second, how do we move to a neighboring location? We can update the local location,
the x and y coordinates in the Animal instance, but we also need to update the island
to keep the global information in synch. We also need to remove the animal from its
current location and then register it in its new location. Therefore, the Island class needs
a method to remove an animal from a given location. Removal simply sets the grid location
to 0.

def remove(self,x,y):
self.grid[x][y] = 0

With those two island methods in hand, we can write the Prey’s move method
and test it. This is shown in Code Listing 13.6.

Code Listing 13.6

def move(self):
"""Move to an open , neighboring po s i t i on . """
neighbor o f f s e t s
offset = [(-1,1),(0,1),(1,1),(-1,0),(1,0),(-1,-1),(0,-1),(1,-1)]
for i in range(len(offset)):

x = self.x + offset[i][0] # neighboring coord inat e s
y = self.y + offset[i][1]
if self.island.animal(x,y) == 0: # neighboring spo t i s open

self.island.remove(self) # remove from current spo t
self.x = x # new coord inat e s
self.y = y
self.island.register(self) # r e g i s t e r new coord inat e s
break # f in i sh ed with move

>>> royale = Island(5) # c r ea t e i s land
>>> moose1 = Prey(royale,"m1") # c r ea t e two moose
>>> moose2 = Prey(royale,"m2")
>>> print royale # print i n i t i a l s t a t e o f i s land
.
.
. . m1 . .
. m2 . . .
.

>>> moose1.move() # move each moose
>>> moose2.move()

1 3 . 3 • A D D I N G B E H A V I O R 575

>>> print royale # observe i s land a f t e r moves
.
. m1 . . .
m2
.
.

Note how each neighboring coordinate is calculated using offset. Each item in the
offset list is a tuple: (x,y). To get the x value of offset “i” we use offset[i][0]—
that is, the first item of the pair. The y value is similar. Also, note how the first offset is
up-and-left, so each animal in the test moves up one and left one position.

Falling off the Island?
Some of you may be asking, “How do we keep from falling off the island?” It is a good
question. Some models of a “world” allow the world to “wrap” at the edges. That is, if you
walk off the island going left (an x value less that 0), you reset yourself to the right (to an x
value of 9, or whatever the size of the island is). Other approaches simply prevent you from
making a “bad” move.

Our particular approach is the latter: we prevent a bad move. This prevention is done
in the Animal method of Island. If the passed arguments are out of range, the method
returns a –1, indicating the problem.

Is this a good approach? See the exercises for other options.

13.3.2 Refinement: Time Simulation Loop
Let’s add a main function to initialize our world and a loop to drive our simulation. We
add a number of each of the Predator and Prey instances to an Island instance. Then,
in the main loop, each trip through the loop constitutes one unit of time. In that unit of
time, we give each instance the opportunity to move. We do this by moving through each
grid element in the Island instance and, if the element holds an animal, allow it to move.

Here is an outline of our driving loop:

1. Create Island instance with a set number of Predator and Prey instances.
2. Loop for a specified number of time ticks:

(a) Move each instance.

Let’s take a look in Code Listing 13.7 at how that driving loop might be implemented in
Python. We included a print statement so we can observe the movement in each time
step. However, we only print the first two time steps here.

576 C H A P T E R 1 3 • P R O G R A M D E V E L O P M E N T W I T H C L A S S E S

Code Listing 13.7

def main ():
i n i t i a l i z a t i o n o f the simulation
royale = Island(5,1,1) # 5x5 is land , 1 predator , 1 prey
time steps = 20

run the event loop
island size = royale.size()
count = 0
while count < time steps:

print(royale) # print the i s land
for x in range(island size):

for y in range(island size):
animal = royale.animal(x,y)
if animal:

animal.move()
count += 1

. m . . .

. . . w .

.

.

.

m . . w .
.
.
.
.
< rest of simulation not shown >

Notice again how animals tend to move up and to the left. That is because our move
method always works through the offsets in the same order. Improving on that movement
is left as an exercise.

13.4 R E F I N E M E N T : E A T I N G , B R E E D I N G ,
A N D K E E P I N G T I M E

The next refinements introduce a number of complications that require close attention.
First, we need to add breeding to the Animal class, allowing both Predator and Prey
instances to breed. Second, we differentiate Prey and Predator classes by introducing

1 3 . 4 • R E F I N E M E N T : E A T I N G , B R E E D I N G , A N D K E E P I N G T I M E 577

the eating behavior to the Predator class. In our simple model, only predators eat, and, if
they cannot eat, they starve. Third, the time span in which prey and predators breed must
be different. For the simulation to work, prey must breed at a faster rate than predators—
otherwise, predators quickly starve. Finally, yet another time span must be introduced in
which predators must eat or, if they cannot, starve.

The ability to set these time spans is important, as their values are critical for the
simulation. If Prey instances cannot breed quickly enough, then they will all be consumed,
ending the simulation. If not enough Prey instances are provided, the Predator instances
will all starve and the simulation will end. Part of the interest in the simulation is examining
what values will work and how they affect the simulation. We must therefore find a way for
the user to easily changes these values.

13.4.1 Improved Time Loop
We can start by improving the main function, both for initialization of values and for
introducing the new (yet unwritten) behaviors into the main loop. The new main function
will now take seven parameters to establish the various aspects of the simulation. Those
parameters are:

predator breed time: the time span that must pass before a Predator instance can
breed

predator starve time: the time span that a Predator instance must eat within,
otherwise it will starve

initial predators: the number of Predator instances that will initially be placed
on the island

prey breed time: the time span that must pass before a Prey instance can breed
initial prey: the number of Prey instances that will initially be placed on the island
size: the size of a single side of the Island instance (which, you remember, is a square)
ticks: the number of time “ticks” that will pass before the simulation ends

We can also provide default values for these parameters that constitute a runnable version
of the simulation. However, the user is now free to change them by simply indicating which
ones to override when calling the new main function.

Remembering the Breed and Starve Time Spans
Where can we place the breeding and starving time spans (predator breed time,
prey breed time, predator starve time)? They are set as variables in the main
function (as parameters), but this does not make them available to each individual Prey
and Predator instance. One option would be to set the values outside of the main
function as global variables, but global variables are undesirable, for a number of reasons.
Another option would be to pass them as arguments when we create Predator and Prey

578 C H A P T E R 1 3 • P R O G R A M D E V E L O P M E N T W I T H C L A S S E S

instances—adding another parameter to the classes. That is a good option, but let’s choose
yet another option that shows off some of Python’s object-oriented capabilities.

Remember how a variable is searched for in a class hierarchy (see Section 12.6). First
Python looks in the instance, then in the class, then up the class hierarchy through the class’s
parent class. If we place a variable in both the Predator and Prey classes (not the instance,
the class), that value will be globally available to all instances of the two classes. A potential
issue is that if we later change the value of that variable, it is changed for all instances, so
we must be careful! That issue may be desirable or undesirable, depending on our needs.
In our case, we will use these values only in the constructor (init), so any changes
to the values will impact instances as they are created. We create three variables in the
main function with the initial parameter values: Predator.breed time, Predator.
starve time, and Prey.breed time. Because each specifies a class name (Predator
or Prey), these assignments augment the respective class definitions; that is, these names
are added to the class namespace. These values will now be available for all the instances of
those classes when we create them.

We then extend the event loop to include eating and breeding (for Predator instances
only in the listing). We also include at the end of the event loop a new method,clock tick.
This method will “change” each instance based on its type. Anything that must happen every
time tick for an instance is handled here. The updated driver is shown in Code Listing 13.8.

Code Listing 13.8

def main(predator breed time=6, predator starve time=3, initial predators=10,\
prey breed time=3, initial prey=50, size=10, ticks=300):

' ' ' main simulation ; s e t s d e fau l t s , runs event loop , p l o t s at the end
' ' '
i n i t i a l i z a t i o n value s
Predator.breed time = predator breed time
Predator.starve time = predator starve time
Prey.breed time = prey breed time

make an i s land
isle = Island(size,initial prey, initial predators)
print(isle)

event loop .
For a l l the t i c k s , f o r every x , y l o ca t i on .
I f the r e i s an animal there , t r y eat , move , breed and c l o ck t i ck
for i in range(ticks):

for x in range(size):
for y in range(size):

animal = isle.animal(x,y)
if animal:

1 3 . 4 • R E F I N E M E N T : E A T I N G , B R E E D I N G , A N D K E E P I N G T I M E 579

if isinstance(animal,Predator):
animal.eat()

animal.move()
animal.breed()
animal.clock tick()

Updating the init Methods
We need to include these new time spans in the instance. Each instance will have its own
clock to keep track of its breeding time. The Predator instance will have a second clock
to keep track of its starvation time. That is, when an instance is created its internal clocks
need to be initialized. Both Predator and Prey instances should be initialized with a
breed clock whose value is set to the respective class breed time value. Each instance
will then update its clock during every clock tick via that clock tickmethod. When their
individual breeding clocks hit 0, they may breed. Similarly, Predator instances should be
initialized with a starve clock, initialized to the value in Predator.starve time.

The updated methods are shown Code Listing 13.9.

Code Listing 13.9

class Prey(Animal):
def init (self, island, x=0,y=0,s="O"):

Animal. init (self,island,x,y,s)
self.breed clock = self.breed time

class Predator(Animal):
def init (self, island, x=0,y=0,s="X"):

Animal. init (self,island,x,y,s)
self.starve clock = self.starve time
self.breed clock = self.breed time

Where did self.breed time and self.starve time get set? They are not
assigned in the Predator or Prey class definitions. As mentioned earlier, they were added
to the class namespace in the main function where we assigned Predator.breed time,
Predator.starve time, and Prey.breed time. When we assigned those values,
they were added to the respective classes’ namespaces, so they were available when the
constructors were called. Notice how in the Predator and Prey classes the self in self.
breed time was resolved to the respective class name (Predator or Prey) when in the
main function we assigned values to Predator.breed time and Prey.breed time.
The starve time worked similarly.

580 C H A P T E R 1 3 • P R O G R A M D E V E L O P M E N T W I T H C L A S S E S

Taking this approach with the breed time and starve time shows how class
definitions can be dynamically augmented in Python—a powerful capability, but one that
must be used carefully to ensure that readability is maintained.

13.4.2 Breeding
The breeding method is common to both subclasses (except for their time spans, as described
in the previous section), so we place the breed method in Animal.

The rules described for the simulation said that when an animal breeds, the local
neighborhood is examined for the first unoccupied location. If such a location is found,
the new instance (the offspring) is placed at that location. It is unspecified what to do if an
unoccupied location cannot be found—something we will have to resolve.

The check grid Method and Updating move
Again, a little introspection is useful here. The process of looking for an unoccupied space
used for breeding looks quite like the movemethod already described, which also requires an
unoccupied neighbor. In fact, when we get to the eatmethod we will need to do something
similar again, though in the eating case it will be to look for a neighbor that is Prey, not an
unoccupied neighbor. It seems that we might be able to abstract out the “check neighbors”
function and use it in many places.

We separate the “check neighbors” method from the existing move method so we can
abstract the neighbor-checking aspect. That is, we refactor the move code! We call the new
method check grid, also part of the Animal class. It checks the eight neighbors for a
location and returns either the location or 0.

One change is that we add a new parameter tocheck grid, thetype looking for
parameter. Instead of looking only for empty grid locations, we look for a location that

contains the type looking for type. If we want an unoccupied location, we are looking
for a grid location with type int since an unoccupied location has a 0 value. However, we
could also look for a location that has a Prey instance (for eating).

The updated move code and added check grid are shown in Code Listing 13.10.

Code Listing 13.10

def check grid(self,type looking for=int):
' ' ' Look in the 8 d i r e c t i o n s from the animal ' s l o ca t i on
and return the f i r s t l o ca t i on that p r e s e n t l y has an ob j e c t
o f the s p e c i f i e d type . Return 0 i f no such l o ca t i on e x i s t s
' ' '
neighbor o f f s e t s

1 3 . 4 • R E F I N E M E N T : E A T I N G , B R E E D I N G , A N D K E E P I N G T I M E 581

offset = [(-1,1),(0,1),(1,1),(-1,0),(1,0),(-1,-1),(0,-1),(1,-1)]
result = 0
for i in range(len(offset)):

x = self.x + offset[i][0] # neighboring coord inat e s
y = self.y + offset[i][1]
if not 0 <= x < self.island.size() or \

not 0 <= y < self.island.size():
continue

if type(self.island.animal(x,y))==type looking for:
result=(x,y)
break

return result

def move(self):
' ' 'Move to an open , neighboring po s i t i on ' ' '
location = self.check grid(int)
if location:

print ('Move, {} , from {} ,{} to {} ,{} ' . format (\
type (s e l f) , s e l f . x , s e l f . y , l o ca t i on [0] , l o ca t i on [1]))

self.island.remove(self) # remove from current spo t
self.x = location[0] # new coord inat e s
self.y = location[1]
self.island.register(self) # r e g i s t e r new coord inat e s

Back to Breeding
Now we have a method that can check the eight neighbors for a location of a particular
type. If our instance’s local breed clock hits 0, we will look for an open neighbor. Using
the check grid method, we will look for a location that contains an int. If one is found,
we can initialize the breed process. That requires the following steps:

� We must reset the instance’s breed clock to the standard breed time contained
in the class so it may breed again.

� We must create a new instance (for the offspring) with the proper x and y values—from
the open neighboring location.

� We must register the new offspring instances with the Island instance.

Interestingly, if this is an Animal method, how do we know which kind of in-
stance to make, a Predator or a Prey? We want the method to be flexible so it will
make either under the correct circumstances. Usefully, every instance knows the class to
which it belongs, stored in the special variable class . We capture that class in the

582 C H A P T E R 1 3 • P R O G R A M D E V E L O P M E N T W I T H C L A S S E S

the class variable, then call the constructor on that class. The breedmethod is shown in
Code Listing 13.11.

Code Listing 13.11

def breed(self):
' ' ' Breed a new Animal . I f th e r e i s room in one o f the 8 lo ca t i on s ,
p lac e the new Prey ther e . Otherwise , you have to wait .
' ' '
if self.breed clock <= 0:

location = self.check grid(int)
if location:

self.breed clock = self.breed time
the class = self. class
new animal = the class(self.island,x=location[0],y=location[1])
self.island.register(new animal)

13.4.3 Eating
Interestingly, the eat method has much in common with both the move and breed
methods, given the existence of the check grid method. There are some differences,
though. This eating method must be in the Predator class, as Prey instances are not
allowed to eat. Further, there is a little more manipulation that must be done to deal with
eating.

Remember the rules. A Predator instance can look in the local neighborhood for a
Prey instance. If one is found, the Predator instance moves to that location and removes
the Prey instance from the Island instance. In particular, the eating method must do the
following:

� Call the check grid method passing the Prey class as the type looking for
argument.

� If a location is found with a Prey instance:
- Remove the Prey instance from the island.
- Remove the Predator instance—the instance indicated by theself variable—from

the Island instance.
- Update the Predator instance to the new x and y coordinates, the coordinates of

the Prey that was just removed.
- Reregister the Predator instance, now at the new location.
- Set the starve clock of the Predator instance to the original Predator.
starve time value (so it will not starve and will continue to operate).

� If no Prey instance is found, the method does nothing.

1 3 . 4 • R E F I N E M E N T : E A T I N G , B R E E D I N G , A N D K E E P I N G T I M E 583

The code for eating is shown in Code Listing 13.12.

Code Listing 13.12

def eat(self):
' ' ' Predator l ook s f o r one o f the e i gh t l o c a t i on s with Prey . I f found ,
moves to that locat ion , updates the s t a r v e c lock , removes the Prey .
' ' '
location = self.check grid(Prey)
if location:

self.island.remove(self.island.animal(location[0],location[1]))
self.island.remove(self)
self.x=location[0]
self.y=location[1]
self.island.register(self)
self.starve clock=self.starve time

13.4.4 The Tick of the Clock
Every pass through the event loop should update each instance’s present status. In particular,
the individual clocks that were initialized to their class values (breed and starve times) must
be decremented. Therefore, we need a method for each class that updates the internal
instance clocks on each tick of the clock. We create two methods in each subclass, called
clock tick.

The Preyclock tick decrements the instance’s breed clock. The Predator
clock tick method decrements its breed clock, but it also checks to see whether the
starve clock has hit 0. If so, then the instance has starved and must be removed.

The two methods are shown in the following code:

Code Listing 13.13

class Prey(Animal):
. . .
def clock tick(self):

' ' ' Prey updates only i t s l o c a l breed c l o ck
' ' '
self.breed clock -= 1

class Predator(Animal):
. . .
def clock tick(self):

584 C H A P T E R 1 3 • P R O G R A M D E V E L O P M E N T W I T H C L A S S E S

' ' ' Predator updates both breeding and s ta rv ing
' ' '
self.breed clock -= 1
self.starve clock -= 1
if self.starve clock <= 0:

self.island.remove(self)

13.5 R E F I N E M E N T S
We have sketched out a fairly good solution to the predator-prey simulation, but the astute
reader may have noticed some problems. We examine some issues in the following sections.

13.5.1 Refinement: How Many Times to Move?
Remember our picture of the eight neighbors available for a local move (Figure 13.2)?

Our present event loop does the following:

� It moves through the Island instance a row a time, through each y value.
� If there is an animal instance in that row (the x value) and the y value, it gives that

animal an opportunity to:
- Potentially eat, if it is a Predator instance
- Move if it can
- Breed if it can
- Do whatever must be done to the instance every clock tick

If our animal moves up or to the left, things seem to work fine. But what happens if our
animal moves down or to the right? In those cases, either x is incremented (moving down)
or y is incremented (moving right). Lets look at the “moving down” case. From wherever
the instance starts, it moves to a new location with an x value one greater. The event loop
processes x and y values by incrementing first all the y values in a row, then incrementing
the x value to begin a new row. This ordering means that the instance we just moved will be
given the opportunity to move again because it moved into the next row. If it moves down
again, it will get yet another chance to move. Thus, a single instance may move multiple
times during the same clock tick. A Predator instance could similarly eat multiple times,
if every time it eats it eats going down or to the right.

The result may or may not be the behavior we wanted, but in truth it makes sense to
have one move (eat) per clock tick per instance. Each instance should move (eat) at most
one time-event clock tick. The problem is really one of isolating the global state, the grid of
Predator and Prey instances, in time. Each clock tick should have its own global state, but
in the implementation we present, we have a common global state across all ticks of the clock.

1 3 . 5 • R E F I N E M E N T S 585

How can we repair this? There are a number of approaches we might take. We could:

� Have two grids, one for the present clock tick and one for the next. Moves would be
from the location in the present grid to the future grid of the next clock tick, as would
eating. When the present clock tick ends, the new grid becomes the present grid and a
fresh empty grid is created for the next clock tick.

� Create a list of instances from the global state and move only instances from the list.
Once moved, they are removed from the list and not moved again during this clock
tick.

� Mark each instance with a flag, indicating movement. During the present clock tick, if
an instance is moved, its flag is changed. All of the movement methods pay attention
to the flag and will not move it again if the flag is set. All the movement flags must be
cleared on every instance after the present clock tick.

Each approach has its advantages and disadvantages. The multiple-grid approach is
more realistic and more in tune with having multiple global states for different time periods.
However, the changes to the present code to include multiple grids would be extensive.
Moreover, instances that cannot move must still be copied into the new grid. The list
approach is easy for movement but complicated for eating. If a Predator instance eats a
Prey instance, we have to search through the list to make sure it is also removed. Marking
is conceptually simple and requires minimal code updates, but it is time-consuming. We
have to manipulate all the instances on every cycle to clear their move flags.

Ultimately, we chose the marking approach because it fit best with our existing design.
To implement it, we need to make changes in the following locations:

� The Animal init method must add a new variable moved to every instance
and initialize it to False (the instance has not been moved).

� The move and eat methods must be modified to check whether the instance has its
moved flag set to True. If so, it should not be moved again. If the flag is not set, the
instance can be moved and its moved flag should be set to True (so it cannot move
again during this clock tick).

� The Island class gains a new method, clear all moved flags. This method
clears the moved flag of every instance on the island to False.

� The main loop must call the clear all moved flags at the beginning of every
clock tick.

13.5.2 Refinement: Graphing Population Size
One of the original ideas of predator-prey simulations is to follow the change in population
size during the course of the simulation. Watching the printouts of the Island instance
does not convey that well. It would be useful to add graphing to observe the changes.
Matplotlib to the rescue!

In this situation, it would be useful to plot both the Predator and Prey population
counts during the course of the run. Matplotlib works best by collecting the y values of each

586 C H A P T E R 1 3 • P R O G R A M D E V E L O P M E N T W I T H C L A S S E S

clock tick. We do so for both Predator and Prey by creating two lists, Predator list
and Prey list. These lists will contain the counts of each population at a particular clock
tick: index 0 will have the value for clock tick 0, and so on.

We need methods to actually find the counts for both predator and prey on the
island. We add two methods, count predators and count prey. Each will count the
number of each type of instance and return the value. At the end of every clock tick we
query the island for the counts and append them to the appropriate list.

Once the counts are collected and the simulation ends, we plot each list individually
and then display the results.

90

0
0 50 100 150 200 250

80

70

60

50

40

30

20

10

300

FIGURE 13.3 Graph of population sizes using our simulation.

A typical graph is shown in Figure 13.3 for the following parameter settings (the defaults
for the main function): predator breed time=6, predator starve time=3,
initial predators=10, prey breed time=3, initial prey=50, size=10,
ticks=300. The population swings are more pronounced for the Prey instances than the
Predator instances, which is typical of the real situation. Note that when the Predator
population rises (around tick 160), the Prey population falls dramatically. This results in
Predator loss and Prey recovery, just as predicted!

The final code is available online.

E X E R C I S E S 587

Summary
In this chapter, we developed a predator-prey simulation to illustrate the use of classes in
problem solving.

Exercises
1. Add randomness to the direction chosen in move.

2. Have Prey move away from neighboring Predators.

3. Add the ability to look two “hops” away to see Predators or Prey, and move toward
or away from them as appropriate.

4. Adjust survival rules so Predators starve quickly.

5. Adjust survival rules so Prey reproduce quickly.

6. init animals can be inefficient, especially if the island is quite full. Improve it.

7. Test the code to determine situations in which multiple moves can occur.

8. Implement one of the move improvements:
� Multiple grids
� List
� Marking

This page intentionally left blank

•5P A R T

Being a Better
Programmer

Chapter 14 Files and Exceptions II

Chapter 15 Testing

Chapter 16 Recursion: Another Control Mechanism

Chapter 17 Other Fun Stuff with Python

Chapter 18 The End, or Perhaps the Beginning

This page intentionally left blank

•14C H A P T E R

Files and Exceptions II

The young man knows the rules, but the old man knows the exceptions.

Oliver Wendell Holmes Jr., Supreme Court jurist

WE HAVE WORKED A NUMBER OF TIMES WITH BOTH FILES AND EXCEPTIONS IN THE

course of our programming travels. However, there are many interesting details on both
topics that we have not yet had time to explore, so we do so in this chapter.

14.1 M O R E D E T A I L S O N F I L E S
Let’s review what we know about files so far, and then move on with new details.

� A file is a collection of bytes of information that usually resides permanently on a disk.
Files fall into two broad categories: text files and binary files. For this text, we are
working with text files.

� To access a file from Python you must open a connection between the Python shell and
the file residing on a disk. The open command sets up that connection and returns the
file object that represents the connection. All subsequent actions we perform on a file
are done through this object.

� We can open a file to read or write content to a file. The second argument to open, a
string consisting of 'r', 'w', or 'a' indicates the type of access (see Table 5.1).

� We also learned in Section 9.3.1 that files can have different Unicode encodings,
translation of the bytes of the file into readable characters. We can alter the decoding
of a file by providing a third named argument to the open function, the encoding
argument. The default is utf 8.

� All access to text files is via strings. We read and write strings to a file.
� To read a line from a file, we have been using iteration via a for loop over a file object

as the collection. Each iteration through the loop yields one line of text.

591

592 C H A P T E R 1 4 • F I L E S A N D E X C E P T I O N S I I

� To write a string to a file, we have used the print function with the name argument
file. The argument is an opened file object (with write access) that will be the target
of printing. All output from the print is then written to the file object provided.

The following program reviews what we know so far.

Code Listing 14.1

1 # Prompt f o r three va lue s : input f i l e , output f i l e , s earch s t r i n g .
2 # Search f o r the s t r i n g in the input f i l e , write r e s u l t s to the
3 # output f i l e
4

5 import sys
6 def process file(i file, o file, a str):
7 ' ' ' i f the a s tr i s in a l in e o f i f i l e , add s t a r s
8 to the a str in l ine , write i t out with the
9 l i n e number to o f i l e ' ' '

10 line count int = 1
11 for line str in i file:
12 if a str in line str:
13 new line str = line str.replace(a str, '***'+a str)
14 print('Line {}: {}'.format(line count int, new line str),\
15 file=o file)
16 line count int += 1
17

18 try:
19 in file str = input("File to search:")
20 in file = open(in file str, 'r', encoding='utf 8')
21 except IOError:
22 print('{} is a bad file name'.format(in file str))
23 sys.exit()
24

25 out file str = input("File to write results to:")
26 out file = open(out file str, 'w')
27 search str = input("Search for what string:")
28 process file(in file, out file, search str)
29 in file.close()
30 out file.close()

>>>
File to search:inFile.txt
File to write results to:outFile.txt
Search for what string:This

1 4 . 1 • M O R E D E T A I L S O N F I L E S 593

>>> ================================ RESTART ================================
>>>
File to search:fred.txt
fred.txt is a bad file name
Traceback (most recent call last):
File "/Users/bill/tpocup/ch14/programs/program14-1.py", line 23, in <module>
sys.exit()

SystemExit
>>>

For the first, successful run, here are the contents of inFile.txt and outFile.txt

inFile.txt outFile.txt
This is a test Line 1: ***This is a test
This is only a test
Do not pass go Line 2: ***This is only a test
Do not collect $200

The following are some of the important features of the program.

Lines 6-16: Define a function process file. It takes an input file, an output file, and a
string. The function looks for the string in a line of the input file and, if found, writes
a modified version of the line to an output file.

Line 13: Use the replace method to change each occurrence of a str to have stars
appended to the front.

Lines 14-15: Print the modified line, with the line number, to the file. Note the use of
the file= parameter in print.

Lines 18-20: Prompt for a file to open. Open in a try block to catch a bad file name. Note
the use of encoding=utf 8.

Lines 21-23: The except clause catches a bad file name. When executed, the except clause
prints a message and calls sys.exit() (note import sys on Line 5). This function
exits the program by raising the SystemExit exception. Compare with os. exit(),
which stops the program and IDLE when run.

14.1.1 Other File Access Methods, Reading
So far, we have only used iteration to read a file. However, Python provides a number of
methods to read the contents of a file:

� readline: read a single line.
� readlines (note the plural): read all the file lines, and store as a list of lines.
� read(size in bytes): read as many bytes as indicated in the argument into a

single string. The default is the entire file.

594 C H A P T E R 1 4 • F I L E S A N D E X C E P T I O N S I I

Let’s take a look at these methods using the file “temp.txt” with the following contents:

First Line
Second Line
Third Line
Fourth Line

The method readline reads a single line and returns that line as a string. It does
essentially what one file iteration does: reads a single line. You can observe this functionality
in the following session that has both a readline and a for. If you precede the loop with
some number of readline calls, the for picks up where the readline left off in the file.
Notice how the line stored in first line str contains a “carriage return” at the end of
the string represented by the backslash-n character sequence (\n) which, of course, could
be removed by the string strip method. It is because we did not strip the lines in the loop
that the output looks double-spaced (the carriage return from the read line and the carriage
return added by the print statement). Finally, what happens when you try to read a line
when the file contents have been completely read? All the file methods will simply return
an empty string (”). No error is reported, just an empty string returned. We will see more
about how to manipulate a “read” file in Section 14.1.4.

>>> temp file = open("temp.txt","r") # open f i l e f o r reading
>>> first line str = temp file.readline() # read exa c t l y one l in e
>>> first line str
'First line\n'
>>> for line str in temp file: # read remaining l i n e s

print(line str)

Second line

Third line

Fourth line

>>> temp file.readline() # f i l e read , return empty s t r
''
>>> temp file.close()

The readlines method (again, note the plural) reads the entire contents of the file and
stores each line as an element in a list. The list is what the method returns. The following
session demonstrates readlines on the same input file previously noted.

>>> temp file = open("temp.txt","r") # open f i l e f o r reading
>>> file contents list = temp file.readlines() # read a l l f i l e l i n e s into a l i s t
>>> file contents list
['First line\n', 'Second line\n', 'Third line\n', 'Fourth line\n']
>>>

1 4 . 1 • M O R E D E T A I L S O N F I L E S 595

As simple as this looks, there is some danger in using readlines. If the file is very
large, then the entire contents are read and placed in a list of lines, which will also be very
large. Reading in gigabytes of file and storing the contents in this way can be very slow and
inefficient.

Finally, there is the read method. This method takes a single-integer argument that
is the number of bytes to be read from the file (where 1 byte is typically one character, at
least given the use of a utf 8 file encoding). However, if no such size argument is provided,
the default is to read the entire contents of the file. However much of the file is read, the
return value is a single string. Again, once the contents have been read, any further use of
the method results in an empty string. The following session demonstrates this method.

>>> temp file = open("temp.txt","r") # open f i l e f o r reading
>>> temp file.read(1) # read 1 char
'F'
>>> temp file.read(2) # read the next 2 chars
'ir'
>>> temp file.read() # read remaining f i l e
'st line\nSecond line\nThird line\nFourth line\n'
>>> temp file.read(1) # f i l e read , return empty s t r i n g
''
>>> temp file.close()

14.1.2 Other File Access Methods, Writing
So far, we have seen how to write to a file using the print function with a file= parameter.
However, as with reading, there are a number of methods available for writing to files:

� write: write a string to a file. It returns the number of bytes (characters) written to
the file.

� writelines: write a sequence (e.g., a list of lines) to a file

The simplest method to write a string to the file is the write method. This method
writes only strings to the file (so conversion from other types is necessary). If you want
multiple lines output to the file, you must insert the carriage-return character sequence (\n)
between the lines yourself. A common approach in Python is to assemble a string from
various pieces and then write the final string to a file. Not surprisingly, it can be difficult to
keep track of very long strings, so there is good reason to have multiple writes, often writing
a single line on each iteration of the algorithm. Every write appends to the end of the file’s
present contents, making the file longer with each write. Let’s look at a sample.

>>> word list = ['First', 'Second', 'Third', 'Fourth']
>>> out file = open('outFile.txt', 'w')
>>> for word in word list:
... out file.write(word + ' line\n')
...
>>> out file.close()
>>>

596 C H A P T E R 1 4 • F I L E S A N D E X C E P T I O N S I I

This session re-creates the original input file “temp.txt” we used in the file-reading
section previously. Note that we must append the (\n) at the end of each line before we
write it, to get multiple lines in the output file.

The writelines method is the counterpart of the readlines method. Remember
that readlines reads the contents of the file, returning a list of lines. The writelines
takes a list of lines as an argument and writes that list to the file. Again, if you want multiple
lines output to the file, you must insert the carriage-return character sequence (\n) between
the lines yourself. See the following session.

>>>out file = open('out.txt', 'w')
>>>line list = ['First line\n', 'Second line\n', 'Third line\n', 'Fourth line \n']
>>>out file.writelines(line list)
>>>out file.close()

Note that each of the lines in the list ends with a (\n), which creates a new line in the
written file.

P R O G R A M M I N G T I P

It is common to write types other than strings to files (or to expect values from a file other
than strings). All interaction with text files is done only with strings. Any other type must be
converted to a string before it can be written to a text file. If not, you will get a TypeError,
indicating that the value you are trying to write needs to be converted to a string.

14.1.3 Universal New Line Format
It is an interesting fact that different operating systems (OS X, Windows, Linux) have
different characteristics with regards to files. In particular, depending on the operating
system, there is a particular character, or set of characters, that represent the newline
character: the character placed at the end of a string to indicate that the next character goes
on the following line of text. There have been a number of ways to indicate a new line through
the history of computer operating systems,1 but two characters are used most commonly:
'\n' and '\r'. Though not strictly true, they are usually referred to as the “newline”
character and the “carriage-return” character, respectively. Commonly used combinations
are shown in Table 14.1.

Operating System Character Combination
Unix & Mac OS X '\n'
MS Windows '\r\n'
Mac (pre-OS X) '\r'

TABLE 14.1 End-of-Line Characters

1 http://en.wikipedia.org/wiki/Newline

http://en.wikipedia.org/wiki/Newline

1 4 . 1 • M O R E D E T A I L S O N F I L E S 597

What an inconvenience! To avoid having to worry about this issue, Python provides
what is called the Universal New Line format. This process translates the operating specific
values to “\n” on read and from “\n” to the operating specific values on write. By default,
this translation is turned on. However, the open function provides a named argument
newline= , which specifies what get’s translated.

The main point is that Python is smart about doing the translation. By default, if you do
not provide a newline= in the open statement, Python will do the right thing. Very nice!

For completeness, here is what you could do. This is reprinted (mostly) from the Python
documentation.

� On input, if newline=None or is not provided, universal newlines mode is enabled.
Lines in the input can end in '\n', '\r', or '\r\n', and these are translated into '\n'
before being returned. If newline='', universal newline mode is enabled, but line
endings are returned to the caller untranslated. If newline is set to any of the other
legal values, input lines are only terminated by the given string, and the line ending is
returned untranslated.

� On output, if newline=None or is not provided, any '\n' characters are translated
to the system default line separator. This is indicated in the special value of the os
module, os.linesep. If newline='', no translation takes place. If newline is any
of the other legal values, any '\n' characters are translated to the given string.

14.1.4 Moving Around in a File
Table 5.1 indicates where reads and writes will begin in a file by default. However, Python
provides a way to control where we are in a file when we read or write and to change the
position of where a read or write occurs.

Remember how the file object gains access to the contents of a disk file: the open func-
tion creates a buffer—a location in memory—where the disk contents are copied. Once the
contents are read into the file object buffer, the file object treats the buffer as a very large list in
which each element of the list has an index. A file object counts each byte (roughly each char-
acter) as an index into the file object buffer. Furthermore, the file object maintains a current
file position, which is the present index where reads or writes are to occur. See Figure 14.1.

...

5 end4321

File object buffer

Current file
position

FIGURE 14.1 Current file position.

598 C H A P T E R 1 4 • F I L E S A N D E X C E P T I O N S I I

Many of the file methods implicitly use the current file position. For example, after a
readline occurs, the current file position moves to the position after the next carriage
return. The write method writes at the current file position.

Python provides methods to work with the current file position. The first is the tell
method. The tell method reports the position of the current file position relative to the
beginning of the file in bytes. The second is the seek(n) method. This methods shifts the
current file position to a new position n bytes into the file object buffer.

A common usage is seek(0) to go to the beginning of the file. An idiomatic expression
seek(0,2) will take you to the end of the file. Other seek options are available for binary
files.

To illustrate these concepts, let’s experiment with the same “temp.txt” file used
earlier.

>>> test file = open('temp.txt','r')
>>> test file.tell() # where i s the current f i l e po s i t i on ?
0
>>> test file.readline() # read f i r s t l i n e
'First Line\n'
>>> test file.tell() # where are we now?
11
>>> test file.seek(0) # go to beginning
0
>>> test file.readline() # read f i r s t l i n e again
'First Line\n'
>>> test file.readline() # read second l in e
'Second Line\n'
>>> test file.tell() # where are we now?
23
>>> test file.seek(0,2) # go to end
46
>>> test file.tell() # where are we now?
46
>>> test file.readline() # t r y read l ine at end o f f i l e : nothing the r e
''
>>> test file.seek(11) # go to the end of the f i r s t l i n e (s e e t e l l above)
11
>>> test file.readline() # when we read now we ge t the second l in e
'Second Line\n'
>>> test file.close()
>>> test file.readline() # Error : reading a f t e r f i l e i s c l o s e d
Traceback (most recent call last):
File "<pyshell#65>", line 1, in <module>
test file.readline()

ValueError: I/O operation on closed file.
>>>

1 4 . 1 • M O R E D E T A I L S O N F I L E S 599

There are a few things to note about this session:

� arthur file.tell() reports the position in bytes.
� When you try to read information from a file and the current file position is at the end

of the file, the read returns an empty string.
� Trying to read a file after closing it generates an error.

The most common operation is to seek to the beginning of the file, that is a file.
seek(0)!

14.1.5 Closing a File
Closing a file is the process of tearing down the connection between the program and a
file—separating the stream from the file. In particular, everything in the buffer that is in
memory is written back to the disk so that the contents of the buffer and the contents of
the file are in sync. Closing a file ensures that the synchronization between the file and the
buffer is done properly and no information is lost.

P R O G R A M M I N G T I P

Not closing a file, especially a file that is being written, increases the risk of losing the contents
of the file. Because the program writes data to the file object in memory (not directly to
the file on disk), the operating system will occasionally synchronize the contents of the file
object and disk file contents, to make sure that everything that was written to the file object
gets written to the disk file. Closing the file ensures this synchronization. Although Python
is very good about closing files if you forget, it is always best to close your file when you are
done with it.

14.1.6 The with Statement
The process of opening and closing a file is a common enough event that Python provides
a shortcut, the with statement. This statement makes it a little easier to open and file and
ensures that a file, once opened, gets closed automatically without requiring the programmer
to provide the actual close statement.

The general form of a with statement is:

with expression as variable:
with suite

and a typical example of its usage is shown in the following session, using the same file
“temp.txt” as previously

600 C H A P T E R 1 4 • F I L E S A N D E X C E P T I O N S I I

>>> with open('temp.txt') as temp file:
... temp file.readlines()
...
['First line\n', 'Second line\n', 'Third line\n', 'Fourth line\n']
>>>

The with expression performs its action and the returned value is associated with
the variable of the statement. That variable can then be used in the following suite. The
advantage of the with statement is that, if an error occurs in the suite, Python will
automatically close the opened file before the suite is exited.

We examine more of how this might work in Section 14.5.1 on exceptions.

Check Yourself: Basic File Operations

1. Given the file “input.txt” whose contents are:

First Line
Second Line
Third Line

Answer the questions regarding the following program:

with open('input.txt') as my_file:
print(my_file.readline(),end='')
print('--something--')
for r in my_file:

print(r,end='')

What is the output?
(a) First Line

--something--
First Line
Second Line
Third Line

(b) --something--
First Line
Second Line
Third Line

(c) First Line
--something--
Second Line
Third Line

(d) None of the above.

1 4 . 2 • C S V F I L E S 601

14.2 C S V F I L E S
We have shown the use of CSV (comma-separated value) files in a couple of examples. Here
we discuss those files in a little more detail.

A CSV is not a different kind of file but rather a different kind of file format. A CSV is
actually a text file and can be used in conjunction with the functions and methods we have
discussed. However, the arrangement of data in the file is special, and we can take advantage
of that.

The Wikipedia page on CSV files describes them as follows:

A file format is a particular way to encode information for storage in a computer
file. Particularly, files encoded using the CSV format are used to store tabular
data. The format dates back to the early days of business computing and is
widely used to pass data between computers with different internal word sizes,
data formatting needs, and so forth. For this reason, CSV files are common on
all computer platforms.

The problem with this file format, as we have mentioned previously, is that the standards
for reading and writing do not really exist, especially given the age of the format. Nonetheless,
it is a very useful way to exchange data between applications and therefore an important
format for us to understand.

14.2.1 csv Module
As we have mentioned many times, one of the great advantages of Python is the community
that supports its use. When common problems arise, the Python community provides
powerful, free solutions. Such is the case with CSV files. In the case of CSV files, different
venders have annoying variations in how they generate the CSV format. To help alleviate
the difficulties of dealing with multiple variations in CSV files, Python provides the csv
module. The csv module provides an easy way to read and write CSV files.

To work with CSV-formatted files, we need some new objects: a csv.reader object
to read the file and a CSV.writer object to write a CSV file. We will use the following
example to show reading and writing to such a file. We created a simple spreadsheet using
Microsoft Excel 2008, shown in Figure 14.2. The values in bold are calculated values using
simple Excel formulas to average the four rows for a grade, then average grades for an overall
grade average. The corresponding CSV file is also shown here:

Name,Exam1,Exam2,Final Exam,Overall Grade
Bill,75.00,100.00,50.00,75.00
Fred,50.00,50.00,50.00,50.00
Irving,0.00,0.00,0.00,0.00
Monty,100.00,100.00,100.00,100.00

Average,,,,56.25

602 C H A P T E R 1 4 • F I L E S A N D E X C E P T I O N S I I

75.00Bill

Name Exam1 Exam2 Final Exam Overall Grade

Fred

Irving

Monty

Average

50.00

0.00

100.00 100.00

0.00

50.00

100.00

0.00

50.00

100.00

56.25

100.00 50.00 75.00

50.00

0.00

FIGURE 14.2 A simple spreadsheet from Microsoft Excel 2008.

First, it is important to note that some information from the original Excel file is lost.
The CSV format preserves only values. For example, the four grades and the grade average
are no longer formulas. Changes to one of the row values will not update the corresponding
averages. Second, a series of commas in the last line of the CSV file indicate empty values
for that field.

14.2.2 CSV Reader
To create a csv.reader object, we use the constructor method reader. Interestingly, the
reader method takes as an argument a file object, meaning that you must have already
opened a file for reading and created a file object. The reader constructor returns a reader
object that can be used to iterate through a CSV file, much like a file object can be used to
iterate through the contents of a text file.

The difference, however, is that the csv.reader returns a single row of the file for each
iteration (not necessarily a line). Further, the returned value from the iteration is not a string
but a list of strings, where each element of the list represents one of the fields of the row. The
code and its results are shown here in Code Listing 14.2.

Code Listing 14.2

import csv
workbook file = open('Workbook1.csv','r')
workbook reader = csv.reader(workbook file)

for row in workbook reader:
print(row)

workbook file.close()

1 4 . 2 • C S V F I L E S 603

>>>
['Name', 'Exam1', 'Exam2', 'Final Exam', 'Overall Grade']
['Bill', '75.00', '100.00', '50.00', '75.00']
['Fred', '50.00', '50.00', '50.00', '50.00']
['Irving', '0.00', '0.00', '0.00', '0.00']
['Monty', '100.00', '100.00', '100.00', '100.00']
[]
['Average', '', '', '', '56.25']
>>>

A few things to note:
� By default, files open in Universal New Line mode. That is good. It is important here:

for this particular Excel spreadsheet, it was required—otherwise, an error is generated.
The error is even very helpful, suggesting you use that mode.2 Isn’t Python nice?

� The blank line of the CSV file between the “Monty” row and the “Average” row does
appear in the output as an empty list. Every row, even blank rows, are returned by the
reader object.

� If a field in a row is not filled in, the row is still marked with an empty string, as shown
in the last row.

14.2.3 CSV Writer
Like the reader, we create a csv.writer object using the writer constructor. As with
the reader, the required argument is a file object, but in this case that file must have been
opened for writing.

The csv.writer object has a method writerow that will write a row of data to
the file.

14.2.4 Example: Update Some Grades
As an example, let us update Irving’s final grade to 100.00. In so doing, we have a lot of
work that must be done, as all the formulas for updating the spreadsheet are missing. We
must update Irving’s average as well as the grade average. The code is shown below.

Code Listing 14.3

1 import csv
2 workbook file = open('Workbook1.csv','r')
3 workbook reader = csv.reader(workbook file)
4

5 sheet list = []

2 csv.Error: newline character seen in unquoted field—do you need to open the file in universal-newline mode?

604 C H A P T E R 1 4 • F I L E S A N D E X C E P T I O N S I I

6 for row in workbook reader:
7 sheet list.append(row)
8 workbook file.close()
9

10 sheet list[3][3] = '100.00' # give Irving a break , 100 on the f ina l
11

12 # update Irving ' s average
13 sum float = 0.0
14 for field str in sheet list[3][1:-1]: # f i e l d s 1 , 2 and 3 : the grades
15 sum float += float(field str)
16 avg float = sum float/3
17 # we have to write a s t r ing , convert to two decimal p l a c e s using s t r

formatting
18 sheet list[3][4] = '{:.2f}'.format(avg float)
19

20 # l i s t comp sho r t cu t f o r update Irving ' s average
21 # s h e e t l i s t [3] [4]= '{ : . 2f} ' . format (sum([f l o a t (f i e l d s t r)\
22 # fo r f i e l d s t r in s h e e t l i s t [3] [1:−1]]) /3)
23

24 # update the ov e ra l l grade average
25 sum float = 0.0
26 for row in sheet list[1:-2]: # rows 1 ,2 ,3 ,4 : the s tudent rows
27 sum float += float(row[-1]) # the average o f that row
28 grade average float = sum float/4
29 # we have to write a s t r ing , convert to two decimal p l a c e s using s t r

formatting
30 sheet list[-1][-1] = '{:.2f}'.format(grade average float)
31

32 # l i s t comp sho r t cu t f o r update ov e ra l l average
33 # s h e e t l i s t [−1][−1] = '{ : . 2f} ' . format (sum([f l o a t (row[−1])\
34 # fo r row in s h e e t l i s t [1:−2]]) /4)
35

36 newbook file = open('NewWorkbook1.csv','w')
37 newbook writer = csv.writer(newbook file)
38 for row in sheet list:
39 newbook writer.writerow(row)
40 newbook file.close()

There is a lot of slicing going on here, which is a good exercise for us. Let’s take a
look.

Lines 2–5: We do the normal opening and reading of the CSV file. However, we create a
variable sheet list as an empty list to collect all the rows.

1 4 . 2 • C S V F I L E S 605

Lines 6–8: Iterate through the rows and append them to the sheet list. At the end,
sheet list contains a list of lists (the inner lists are the rows).

Line 10: Give Irving a break; update his final exam grade to 100.00 as a string. Remember,
CSV files are text files!

Lines 12–18: This code updates Irving’s average based on the new grade. Check to make
sure you understand the slicing there! Look at the CSV file contents in the example.
The comments give some hints (as they should). Line 18 is interesting. We need to
write a string for the final average (a floating-point number). We want to write it with
only two decimal places, so we use string formatting to do the work.

Lines 20–22: These lines are a list comprehension that do all the work of lines 12–18. Is it
readable? Readability depends on the reader, but this code is more dense and therefore
more likely to have a mistake.

Lines 25–30: Now we must update the overall average based on the new averages. Again,
lots of slicing going on—make sure you can follow it.

Lines 32–34: As we did earlier, these lines are a list comprehension that does all the work
of lines 25–30.

Lines 36–40: Having updated sheet list, we now write it out to a new file using the
writerow method, one row a time.

The updated CSV file is shown here. The Excel spreadsheet created from reading in
that file is shown in Figure 14.3.

Name,Exam1,Exam2,Final Exam,Overall Grade
Bill,75.00,100.00,50.00,75.00
Fred,50.00,50.00,50.00,50.00
Irving,0.00,0.00,100.00,33.33
Monty,100.00,100.00,100.00,100.00

Average,,,,64.58

Some of the formatting is lost in the spreadsheet, but the values are correct. Again, no
formulas are preserved.

75Bill

Name Exam1 Exam2 Final Exam Overall Grade

Fred

Irving

Monty

Average

50

0

100 100

0

50

100

100

50

100

64.58

100 50 75

50

33.33

FIGURE 14.3 The updated Excel spreadsheet created from the new CSV file.

606 C H A P T E R 1 4 • F I L E S A N D E X C E P T I O N S I I

14.3 M O D U L E : os

Let’s take a look at the os module (“os” is an abbreviation for “operating system”). It is a
module included with the Python distribution—like the math module. The os module
has many capabilities, but we will look at the file-related ones here. You can find the full
list of functions in the documentation that comes with Python, or you can simply search
online for “Python os module.” To appreciate some of the capabilities we have at hand, let’s
begin with a look at how files are organized on your disk.

14.3.1 Directory (Folder) Structure
Part of the role of an operating system is to keep files organized. The currently popular
operating systems, such as Microsoft Windows, Linux, and Apple’s OS X, maintain files in
a directory structure. This assumes the existence of a special container called a directory in
Linux and OS-X and a folder in Windows.3 Each directory can hold three things:

� A list of files that are in the directory
� A list of other directories, also contained in the directory
� A link to the directory’s parent in the directory structure

Directories are organized by the last two items: directories they contain and the parent
directory they are connected to. The organization is typically referred to as a hierarchy, or
often by computer scientists as a tree. The tree contains the relationship of each directory
to its “parent” and “children.” The “children” of a directory are those directories that it
contains. The parent of a directory is the directory that contains it. We can draw the tree
structure of the directories as shown in Figure 14.4. However, it is an odd tree. It has a root,
branches, and leaves, but it is upside down: the root is at the top and the leaves are at the
bottom. Each inner circle in the tree is a directory (more generally a node), and each line
connecting nodes is the relationship between directories (more generally called an edge).
The root is a special directory, alone at the top, whereas leaves are special nodes at the
bottom: nodes with no children (files).

The operating system finds files by beginning at the root, represented by “/” (spoken
as “slash”). The operating system moves down the tree structure by following edges and
directories until it finds the desired file (contained in a directory) or a directory itself.
The path taken through the tree structure is called just that: a path. The path represents
an ordered list of directories traversed to get to the desired directory. For example, in
Figure 14.4 the file “ex1.py” is found in the directory “python,” which is a child of the
directory “punch,” which is a child of the directory “/.” The full path is indicated by
separating each directory with a “/,” thus “/punch/python/ex1.py” is the fully qualified

3 We’ll continue to just use the word directory from now on, but be aware that in Windows it would be called a “folder.”

1 4 . 3 • M O D U L E : os 607

/ root

punch enbody smith

python Docs

ex1.py one.txtex2.py

branches

leavestwo.txt three.txt

FIGURE 14.4 Directory tree with path /punch/python/ex1.py, marked with arrows.

name of the file. That path is highlighted with arrows in Figure 14.4. Every leaf node
(usually a file) can be represented by a fully qualified name, indicating a path from the root.
Of importance to us is that a path can be represented as a string in Python: "/punch/
python/ex1.py".

Paths are represented slightly differently by different operating systems. The path shown
in the example is the Unix style used in Linux and OS X (underneath OS X is a flavor of
Unix). Microsoft Windows uses backslashes (\) instead of forward slashes and starts its paths
with the device name—e.g., C:\punch\python\ex1.py. Fortunately, Python understands
which operating system it is working on, so it automatically converts whichever style you
use to the appropriate one.

There are two special directory (folder) names: “.” (spoken as “dot”) and “..” (spoken
as “dot-dot”). The single dot represents the directory you are currently working in. For
example, if you are working in punch’s python directory, the “.” is synonymous with the
path “/punch/python/” so whenever you use “.,” the operating system will fill in the current
path, “/punch/python.” The double-dot is synonymous with the parent directory (folder)—
that is, the node “above” where you are currently working. For example, if your current
directory (folder) is “/punch/python” then “..” is “/punch/.”

P R O G R A M M I N G T I P

In Python, if you type a file name without a full path, the assumption is that the file is in
the directory where the program currently running resides. Thus, if you run your program
from a directory, you can open any file in that directory without fully qualifying the path.
Otherwise, Python requires that the full path be provided.

608 C H A P T E R 1 4 • F I L E S A N D E X C E P T I O N S I I

14.3.2 os Module Functions
Let’s look at a few sessions illustrating a small subset of the many functions available in the
os module. The directory tree we use in this example is shown in Figure 14.4.

The first session illustrates functions that allows one to move about the directory tree
and list the contents of any directory:

� os.getcwd: Here getcwd stands for “get cwd” and “cwd” stands for “current working
directory”—the directory or folder that you are currently working in. The cwd is
returned as a string. By default, the current working directory is set to the directory
from where the program started (see the previous programming tip).

� os.chdir: Here the chdir stands for “change directory,” so it changes the current
working directory to the path that was used as an argument (side effect). All paths are
strings in Python, where the directories are separated by “/” as mentioned earlier.

� os.listdir: Here listdir stands for “list directory,” which lists the files and directories
in the node specified by the path argument. A list of strings is returned.

>>> import os # load the o s package
>>> os.chdir("/punch/python") # change to the example s t a r t i n g point
>>> os.getcwd() # check that we are the r e
'/punch/python'
>>> os.listdir(".") # l i s t c on t en t s o f current d i r e c t o r y , indicated by " . "
['ex1.py', 'ex2.py', 'one.txt']
>>> dir list = os.listdir(".") # we can give that l i s t a name
>>> dir list
['ex1.py', 'ex2.py', 'one.txt']
>>> os.listdir("/punch") # l i s t the con t en t s at some path
['Docs', 'python']

The second session illustrates functions that manipulate path and file names. Notice
how this group begins with os.path, indicating the “path” subset of the os module. The
first return Booleans (True or False) to indicate whether the path “is a file” (isfile
), “is a directory” (isdir), or generically if such an item exists (exists). The final
functions manipulate path names (strings). They can extract a file name from a path
(basename) or extract the directory part of the path from the whole path (dirname).
Some can create a list by splitting off the file name from a path (split) or splitting off only
the file extension from a path (splitext). Finally, there is a join function to combine
partial paths into a complete path—note how it inserts a slash (/) character as needed.

>>> import os # load the o s package
>>> os.path.isfile("/punch/python/ex1.py") # check i f a f i l e e x i s t s
True
>>> os.path.isfile("/punch/python/ex3.py")
False

1 4 . 3 • M O D U L E : os 609

>>> os.path.isdir("/punch/python") # check i f a d i r e c t o r y e x i s t s
True
>>> os.path.exists("/punch/python") # check i f f i l e or d i r e c t o r y e x i s t s
True
>>> os.path.basename("/punch/python/ex1.py")# s p l i t a f i l e name o f f a path
'ex1.py'
>>> os.path.dirname("/punch/python/ex1.py") # s p l i t the d i r e c t o r y from a path
'/punch/python'
>>> os.path.split("/punch/python/ex1.py") # s p l i t path to [d i r e c t o r y , f i l e]
('/punch/python', 'ex1.py')
>>> os.path.splitext("/punch/python/ex1.py")# s p l i t o f f ex t en s ion (a f t e r " . ")
('/punch/python/ex1', '.py')
>>> os.path.join("/punch/python", "ex1.py") # jo in a path to a f i l e name
'/punch/python/ex1.py'
>>> path str = os.getcwd() # name a path
>>> path str
'/punch/python'
jo in d i r e c t o r y in path str to new filename
>>> os.path.join(os.path.split(path str)[0], "dummy.py")
'/punch/dummy.py'
>>> os.path.join("/punch/python/", "ex1.py")
'/punch/python/ex1.py'
>>>

The final session illustrates the os.walk(path str) function. This is a particularly
useful function for moving through the contents of a directory tree. It takes a path str
argument (a valid path string) and yields three values: the name of the current directory, a
list of subdirectories in the directory, and a list of files in the directory, for every directory
on the tree under the directory argument provided. If you put os.walk in a for loop, it
will visit every node in the directory tree under the path str directory. In the following
session, we walk through the directory tree of Figure 14.4, starting in /punch.

>>> os.getcwd() # check our s t a r t i n g point
'/punch'
>>> for dir name, dirs, files in os.walk("."): # "walk" in the current d i r e c t o r y

print(dir name, dirs, files)

. ['Docs', 'python'] [] # current d i r e c t o r y , l i s t o f 2 subd i r e c t o r i e s , no f i l e s

./Docs [] ['three.txt', 'two.txt'] # Does d i r e c t o r y , no subd i r e c t o r i e s , 3 f i l e s

./python [] ['ex1.py', 'ex2.py', 'one.txt'] # di r e c t o r y , no subd i r e c t o r i e s , 3 f i l e s
>>>

14.3.3 os Module Example
Here is an example that shows something you can do with the os module functions. The
task is to write a Python program that searches a directory tree for any text file that contains
a particular string. We’ll walk down the directory tree, starting in the current working

610 C H A P T E R 1 4 • F I L E S A N D E X C E P T I O N S I I

directory. In addition, we will make a list of text files that contain the string and a list of
directories those files are in.

The basic idea is this. In each directory, we look at each file in the directory to see if it
is a text file (extension “.txt”). If it is a text file, we open it, read it in, and then check to see
if our search string is in the file. If so, we add the file to our list of files and add the directory
to the list of directories. Once we finish with the files in the directory, we output what we
found.

We begin with a function that does most of the work:

I. Walk the directory tree, starting at the current directory.
1. For each file in the directory:

(a) If file is a text file:
i. Add to the count of text files examined.

ii. Open the file and read its contents into a string.
iii. If search str is in the file string:

A. Create path for file.
B. Add file to list of files containing search str.
C. Add directory to list of directories.

The program prompts for a search string, initializes the count and lists, and then calls
the function. After the function call, the information is output.

When looking at Figure 14.4, assume that files “one.text” and “two.txt” contain the
string “red.” Code Listing 14.4 is the program and the output.

Code Listing 14.4

search f o r a s t r i n g :
s t a r t i n g from the current d i r e c t o r y , walk a d i r e c t o r y t r e e
look in a l l t e x t f i l e s (ex t en s ion " . t x t ") f o r the s t r i n g

import os

walk the d i r e c t o r y sub t r e e s t a r t i n g at the current d i r e c t o r y
search f o r s earch s t r , count f i l e s examined ,
keep l i s t s o f f i l e s found and d i r e c t o r i e s
def check(search str,count,files found list,dirs found list):

for dirname,dir list,file list in os.walk("."): # walk the sub t r e e
for f in file list:

if os.path.splitext(f)[1] == ".txt": # i f i t i s a t e x t f i l e
count = count + 1 # add to count o f f i l e s examined
a file = open(os.path.join(dirname,f),'r') # open t e x t f i l e
file str = a file.read() # read whole f i l e into s t r i n g

1 4 . 3 • M O D U L E : os 611

if search str in file str: # i s s ea r ch s t r in f i l e ?
filename = os.path.join(dirname,f) # i f so , c r e a t e path

f o r f i l e
files found list.append(filename) # and add to f i l e l i s t
if dirname not in dirs found list: # i f d i r e c t o r y i s not

dirs found list.append(dirname) # and d i r e c t o r y l i s t
a file.close()

return count

search str = input('What string to look for: ')
file list = [] # l i s t o f f i l e s containing s t r i n g
dir list = [] # l i s t o f d i r e c t o r i e s o f f i l e s containing s t r i n g
count = 0 # count o f t e x t f i l e s examined

c a l l our funct ion that examines d i r e c t o r y t r e e f o r s t r i n g
count = check(search str,count,file list,dir list)

print('Looked at {} text files'.format(count))
print('Found {} directories containing ".txt" files and target string:{}'.\

format(len(dir list),search str))
print('Found {} files ".txt" files containing the target string: {}'.\

format(len(file list),search str))
print('\n*****Directory List*****')
for a dir in dir list:

print(a dir)

print('\n-----File List-----')
for a file in file list:

print(a file)

What string to look for: red
Looked at 3 text files
Found 2 directories containing files with ".txt" suffix and target string:red
Found 2 files with ".txt" suffix containing the target string: red
*****Directory List*****
./Docs
./python

-----File List-----
./Docs/two.txt
./python/one.txt

612 C H A P T E R 1 4 • F I L E S A N D E X C E P T I O N S I I

14.4 M O R E O N E X C E P T I O N S
In Chapter 5 we first touched on the basic use of Python exceptions. In particular, we
introduced the idea of an exception in the context of RULE 7, all input is evil until proven
otherwise. We need to write our code to deal with unforeseen issues that might arise,
especially when dealing with user input. Let’s review what we have already seen.

14.4.1 Basic Exception Handling
The basic syntax of Python exception handling is called a try-except suite:

try:
code to watch here

except ParticularErrorName:
some code to handle the named error, i f i t occurs

There are two parts to the handling of exceptions:

try suite: The suite of code after try. It contains the code we want to “watch” to see whether
any exception occurs. If an exception occurs anywhere in the try suite, Python will
halt execution of the suite at the error line and look for some exception code to handle
the particular error that occurred. If no handler is found, Python will halt the entire
program and print the exception.

exception suite: The suite of code associated with an exception—almost always a par-
ticular exception as indicated by Python’s standard error names—e.g., ValueError,
KeyError, etc. There may be multiple exception suites, with each one written to
handle a particular kind of error that might have happened in the try suite.

If no error occurs, the try suite finishes normally; all exception suites are ignored (not
executed), and control passes to whatever code follows the try-except group. The flow
is illustrated in Figure 14.5.

Try:
statement
statement
statement

except PythonException1:
statement
statement

except PythonException2:
statement
statement

statement

1. Error occurs here.

2. Check for correct type of exception.

3. Execute the exception block.

4. Skip any more exception blocks.

5. Continue after try-except block.

FIGURE 14.5 Exception flow.

1 4 . 4 • M O R E O N E X C E P T I O N S 613

14.4.2 A Simple Example
Let’s take a look at an example that shows the flow of control. Code Listing 14.5 prompts

VideoNote 14.1
Dictionary
Exceptions

for two integers, where the first (the dividend) is to be divided by the second (the divisor).
Two errors are possible here. The first occurs if the provided input cannot be converted
to a floating-point number: a ValueError. The second occurs if the divisor value is a 0:
Python raises a ZeroDivisionError exception. The print statements at the beginning
and the end of the try suite help indicate what parts of the try suite are executed. The
code also provides two except suites—one for each of those specific errors. In this simple
example, the handling code simply prints that the error occurs. The code ends with a
print statement, something to illustrate what gets executed after the try-except group
is finished.

Code Listing 14.5

1 try:
2 print("Entering the try suite")
3 dividend = float(input("Provide a dividend to divide:"))
4 divisor = float(input("Provide a divisor to divide by:"))
5 result = dividend/divisor
6 print("{:2.2f} divided by {:2.2f} yields {:2.2f}".\
7 format(dividend,divisor,result))
8 except ZeroDivisionError:
9 print("Divide by 0 error")

10 except ValueError:
11 print("Value error, could not convert to a float")
12

13 print("Continuing on with the rest of the program")

>>>
Entering the try suite
Provide a dividend to divide:10
Provide a divisor to divide by:2
10.00 divided by 2.00 yields 5.00
Continuing on with the rest of the program
>>> ================================ RESTART ================================
>>>
Entering the try suite
Provide a dividend to divide:10
Provide a divisor to divide by:a
Value error, could not convert to a float
Continuing on with the rest of the program

614 C H A P T E R 1 4 • F I L E S A N D E X C E P T I O N S I I

>>> ================================ RESTART ================================
>>>
Entering the try suite
Provide a dividend to divide:10
Provide a divisor to divide by:0
Divide by 0 error
Continuing on with the rest of the program
>>> ================================ RESTART ================================
>>>
Entering the try suite
Provide a dividend to divide:

Traceback (most recent call last):
File "/Users/bill/book/v3.5/chapterExceptions/divide.py", line 3, in <module>
dividend = float(input("Provide a dividend to divide:"))

KeyboardInterrupt
>>>

Four examples of input are provided for this code, shown in the previous session. It is
useful to go through the four examples and follow the control of the program:

No error: The input values are 10 and 2. This session has no errors. The entire try suite
is executed (lines 2–6), the two exception suites are skipped, and the code finishes by
executing line 13.

Value error: The input values are 10 and 'a'. In this case, the conversion of the second
value to a float will generate an exception. The flow of control gets through lines 1–4.
Line 4 ends in an exception, meaning that lines 5–6 of the try suite are skipped.
Control then skips to line 10, the ValueError handler, and executes line 11, the
exception suite. Thetry-except group ends and the program finishes by executing
line 13.

Zero division error: The input values are 10 and 0. The try suite executes lines 2–5.
Line 5 results in an exception, meaning that line 6 of the try suite is skipped. Control
skips to line 8, the ZeroDivisionError handler, which then executes line 9, the
exception suite. Thetry-except group ends and the program finishes by executing
line 13.

Keyboard interrupt: Lines 1–3 are executed. At the first prompt for input, the user enters a
Control-C (holding down the Ctrl key and then typing C). This is an event sent to the
program to indicate “stop processing,” resulting in an exception, the KeyInterrupt
exception. Lines 3–6 of the try suite are skipped. Python finds no handler for this
exception, so Python halts the program with an error and prints the error message
shown.

1 4 . 4 • M O R E O N E X C E P T I O N S 615

BaseException
+– SystemExit
+– KeyboardInterrupt
+– GeneratorExit
+– Exception

+– StopIteration +– RuntimeError
+– ArithmeticError | +– NotImplementedError
| +– FloatingPointError +– SyntaxError
| +– OverflowError | +– IndentationError
| +– ZeroDivisionError | +– TabError
+– AssertionError +– SystemError
+– AttributeError +– TypeError
+– BufferError +– ValueError
+– EnvironmentError | +– UnicodeError
| +– IOError | +– UnicodeDecodeError
| +– OSError | +– UnicodeEncodeError
| +– WindowsError | +– UnicodeTranslateError
| +– VMSError +– Warning
+– EOFError +– DeprecationWarning
+– ImportError +– PendingDeprecationWarning
+– LookupError +– RuntimeWarning
| +– IndexError +– SyntaxWarning
| +– KeyError +– UserWarning
+– MemoryError +– FutureWarning
+– NameError +– ImportWarning
| +– UnboundLocalError +– UnicodeWarning
+– ReferenceError +– BytesWarning

+– ResourceWarning

FIGURE 14.6 Python exceptions.

As we mentioned previously, it can be difficult to remember the specific names for
exceptions. For convenience, Figure 14.6 lists the Python exceptions.4 However, the easiest
way to find the error is to simply cause the error and see what Python prints. For example,
here is a Python shell generating a couple of errors:

>>> 1/0

Traceback (most recent call last):
File "<pyshell#9>", line 1, in <module>
1/0

4 http://www.python.org/doc/current/lib/module-exceptions.html

http://www.python.org/doc/current/lib/module-exceptions.html

616 C H A P T E R 1 4 • F I L E S A N D E X C E P T I O N S I I

ZeroDivisionError: integer division or modulo by zero
>>> open('junk')

Traceback (most recent call last):
File "<pyshell#10>", line 1, in <module>
open('junk')

IOError: [Errno 2] No such file or directory: 'junk'

Multiple Exceptions in one except
An except statement can take a parenthetical list of comma-separated exceptions that it
can handle. If any of the listed exceptions occur, then that statement is activated.

No Exception except
It is legal to have an exception handler with no particular exception name specified. Such a
handler will catch all exceptions, but that is generally not a good idea. Consider what that
handler must do. It must handle any error that occurs. That is as general a problem as just
passing control to Python and the shell. Specific exception handlers can be created with
strategies to handle specific exceptions. A general exception handler can do very little, as it
does not have enough specific information about the error.

14.4.3 Events
Besides input and related errors, another major type of exception that occurs in programs
comes from events that need to be handled. These are not errors but “things that happened”
and that need to be addressed. Handling events as they occur is an important task. For
example, in an operating system an event occurs every time someone clicks a mouse button.
The operating system, also a program (and typically a very large one), may be working
on something else, such as processing information coming from a network when the
mouse-click event happens. However, the mouse-click event needs attention right now! The
operating system needs to divert its “attention” to that mouse-click event now (waiting a long
time to deal with a mouse click would not be good for the user). Once it’s finished handling
that mouse click, it can go back to dealing with other events (keyboard clicks, network
information arrival, video updates, etc.). Exception handling is a way for the developer
to handle such an event. In this chapter, we focus on exceptions with respect to errors.
However, the topic of event-driven programming is very important in computer science.

14.4.4 A Philosophy Concerning Exceptions
There are really two ways to look at dealing with errors, both of which can be summarized
with pithy expressions: “Easier to Ask Forgiveness than Permission,” EAFP, or “Look Before

1 4 . 4 • M O R E O N E X C E P T I O N S 617

You Leap,” LBYL. First-time programmers, when they think of dealing with errors at all,
tend to take the LBYL approach. In this approach, the programmer will provide conditional
expressions that test for all the possible error conditions that might occur, and, if none
are found, then the associated code is run. However, as you gain more experience with
programming, you might find EAFP to be easier to work with and, subsequently, to read:
try to do something, whatever it is, but catch any potential errors that occur and handle
them. It is a kind of “clean up any messes” approach. It focuses on creating good code to
solve the problem and then, in a separate construct, deal with any errors. This means that
EAFP better separates the main intent of the code from the error conditions that might arise.

Take a look at two examples in Code Listing 14.6 that convert a string value to an int
using the two different philosophies.5

Code Listing 14.6

check whether int conver s ion wi l l r a i s e an error , two examples .
Python Idioms , http : / / j ayne s . co lorado . edu / PythonIdioms . html

#LBYL, t e s t f o r the problematic condi t ion s
def test lbyl (a str):

if not isinstance(a str, str) or not a str.isdigit:
return None

elif len(a str) > 10: #too many d i g i t s f o r int conver s ion
return None

else:
return int(a str)

#EAFP, j u s t t r y i t , c l ean up any mess with handlers
def test eafp(a str):

try:
return int(a str)

except (TypeError, ValueError, OverflowError): #int conver s ion f a i l e d
return None

Which approach seems more readable? The EAFP is more succinct and the list of errors
being caught is clearly labeled. We can certainly understand the other, LBYL, approach, but
EAFP seems clearer.

5 Taken from the Python Idioms page, http://jaynes.colorado.edu/PythonIdioms.html. [Copyright © 2010 by Rob Knight. Reprinted
with permission.] This information is now part of the PyCogent Paper: “PyCogent: a toolkit for making sense from sequence,”
http://www.ncbi.nlm.nih.gov/pubmed/17708774?ordinalpos=2&itool= EntrezSystem2.PEntrez.Pubmed.Pubmed ResultsPanel.
Pubmed DefaultReportPanel.Pubmed RVDocSum

http://jaynes.colorado.edu/PythonIdioms.html
http://jaynes.colorado.edu/PythonIdioms.html
http://www.ncbi.nlm.nih.gov/pubmed/17708774?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/17708774?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum

618 C H A P T E R 1 4 • F I L E S A N D E X C E P T I O N S I I

In general, if you are adding code to test for possible error conditions, it makes sense to
just try what you intend and then handle the errors you are concerned about. That is what
try-except groups are for.

14.5 E X C E P T I O N : ELSE A N D FINALLY

Another clause that can be added to a try-except group is the finally clause. The
finally suite is run as you exit the try-except group no matter whether an error occurred
or not. If something absolutely, positively has to be done, whether an error occurs not, this is
the place for that code. For example, if you are working with files, the file should be closed
at the end of processing, regardless of whether an error occurred. The finally clause gives
you an opportunity to clean up as the try-except group ends.

The try-except group also can have an else clause. The else suite is executed
only if the try suite does not encounter an error. One can think of the try as a kind of
conditional execution: if an exception occurs, you jump to the exception handler, otherwise
(else) you jump to the else suite and perform a “normal” exit from the group.

14.5.1 finally and with
Understanding the finally statement brings us back to the with statement and under-
standing how it works. Python provides a special concept called a context, typically viewed
as a resource that persists for some period of time and must be managed. Some objects
in Python provide context management that can be manipulated by the with statement.
Objects that provide these contexts could be web transactions, database access, a user login,
or any object that needs to manipulate some available resource. The most obvious such
object is a file, which needs to be opened and closed.

What the with statement guarantees is that when its associated suite is exited, then
access to the resource is closed no matter whether the exit is planned or by error. In this way,
a with statement can be viewed as working with objects that have an associated finally
clause that closes the resource. No matter what, when the suite ends, however it ends, the
closing of a resource utilized by a with statement is executed.

14.5.2 Example: Refactoring the Reprompting
of a File Name

We saw an example in Section 5.7.1 how you might use exceptions to reprompt for a file
name when the user-provided name does not exist. Here we refactor that code to be more
complete and show how the else and finally clauses can be used. Assume that a file
named “test.txt” exists with the following content:

This is a test.
It is only a test.

1 4 . 5 • E X C E P T I O N : ELSE A N D FINALLY 619

Code Listing 14.7

a l l a s p e c t s o f e x c ep t i on s

def process file(data file):
""" Print each l in e o f a f i l e with i t s l i n e number . """
count = 1
for line in data file:

print('Line ' + str(count) + ': ' + line.strip())
count = count + 1

while True: # loop f o r e v e r : unt i l "break " i s encountered
filename = input('Input a file to open: ')
try:

data file = open(filename)
except IOError: # we ge t here i f f i l e open f a i l e d

print('Bad file name; try again')
else:

no excep t ion so l e t ' s p r o c e s s the f i l e
print('Processing file',filename)
process file(data file)
break # e x i t " while " loop (but do " f i n a l l y " block f i r s t)

finally: # we ge t here whether there was an excep t ion or not
try:

data file.close()
except NameError:

print('Going around again')

print('Line after the try-except group')

>>>
Input a file to open: aaaa # bad input r a i s e s excep t ion
Bad file name, try again # l in e from excep t block
Going around again... # l in e from f i n a l l y block
Input a file to open: test.txt # good f i l e name t h i s time
Processing the file test.txt # in e l s e block we c a l l funct ion to p r o c e s s f i l e
Line 1: This is a test.
Line 2: It is only a test.
Line after the try/except block. # l in e a f t e r t r y / ex c ep t block

As before, the goal of this code is to repeatedly ask the user for a file name until the
name provided can be opened. Once opened, the file is processed and subsequently the file
is closed.

620 C H A P T E R 1 4 • F I L E S A N D E X C E P T I O N S I I

We create a while loop that loops forever, while True:, requiring that a break
statement occur somewhere in the subsequent code so that the loop can end. In the loop,
we prompt for a file name to open.

The try suite monitors the open function. Either the file opening succeeds or it does
not. That is, there are two possible cases: the error case or the success case.

ERROR CASE: If the open fails, it raises an IOError. Control jumps to the except
suite, which prints an error message, finishes, and control moves to the finally clause
(finally is always executed), where the finally suite is executed. What we would like to
do here is close the file that was opened, but in this case (the error case), no file was opened
and the variable dataFile has not been assigned a value. Nonetheless, in EAFP tradition,
we close it anyway but monitor that closure in a try suite. If the closure fails, as it does
here, we catch the error, in this case a NameError because the variable data file has
not yet been assigned a value (because of the opening error). The except suite prints a
message and the loop continues, reprompting for a file to open.

SUCCESS CASE: If the open succeeds, data file is assigned the file descriptor and no
exception is raised. Therefore, control moves to the else clause and executes the else suite.
The else suite executes the process file function, which prepends the line number
to each line of the file and prints the new line. When process file ends, control flows
back to the else clause of the try-except group, which executes a break. The break
will end the loop, but as always, the finally suite must be executed before the try-
except group can end. The finally suite executes data file.close(), which now
succeeds, because data file was defined by the assignment in the open process earlier.
The finally suite finishes, the break leaves the loop, and the last print line of the code
is executed.

14.6 M O R E O N E X C E P T I O N S

14.6.1 Raise
It is possible for you to raise an exception anytime you wish, instead of having Python raise
it for you. Simply use the keyword raise followed by the exception name:

raise ExceptionName

Raising an exception allows you also to pass a particular value to the exception handler. You
pass the argument by calling the exception with the argument following in parentheses. In
Code Listing 14.6, we use an if statement to identify the problem and then use the raise
command to pass the offending value. This example is not compelling, because in this case
a simple if-else would suffice. However, in a very large program, the except block may
be in a distant calling function.

1 4 . 6 • M O R E O N E X C E P T I O N S 621

Code Listing 14.8

dig str = input("Input an integer: ")
try:

if dig str.isdigit():
dig int = int(dig str)

else:
raise ValueError(dig str) # r a i s e an excep t ion here !

except ValueError:
print("Conversion to int Error: ", dig str)

Check Yourself: Basic Exception Control

1. Answer the questions regarding the following program:

my_dict = {'bill':100, 'zach':'hi mom', 'laurie':'bye mom'}

try:
result = ''
key_str = input("Enter a key:")
val = my_dict[key_str]
result = result + val

except KeyError:
result = 'hi mom'

except TypeError:
result = '100'

else:
result = result+" "+'all done'

finally:
if result.isdigit():

result = int(result) + 10

print(result) # Line 1

(a) What output does Line 1 produce with the input 'bill'?
(b) What output does Line 1 produce with the input 'zach'?
(c) What output does Line 1 produce with the input 'fred'?
(d) What output does Line 1 produce with the input 0?

14.6.2 Create Your Own
It is also possible to create your own exceptions. In Python, exceptions are classes. To make
your own exception, you must create a subclass of one of the existing exception classes shown
in Figure 14.6. By using inheritance, all the essential features of exceptions are preserved.

622 C H A P T E R 1 4 • F I L E S A N D E X C E P T I O N S I I

However, the new exception provides a way for you to communicate unique errors for
user-built classes. Though this can be done in more detail, all that is really required is to
make a subclass of an existing exception class. No body is required of this new class. Thus the
expression class NewException (Exception): pass is sufficient to make a new
exception. The class definition is empty (hence the keyword pass), but the characteristics
of base Exception class are inherited by NewException.

14.7 E X A M P L E : P A S S W O R D M A N A G E R
The following example creates a new class that is a password manager. It can be used to
validate a user’s name and password or to add a new user to the password database. For
simplicity’s sake, in this example we do not securely manage our password database. It is
just a dictionary. However, it would not be too much work to import an encryption module
and securely manage the dictionary data. We leave that as an exercise for those interested.

The code for the passManager class is shown in Code Listing 14.9.

Code Listing 14.9

1 import string
2

3 # de f ine our own exc ep t i on s
4 class NameException (Exception):
5 ' ' ' For malformed names ' ' '
6 pass
7 class PasswordException (Exception):
8 ' ' ' For bad password ' ' '
9 pass

10 class UserException (Exception):
11 ' ' ' Raised f o r e x i s t i n g or mis s ing user ' ' '
12 pass
13

14 def check pass(pass str, target str):
15 """ Return True , i f password contains cha ra c t e r s from ta r g e t . """
16 for char in pass str:
17 if char in target str:
18 return True
19 return False
20

21 class PassManager(object):
22 """A c l a s s to manage a di c t i onary o f passwords with e r ro r checking . """
23 def init (self, init dict=None):
24 if init dict==None:
25 self.pass dict={}

1 4 . 7 • E X A M P L E : P A S S W O R D M A N A G E R 623

26 else:
27 self.pass dict = init dict.copy()
28

29 def dump passwords(self):
30 return self.pass dict.copy()
31

32 def add user(self,user):
33 """Add good user name and s t rong password to password di c t i onary . """
34 if not isinstance(user,str) or not user.isalnum():
35 raise NameException
36 if user in self.pass dict:
37 raise UserException
38 pass str = input('New password:')
39 # s t rong password must have d i g i t s , uppercase and punctuation
40 if not (check pass(pass str, string.digits) and\
41 check pass(pass str, string.ascii uppercase) and\
42 check pass(pass str, string.punctuation)):
43 raise PasswordException
44

45 def validate(self,user):
46 """ Return True , i f val id user and password . """
47 if not isinstance(user,str) or not user.isalnum():
48 raise NameException
49 if user not in self.pass dict:
50 raise UserException
51 password = input('Passwd:')
52 return self.pass dict[user]==password

Here are some notes about this class:

Lines 4–12: Define three new exceptions. The doc strings indicate their purpose.
Lines 14–19: The function check pass looks to see whether parameter pass str

contains any character of the parameter target str.
Lines 23–27: The init method takes a default argument for the password dictio-

nary, None, which can then be checked for in the code (see the programming tip in
Section 8.2.1) Using None and then checking for its use avoids the issues of modifying
a mutable default value. If a parameter value is provided, it should be a dictionary, and
we make a shallow copy of it. Given that all the values should be strings, this approach
should be sufficient.

Lines 32–43: The add user method ensures three conditions. First, the user parameter
should be a string and consist only of letters or digits. Second, the user being added
should not already be in the dictionary. Third, the password provided should have
at least one uppercase letter, at least one punctuation mark, and at least one digit.

624 C H A P T E R 1 4 • F I L E S A N D E X C E P T I O N S I I

The second and third conditions are checked using check pass and the appropriate
string from the string module. Any violation of these conditions raises one of our
user-defined errors.

Lines 45–52: The validate method does most of the checks done in add user. It
makes sure that the name is a valid name (only letters and digits), and it makes sure the
user is in the dictionary. Finally, it returns a Boolean indicating whether the dictionary
password matches the provided password.

Code Listing 14.10 utilizes PassManager for validating a user. Notice that, except for
the return value from validate, most of the interaction between the main program and
the module is via monitoring of exceptions. The comments should be fairly helpful, so we
point out only the most interesting points.

Code Listing 14.10

1 from program14 9 import *
2

3 def main ():
4 pm = PassManager({'bill':'$4Donuts', 'rich':'123ABC!'})
5

6 max tries = 3 # thre e t r i e s allowed
7 cnt = max tries
8 valid bool = False
9 while cnt > 0 and not valid bool:

10 user str = input('User name:')
11 try:
12 valid bool = pm.validate(user str) # va l ida t e prompts f o r password
13 except NameException:
14 print('Bad name!')
15 except UserException:
16 if input('No such name, add as new user (Y or y)? ') in 'Yy':
17 try:
18 pm.add user(user str)
19 # only g e t here i f no ex c ep t i on s ra i s ed in add user
20 valid bool = True
21 except NameException:
22 print('Bad name!')
23 except UserException:
24 print('User already exists!')
25 except PasswordException:
26 print('Bad password!')

1 4 . 7 • E X A M P L E : P A S S W O R D M A N A G E R 625

27 finally:
28 cnt -=1
29 if not valid bool:
30 print('Session timed out.')
31 else:
32 print('Welcome user',user str)

Line 1: We import, using the from statement, the new exception classes and the
PassManager class.

Lines 4–8: We establish some variables. We instantiate a PassManager and pass a dic-
tionary as an initial value. Again, this is not a secure password approach, but it is
simple and useful for this example. The maximum times a password can be guessed
is three times (stored in cnt). The Boolean valid bool is what is returned from
validate.

Lines 9–12: As long as the number of tries is greater than 0 and valid bool is False
(validation has not yet succeeded), we will try to validate the user. Note that ifvalidate
raises an exception, valid bool will not be set to True.

Lines 15–26: This UserException occurs if no such user exists in the PassManager as
determined by the validate call of Line 12. In this case, we provide the option to add a
new user. We add a new try-except block to add the new user. If add user does
not raise an exception, then valid bool will be set to True.

Line 27: The finally statement goes with the outer try-except block. No matter what
finally ensues, cnt is decremented every time through the loop, so that only three tries
are allowed.

The following session shows a basic interaction of the two modules:

>>> program14 10.main()
User name:bill
Passwd:$4Donuts
Welcome user bill
>>> program14 10.main()
User name:fred
No such name, add as new user (Y or y)? y
New password:abc123
Bad password!
User name:fred
No such name, add as new user (Y or y)? y
New password:Good4You!
Welcome user fred
>>>

626 C H A P T E R 1 4 • F I L E S A N D E X C E P T I O N S I I

Summary
In this chapter, we explained file input and output in greater detail. We also looked at
handling CSV-formatted files in more detail. Finally, we showed more complex file handling
using the os module. We also examined exceptions in more detail. It is particularly useful
for ensuring that input is valid. We provided a couple of code snippets for checking input
and checking file openings.

Files
� readline(): read one line; return a string.

� readlines(): read all lines; return a list of strings.

� read(n): read n bytes; return a string.

� write(s): write string s.

� writelines(l): write list of strings.

� tell(): return position in file as bytes from beginning.

� seek(n): go to n bytes from beginning of file.

� seek(0,2): go to end of file.

� with open(s) as f: open, do something to f, close.

� CSV
import csv
f = open(s)
r = csv.reader(f)
for row in r:

do something to each row

� import os

- os.getcwd(): get curent working directory (cwd); return path string.
- os.chdir(p str): change cwd to path string p str.
- os.listdir(): return a list of files and directories in cwd.
- for dir name, dirs, files in os.walk(p str): walk the directory.

� import os.path

- os.path.isfile(p str): is p str a file? Returns Boolean.
- os.path.isdir(p str): is p str a directory? Returns Boolean.
- os.path.exists(p str): does p str exist? Returns Boolean.
- os.path.basename(p str): return file name from p str.

E X E R C I S E S 627

- os.path.dirname(p str): return directory prefix from p str.
- os.path.split(p str): split p str as (directory, file name).
- os.path.join(path,file name): inverse of split–builds p str.
- os.path.splitext(p str): split p str as (path, file extension).

Exceptions
� else: suite executed if no errors occur in try suite.

� finally: suite always executed.

� raise ErrorName: raise an error.

� Create your own exception:
class SomeException(Exception):

pass

Exercises
1. A KeyError exception exists if you attempt to access a dictionary with an invalid

key. Write a small program that illustrates using a try-except block to handle a
KeyError exception. Create a small dictionary and write a special error message if an
attempt is made to access the dictionary with an invalid key.

2. Given dictionary D, rewrite this code using exceptions:

if x in D:
D[x] += 1

else:
D[x] = 1

3. Write a function that takes a string of words and integers as an argument and returns
two lists: one a list of the words, the other a list of the integers. Use exceptions to
distribute words and integers to their respective lists.

4. Phone records
Telecom operators such as AT&T or Verizon maintain records of all the calls made
using their network (named “call detail records,” or CDRs). Usually, the CDRs are
collected at the routers within the telecom networks, and millions of CDRs are stored
in a single file. Although most of the records are in correct format, some records (a
handful) either do not contain all the requisite fields or contain garbled data; these
records cause problems during any data processing.

628 C H A P T E R 1 4 • F I L E S A N D E X C E P T I O N S I I

Consider a simplified version of a CDR that has only four fields: date and time
of the call, source number, destination number, and duration of the call. Create a
comma-separated file containing multiple CDRs. In that file include some erroneous
or incomplete records that:
� Do not have duration of the call (no duration, no billing!)
� Have garbled phone numbers, like 12-345-6789 or 123-45?-6789

Also, create some records in which the source or destination number is recorded
as null (this happens sometimes if it was an international call). Create some records
in which the comma is missing between the source and destination numbers—e.g.,
123-456-7890 987-654-3210.

Note: If a comma is missing between the source and destination or they have null
values, you can still get the required information and it should not be counted as an
erroneous record.

Also, create another file containing all the North American area codes (see
http://www.bennetyee.org/ucsd-pages/area.html).

(a) Find the call that had the longest duration and find its source and destination
regions.

(b) Find the number of garbled or incomplete CDRs.
(c) How many international calls were made?
(d) Create a list of all calls made on a particular date.
(e) Create a list of all calls made during a particular hour.
(f) Optional: Plot a distribution of the arrival times of the calls. This plot could help

in identifying busy and idle periods of the network.

Use exceptions (IndexError, ValueError, TypeError) to handle erroneous
CDRs rather than checking individual cases using if-else constructs.

5. Assume that a file has opened as “somefile,” such as somefile = open('test.txt
','r'). Try the following (note the “s” in the second method name).

(a) What will somefile.readline() return?
(b) What will somefile.readlines() return?

6. Given a test file named “test.txt” containing the following three lines:

Line One
Line Two
Line Three

Consider the following code:

someFile = open('test.txt','r')
for line in someFile: # Loop 1

print line

http://www.bennetyee.org/ucsd-pages/area.html

P R O G R A M M I N G P R O J E C T S 629

for line in someFile: # Loop 2
print line

(a) What will be printed by Loop 1?
(b) What will be printed by Loop 2?
(c) How can you modify the code so that both Loop 1 and Loop 2 print the same

thing (other than having them both print nothing)?

7. Suppose that a text file contains student records on each line and each record is of the
format:

Name of Student, Student Id, GPA

Write code to read the file line by line and store all the records in lists or tuples. Hint:
You need to create a list of lists or list of tuples.

8. Write a function that takes one argument: a string file name. The function should
return a list of lists such that each list is a list of the words in each line. In addition:

(a) Remove all whitespace from each word and remove all punctuation. The string
module constants will be useful for the last task.

(b) Clean the words before placing them in the list. Specifically, convert all words to
lowercase and throw out any “words” that contain anything other than letters.

Programming Projects
1. Spreadsheets

Spreadsheet programs such as Microsoft Excel or OpenOffice Calc have an option to
export data into CSV files. In this exercise, you will create a program that will read in
a spreadsheet (in CSV format) and manipulate it. Provide the following capabilities:
� Print the data.
� Delete a row or column.
� Insert a row or column.
� Change a value in a cell.
� Output the data in CSV format.

Issues to consider:
� Use Python’s csv module to read in a spreadsheet. Choose an appropriate data

structure to store the data. Should you use lists, tuples, or dictionaries?
� Construct a driving loop in your program that will prompt for the operations specified

previously. A useful interface is to allow choices to be specified with a single letter
related to the operation—e.g., d for delete.

630 C H A P T E R 1 4 • F I L E S A N D E X C E P T I O N S I I

2. File copy
All operating systems have commands that will create a copy of a file. In this exercise,
you are to create a program that will make an exact copy of a file. Provide the following
capabilities:
� Copy only files that end with a “.txt” extension. Generate an appropriate error if

something else is specified.
� Using the os module, check whether the source file exists.
� Using the os module, check whether the destination file exists. If so, ask the user if

he or she wants to overwrite it.
� If no paths are specified, assume that the file is in the current folder (directory).

Otherwise, use the os module to separate the path from the file name. If a path is
specified for the destination file, check whether the path exists. Otherwise, generate
an error.

•15C H A P T E R

Testing

“We have met the enemy and he is us.”

Pogo by Walt Kelly

15.1 W H Y T E S T I N G ?
WHY SHOULD A BOOK ON INTRODUCTORY COMPUTER PROGRAMMING BE INTERESTED IN

talking about testing? In Chapter 5 we talked about the need to protect ourselves from
“evil” input. We could not count on users providing the “correct” input requested for
our programs (wrong type, wrong length, wrong number of elements, etc.), so we have
to check to make sure their potentially incorrect input does not crash our program. But
from what other sources of error must we protect our programs? How about ourselves—the
programmers!

Programmers make mistakes when writing programs. These mistakes come in many
different forms: assumptions about the data, misunderstanding of the algorithm, incorrect
calculations, poorly designed data structures, and—best of all—just plain blunders. Testing
is a way to protect us from ourselves. If we make a mistake, it would be most useful to be
informed before we release code for use. Without some form of testing, how will we ever
really know how well our program works?

15.1.1 Kinds of Errors
There are at least three classes of errors:

� Syntactic errors
� Runtime errors
� Design errors

631

632 C H A P T E R 1 5 • T E S T I N G

Syntactic errors are the easiest to detect and are detected for us by the interpreter. They
are errors in the use of the programming language. Examples of syntactic errors include
forgetting a colon (:) at the end of a header, a misplaced parenthesis, and a misspelling of
a Python command—the list is long. When a program is run that contains a syntax error,
Python reports the error and (as best it can) identifies where the error occurred.

Runtime errors are errors of intent. They are legal language statements; they are
syntactically correct, but they ask Python to do something that cannot be done. Their
incorrectness cannot be detected by the Python interpreter syntactically but occur when
Python attempts to run code that cannot be completed. The classic example is to make a list
of length 10 (indices 0–9) and then at some point during processing ask for the list element
at index 10. There is no syntactic error; requesting a value at some index is a reasonable
request. Furthermore, requests of values at index 0–9 provide results. Only when the 10th
index value is requested does Python encounter the problem. Python cannot provide that
value at index 10 because it doesn’t exist; hence the runtime error. Runtime errors can be
hard to find, even with testing. They may occur intermittently: we may only occasionally
ask for the index 10 element, depending on our calculations. Runtime errors may occur
only under special circumstances. For example, if the name of the file we open has a suffix
“.txt” and an error is triggered, any other suffix might be fine. Whatever the cause, just
because you haven’t seen the error doesn’t mean it isn’t there!

Design errors are a broad class of errors that basically cover everything else that is
neither a syntactic nor a runtime error. The program is syntactically correct and we do not
ask Python to do something that it inherently cannot do. However, the results we get are
simply wrong. Design errors are just that: errors. We didn’t write our averaging equation
correctly, we skipped a value in the list, we multiplied instead of dividing, we didn’t reset a
default value in our function call, and so on. We made a mistake and, through no fault of
the language, we got the wrong answer.

Testing for Runtime and Semantic Errors
Testing is about minimizing our errors as we program. We will make errors—that’s a given.
Can we recover from them, find them early, and minimize their effect? These are important
questions.

15.1.2 “Bugs” and Debugging
Programmers often talk about bugs in their programs. The source of the term bug is
something much discussed in computer science. The source of the term is not clear, but it
is clear that it predates computers. There are a number of documented letters of Thomas
Edison using the term bug to indicate defects in his inventions. There is some evidence that
the term dates back to telegraphy equipment and the use of semiautomatic telegraph keys
that were called “bugs” and, though efficient, were difficult to work with. One of the most
famous computer examples is traced to Admiral Grace Hopper. See Figure 15.1.

1 5 . 2 • K I N D S O F T E S T I N G 633

In 1946, when Hopper was
released from active duty, she
joined the Harvard faculty at the
Computation Laboratory where she
continued her work on the Mark II
and Mark III. Operators traced an
error in the Mark II to a moth
trapped in a relay, coining the term
bug. This bug was carefully
removed and taped to the log book.
Stemming from the first bug, today
we call errors or glitch’s [sic] in a
program a bug.1

1 http://ei.cs.vt.edu/∼history/Hopper.Danis.html

FIGURE 15.1 A real hardware bug! [U.S. Naval
Historical Center Photography]

Removing bugs from a program has been called “debugging,” likely from this incident.
To call these errors “bugs” is a bit self-forgiving of us. It implies that these errors were

not our fault. Rather, they slipped into our program without our knowing. We may not
have known it at the time, but they are our errors. Edsger Dijkstra, a famous professor of
computer science, said the following about the word bug :

We could, for instance, begin with cleaning up our language by no longer
calling a bug “a bug” but by calling it an error. It is much more honest because
it squarely puts the blame where it belongs, viz., with the programmer who
made the error. The animistic metaphor of the bug that maliciously sneaked in
while the programmer was not looking is intellectually dishonest as it is a
disguise that the error is the programmer’s own creation. The nice thing of this
simple change of vocabulary is that it has such a profound effect. While,
before, a program with only one bug used to be “almost correct,” afterwards a
program with an error is just “wrong.”2

15.2 K I N D S O F T E S T I N G
Testing is a very broad category; it would be difficult to cover it in sufficient depth in an
introductory programming book. However, it is an interesting topic and one often ignored
in introductory books. We think it is important enough to take a quick look. Let’s get
started.

2 http://www.cs.utexas.edu/users/EWD/ewd10xx/EWD1036.PDF

http://ei.cs.vt.edu/~history/Hopper.Danis.html
http://www.cs.utexas.edu/users/EWD/ewd10xx/EWD1036.PDF

634 C H A P T E R 1 5 • T E S T I N G

There are various philosophies on how, when, and why testing should be done. Some
of these include the following:

� Planning versus code testing. This might be better phrased as static versus dynamic
testing. Static testing is work done without running the code. You might think of it
as the various stages of understanding the requirements of the code and then planning
to achieve those goals. Dynamic testing is the kind of testing done with the code,
during execution of the code. It should be noted that in good software development,
developing static tests is an important part of the overall software development process.
However, this chapter will focus on dynamic testing—that is, testing with code.

� When to test: post-coding versus precoding testing. Traditionally, code is developed and
then handed off to an independent testing group. The testing group develops the tests
and, when errors are found, passes that information back to the developers, all in a cycle.
However, more modern testing approaches, including agile and extreme programming,
focus on developing the tests to be applied to code before the code is written. As the
code is written and updated, these tests are used as the standard for gauging progress
and success.

� Levels of testing. Unit testing is focused on the individual pieces (modules, functions,
classes) of code as they are developed. Integration testing focuses on bringing tested
modules together to see whether they work as intended. System testing focuses on the
entire system to see whether it meets the goals of the project.

� What to test? This is probably a category all unto itself, as there are many goals one
might focus on for testing. They would include the following:
- Correctness. Are the results produced correct? What counts as correct? Do we know

all the cases?
- Completeness. Are all the potential cases covered: all user entries, all file formats, all

data types, and so on?
- Security. Is the program safe from being broken into by another user, through the

Internet, or otherwise?
- Interface. Is the interface usable? Are its features complete? Does the user get what

he or she expects when using the program?
- Load. Does the program respond well if it is presented with a heavy load: many users,

large data sets, heavy Internet traffic, and so on?
- Resources. Does the program use appropriate amounts of memory, CPU, network?
- Responsiveness. Does the program respond in a reasonable amount of time? If there

are time limits, does it meet those limits?

And on and on. Testing is a complicated business!

15.2.1 Testing Is Hard!
One of things we want to convey is that testing is hard—at least as hard as writing the
program in the first place. That is one of the reasons we have left testing to the end. You

1 5 . 2 • K I N D S O F T E S T I N G 635

have had enough on your hands learning to design programs, implement them in code, and
then fix them.

Correctness
How hard is testing? Let’s just pick one of the examples mentioned earlier: correctness.
How does one determine whether a program is correct? One type of correctness would be
a proof. There is a branch of software engineering that focuses on that very topic: taking a
program, turning it into a mathematical expression, and proving its correctness. However,
that is a very difficult task. In fact, at this time it is not possible to take an arbitrary program
and prove it correct. So correctness is often practically measured against a specification of
behavior provided by the user. However, even that measurement can be difficult.

In 1993, Intel released its first Pentium desktop CPU. It was a new architecture and
required many years of development, including new software to make the chip run. In
1994, it was discovered that the floating-point division instruction had a small flaw, due
to an error in tables that the algorithm used for its calculations (these tables were stored
on the chip). It resulted in a rare error in some divisions. Byte magazine in 1994 estimated
that about 1 in 9 × 109 divisions of random numbers would show the defect. How many
cases should Intel have tested to see whether it was correct? Yet a professor at Lynchburg
College performing some mathematical calculations did hit the error in his work, rare or
not.3 To further illustrate the insidiousness of this example, Intel had developed both the
correct algorithm and table, but when the table was loaded into the chip, a portion was
inadvertently set to zeros!

15.2.2 Importance of Testing
Testing is important. In fact, many modern software developers put testing as the first
problem to be solved! As we mentioned earlier, agile software development focuses on
writing the tests before the code is written. In so doing, a developer accomplishes two very
important tasks:

� Focus on what the code should do before actually coding the implementation. It relates
to our old maxim: think before you program. By writing the tests first, you focus on
what the code should do.

� Once tests have been set up, every new piece of code or change to existing code has a
test base in place to assure the developer that his or her code is correct, at least as far as
the measures provided.

Even beginning programmers should try to integrate testing into their development
process. Python embeds tools to make this process easier. We will introduce some examples
here and hope that you will be exposed to more in your programming career.

3 See more information at the Wikipedia page on the FDIV error: http://en.wikipedia.org/wiki/Pentium FDIV bug.

http://en.wikipedia.org/wiki/Pentium_FDIV_bug

636 C H A P T E R 1 5 • T E S T I N G

15.3 E X A M P L E P R O B L E M
We will use a fairly simple example to show the kinds of testing that a developer might use
and some of the tools that Python provides to support the developer in this activity.

15.3.1 NBA Efficiency
The National Basketball Association (NBA) has collected various statistics throughout its his-
tory. These statistics are freely available at sites such as http:// basketballreference.
com/stats_download.htm and include information on coaches, players, and teams. You
can use this information to do a variety of interesting analysis of your team, similar to the
“safe lead” heuristic we presented in Section 2.1.3. One of the statistics used to rate players
is called a player’s efficiency.4 The basic efficiency formula for a player has the following
form:

efficiency = ((points + rebounds + assists + steals + blocks) − ((shotAttempts − shotsMade)

+ (freeThrowsAttempts − freeThrowsMade) + turnOvers))/gamesPlayed

Those players who are most efficient by this measure are often the best players. If we take
a look at all the players who have ever played in the NBA, which players were the most
efficient?

15.3.2 Basic Algorithm
The data we will use are from the “player career.csv” file provided by the NBA. It contains
all the player statistics for every player of the NBA. It is a CSV file, which we have worked
with before. The file is simply formatted, so we chose to not use the csv module.

Figure 15.2 shows the first five lines of the file. The first line of the file describes the
file format, though the abbreviations are terse. Table 15.1 describes the format a little more
clearly.

ilkid,firstname,lastname,leag,gp,minutes,pts,oreb,dreb,reb,asts,stl,blk,turnover,pf,fga,fgm,fta,ftm,tpa,tpm

ABDELAL01 ,Alaa,Abdelnaby,N,256,3200,1465,283,563,846,85,71,69,247,484,1236,620,321,225,3,0

ABDULKA01 ,Kareem,Abdul-jabbar,N,1560,57446,38387,2975,9394,17440,5660,1160,3189,2527,4657,28307,15837,9304,6712,18,1

ABDULMA01 ,Mahmo,Abdul-rauf,N,586,15633,8553,219,868,1087,2079,487,46,963,1107,7943,3514,1161,1051,1339,474

ABDULTA01 ,Tariq,Abdul-wahad,N,236,4808,1830,286,490,776,266,184,82,309,485,1726,720,529,372,76,18

FIGURE 15.2 The NBA player career statistics file, first five lines.

4 http://www.nba.com/statistics/efficiency.html There is also a more complicated evaluation called the Performance Efficiency Rating.

http://basketballreference.com/stats_download.htm
http://basketballreference.com/stats_download.htm
http://www.nba.com/statistics/efficiency.html

1 5 . 3 • E X A M P L E P R O B L E M 637

Field Abbreviation Meaning Field Abbreviation Meaning

1 ilkid Unique ID 2 firstName Player’s first name

3 lastName Player’s last name 4 leag League (NBA or ABA)

5 gp Games played 6 minutes Minutes played

7 pts Points scored 8 oreb Offensive rebounds

9 dreb Defensive rebounds 10 reb Total rebounds

11 asts Total assists 12 stl Total steals

13 blk Total blocks 14 to Total turn overs

15 pf Personal fouls 16 fga 2-pt shots attempted

17 ftm 2-pt shots made 18 fta Free throws attempted

19 ftm Free throws made 20 tpa 3-pt shots attempted

21 tpm 3-pt shots made

TABLE 15.1 NBA Player Fields

Our goal is to read in this information, calculate the player efficiency for each player,
and report the top x players, where x is something like the top 10, top 50, top 100. Our
first pass at an algorithm is:

for every line in the player file:
gather the player information
calculate the efficiency for each player

find the top X players
print the top players in a nice format

By now, you know that divide and conquer is the right design approach for this problem.
There are three functions we need:

calc efficiency: Gather the information from the file, calculate that player’s efficiency,
and store it in a dictionary. The function takes as arguments a file line (string) and
a dictionary. The key is the concatenation of the player’s last name and first name.
The value will be another dictionary of all the gathered player stats as well as the
just-calculated efficiency.

find most efficient: Takes as arguments the player dictionary and how many of the
top players we wish to identify. It returns a sorted list of tuples, where the first element
is the efficiency and the second element is the player name.

print results: Takes the list of tuples results and nicely prints the top x players.

A first cut at the main program and the function calc efficiency is shown in
Code Listing 15.1.

638 C H A P T E R 1 5 • T E S T I N G

Code Listing 15.1

1 def calc efficiency (line str, the dict):
2 """ Calculate p laye r e f f i c i e n c y . """
3 fields list = line str.split(',')
4 first name = fields list[1]
5 last name = fields list[2]
6

7 # mapping f i e l d s in a l in e to th e i r par t i cu la r var iab l e .
8 # league i s a s t r , every th ing e l s e an int
9 leag,gp,mins,pts,oreb,dreb,reb,asts,stl,blk,to,pf,fga,fgm,fta,ftm,tpa,
tpm = \

10 fields list[3],int(fields list[4]),int(fields list[5]),int(fields
list[6]),\

11 int(fields list[7]),int(fields list[8]),int(fields list[9]),int
(fields list[10]),\

12 int(fields list[11]),int(fields list[12]),int(fields list[13]),\
13 int(fields list[14]),int(fields list[15]),int(fields list[16]),\
14 int(fields list[17]),int(fields list[18]), int(fields list[19]),\
15 int(fields list[20])
16

17 # ca l cu l a t e the p laye r ' s e f f i c i e n c y
18 efficiency = ((pts+reb+asts+stl+blk)-((fga-fgm)+(fta-ftm)+to))/gp
19

20 the dict[last name+first name] = {'first':first name, 'last':last name, \
21 'league':leag,'mins':mins,'gp':gp,'pts':pts,\
22 'oreb':oreb,'dreb':dreb,'reb':reb,'asts':asts,\
23 'stl':stl,'blk':blk,'to':to,'fga':fga,'fgm':fgm,\
24 'fta':fta,'ftm':ftm,'tpa':tpa,'tpm':tpm,\
25 'efficiency':efficiency}
26

27 def find most efficient(the dict,how many):
28 ' ' ' return l i s t o f t up l e s (e f f i c i e n c y , name) from dic t ionary
29 how many i s number o f t up l e s to gather ' ' '
30 # user must implement
31 return []
32

33 def print results(lst):
34 ' ' ' p r e t t y pr int the r e s u l t s ' ' '
35 print('The top {} players in efficency are'.format(len(lst)))
36 print('*'*20)
37

38 # main program as a funct ion
39 def main (file name):
40 nba file = open(file name)

1 5 . 4 • I N C O R P O R A T I N G T E S T I N G 639

41 nba dict={}
42 for line str in nba file:
43 calc efficiency(line str,nba dict)
44 results list = find most efficient(nba dict,20)
45 print results(results list)
46 nba file.close()

Though the function code is a bit long, it really doesn’t do much. It seems long because
of all the data we are gathering. In summary, the code does the following:

Line 3: Split the line into fields based on comma separation.
Lines 4–5: Extract the first and last name.
Lines 9–15: These lines represent a large multiple assignment and conversion of each field

value.
Line 18: Calculate the efficiency.
Line 20: Fill the dictionary. Each key is a string consisting of last name+first name.

The associated value is another dictionary containing all the player statistics, including
the efficiency.

Now, let’s add some testing and error checking to both the main function and
calc efficiency.

15.4 I N C O R P O R A T I N G T E S T I N G
In Chapter 5, we introduced exceptions to catch user errors. By “user errors,” we mean to
catch the misuse of the program by the user as we have defined it and to try, if possible,
to keep the program running. For example, if a user mistypes the file he or she wishes to
open, we catch the error and reprompt. We, the developers, are protecting ourselves from
the users. These are, in a sense, expected errors. We know where the user provides input,
and at that point, we check to see whether the user has provided what we requested. If not,
we do what we can to help.

15.4.1 Catching User Errors
What errors should we catch in the example code? As we have discussed, this is often a hard
question to answer. In looking at our example code, where does the user touch the program,
and how can we catch any potential errors? It would be most useful if you were to look at
the code and think about it before you go further.

640 C H A P T E R 1 5 • T E S T I N G

A couple of things come to mind:
� The user might enter a nonexistent file.
� The user might enter an existing file but not a file with the format we expect (could be

the wrong file, could be the correct file but the format changed).

To catch the nonexistent file case, we use an exception to the open clause on line 40.
If it can open the file, then there is no error (an else situation) and we continue processing,
otherwise we catch the resulting IOError, print a useful error message, and quit the
program. Code Listing 15.2 shows this approach.

Code Listing 15.2

def main ():
file name = input('NBA player file name:')
try:

nba file = open(file name)
except IOError:

print('File named {} not found'.format(file name))
else: # f i l e opened c o r r e c t l y

nba dict={}
for line str in nba file:

if 'ilkid' in line str:
continue

calc efficiency(line str,nba dict)
results list = find most efficient(nba dict,20)
print results(results list)
nba file.close()

To catch that the file is correctly formatted, we need to do a little more work. First, it
would be good to notice that the first line of the file is different from all the others! The
fields on the first line are all strings, and the remaining lines have integers in fields from
index 4 on. We need to ignore that first line (header line) for our regular processing, but,
at the same time, we can use that line to check whether this is a correctly formatted file.
The first field of the first line should have the string ‘ilkid’. If not, it isn’t the correct file.
We grab the first line using the readline method and check the first field (the first five
characters). If it has the right value, we keep going, otherwise, we raise an IOError. Code
Listing 15.3 shows the approach.

Code Listing 15.3

def main ():
file name = input('NBA player file name:')

1 5 . 4 • I N C O R P O R A T I N G T E S T I N G 641

try:
nba file = open(file name)

except IOError:
print('File named {} not found'.format(file name))

else:
nba dict={}
check the f i r s t l i n e
line str = nba file.readline()
if line str[0:5]!='ilkid':

print('Bad File Format, first line was:',line str)
raise IOError

p r o c e s s the r e s t o f the l i n e s
for line str in nba file:

calc efficiency(line str,nba dict)
results list = find most efficient(nba dict,20)
print results(results list)
nba file.close()

What about checking the format of each line? You could look at that in two ways. On
the one hand, we remember that all input is evil and this is indeed input. On the other, this
is a file specifically provided with the correct format. To be safe you could check each line:
for number of fields, and for format of each field, before it gets processed. We leave that as
an exercise.

15.4.2 Catching Developer Errors
In testing, we must also ask the question, who is protecting us, the developers, from
ourselves? How do we check for situations that should never happen if the program we
designed is used correctly? This is the job of the assert statement. We use assert to
check for programming errors, things that should never happen. We use exceptions to check
for events that, although unpredictable (they may or may not happen), can occur. The best
description is perhaps that assert tells the programmer when he or she has made a mistake,
while exceptions tell the users when they have made a mistake. We insert assert into our
code to guard against mistakes that the programmer should never make. If they do, the
assert catches the programming error, forcing the developer to fix it.

The Python function assert takes two arguments. The first is a Boolean that is
checked by assert. If the Boolean check is True, the code continues. If the Boolean
check is False, assert will raise an error, AssertionError. If a second expression,
separated by a comma, also exists, it is printed at the time of the error. These arguments
allow the developer to print out information about the error when it occurs.

642 C H A P T E R 1 5 • T E S T I N G

The calc efficiency Function
What could we assert in the calc efficiency function? We know the following:

� The first argument, the line being processed, should never be empty. That would be a
misuse of the function.

� The second argument should be a dictionary. That is what the function requires.
� The value gp (standing for “games played”) should never be 0 (only players that have

played games should be in the file). This is an issue because our efficiency formula
divides by gp.

These are all issues that should never happen. If they do, then there is something wrong
from the point of view of the programmer and it should be repaired.

The snippet in Code Listing 15.4 inserts thoseassert calls in thecalc efficiency
function.

Code Listing 15.4

def calc efficiency (line str, the dict):
a s s e r t s on the parameters
assert isinstance(the dict,dict),\

'bad parameter, expected a dictionary, got {}'.format(the dict)
assert isinstance(line str,str) and line str != '', \

'bad parameter, expected string, got {}'.format(line str)

line str = line str.strip()
fields list list = line str.split(',')
first name = fields list list[1]
last name = fields list list[2]

mapping f i e l d s l i s t in a l in e to th e i r par t i cu la r var iab l e .
league i s a s t r , every th ing e l s e an int
leag,gp,mins,pts,oreb,dreb,reb,asts,stl,blk,to,pf,fga,fgm,fta,ftm,tpa,

tpm = \
fields list list[3],int(fields list[4]),int(fields list[5]),int

(fields list[6]),\
int(fields list[7]),int(fields list[8]),int(fields list[9]),int

(fields list[10]),\
int(fields list[11]),int(fields list[12]),int(fields list[13]),\
int(fields list[14]),int(fields list[15]),int(fields list[16]),\
int(fields list[17]),int(fields list[18]), int(fields list[19]),\
int(fields list[20])

gp can ' t be 0
assert gp!= 0, '{} {} has no games played'.format(first name, last name)

1 5 . 5 • A U T O M A T I O N O F T E S T I N G 643

need to addre s s t h i s problem !
a s s e r t last name+first name not in the dict ,
' dup l i ca t e on name {} ' . format (first name + last name)

ca l cu l a t e the p laye r ' s e f f i c i e n c y
efficiency = ((pts+reb+asts+stl+blk)-((fga-fgm)+(fta-ftm)+to))/gp

the dict[last name+first name] = {'first':first name, 'last':last name,\
'league':leag,'mins':mins,'gp':gp,'pts':pts,\
'oreb':oreb,'dreb':dreb,'reb':reb,'asts':asts,\
'stl':stl,'blk':blk,'to':to,'fga':fga,'fgm':fgm,\
'fta':fta,'ftm':ftm,'tpa':tpa,'tpm':tpm,\
'efficiency':efficiency}

We can also assert that a player’s name should not be duplicated in the file and as
part of the testing add that to the function. Interestingly, when we tried that, our assert was
triggered. Upon inspection of the file, it turns out that player names are duplicated. Some
players played in the old ABA league and then transfered to the NBA. Some players moved
back and forth and have many entries! You will note that our program does not deal with
this problem, but by thinking of what to test we discovered that issue and noticed that we
should fix it. That is what testing is about!

15.5 A U T O M A T I O N O F T E S T I N G
Now that we have placed tests in our code, it would be good to try different examples
against our code to make sure that we have covered all our important cases. In fact, we
should recheck our examples every time we make a change to the code. It is always possible
that, by making some code change, some test example will no longer run properly.

Let’s also be honest. If it were left up to the individual developer to manually run tests
after every code change, those tests would not get done. No developer believes that his
or her changes have caused any problem! Thus, Python has provided some tools to help
automatically run test code.

15.5.1 doctest
The doctest module provides a way to test individual elements of your code to make sure

VideoNote 15.1
Doctest

that they perform as you expect. As such, doctest is an example of a unit-test approach, a
way to test each piece (function/method/class) of your program. How doctest does this
is interesting.

644 C H A P T E R 1 5 • T E S T I N G

The doctest module operates by placing examples of code use, or misuse, as a
part of the docstring of a piece of code—in this case, a function. Each example provides
the code invocation, as well as the results that are expected to be returned as a result of
the invocation. In this way, the docstring serves as documentation, as good examples of code
use and misuse, and as an automatic test system, since we can ask doctest to run all the
examples and make sure the desired output is provided.

Each doctest example is provided by prefacing the example with the characters “>>>.”
These are the standard prompt characters by the Python shell. What follows the “>>>” on
the same line is the invocation. The next lines are the expected output that the invocation
should generate. You can easily collect the examples by simply running your example in the
Python shell, and then cut and paste the example invocation and output into the function.
How easy is that!

Code Listing 15.5 illustrates placing doctest examples in the main function.

Code Listing 15.5

def main (file name):
' ' '

>>> main (' ')
F i l e named not found

>>> main(' x ')
Traceback (most r e c en t c a l l l a s t) :

. . .
r a i s e IOError (' bad f i l e format . ')

IOError : bad f i l e format .
>>> main(' p layer caree r . c s v ')
The top 10 p l a y e r s in e f f i c e n c y are
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Wilt Chamberlain : 41 .50
B i l l Ru s s e l l : 31 .71

Oscar Robertson : 31 .61
Bob P e t t i t : 31 .11

Kareem Abdul−jabbar : 30 .93
Larry Bird : 29 .77

Elgin Baylor : 29 .74
Michael Jordan : 29 .19
Magic Johnson : 29 .10

Charles Barkley : 28 .16
' ' '
try:

nba file = open(file name)
except IOError:

1 5 . 5 • A U T O M A T I O N O F T E S T I N G 645

print('File named {} not found'.format(file name))
else:

nba dict={}
line str = nba file.readline()
if line str[0:5]!='ilkid':

raise IOError('bad file format.')
for line str in nba file:

calc efficiency(line str,nba dict)

results list = find most efficient(nba dict,10)
print results(results list)
nba file.close()

if name == ' main ':
import doctest
doctest.testmod()

This code lists three example invocations: the first two check error conditions (missing
file and file of the wrong format), and the last checks a successful run. Each invocation
begins with the “>>>” and is followed by the expected output. Note the special code listed
at the bottom:

if name == ' main ':
import doctest
doctest.testmod()

This code is a shortcut to invoke doctest. Remember that the special variable
name is the name of the current module. If that module is named ' main ',

then this means that the code was invoked from the command line—i.e., python
nbaEfficiency.py. In this case, the doctest module is run and every element that
has doctest examples is invoked.

Interestingly, if you were to invoke that code from the command line as listed, you
would get no output. The doctest code is run, but it only provides output if the test fails.
However, if you want to see all the tests run in detail, you can invoke the command line code
with the special '-v' switch at the end of the line. This switch setting will provide detailed
information of the doctest run. The session below lists a run of our main function using
the '-v' switch.

>python nbaEfficiency.py -v
Trying:

main('')

646 C H A P T E R 1 5 • T E S T I N G

Expecting:
File named not found

ok
Trying:

main('x')
Expecting:

Traceback (most recent call last):
...

IOError: bad file format, line was: this is a bad file
ok
Trying:

main('player career.csv')
Expecting:

The top 10 players in efficency are

Wilt Chamberlain : 41.50
Bill Russell : 31.71

Oscar Robertson : 31.61
Bob Pettit : 31.11

Kareem Abdul-jabbar : 30.93
Larry Bird : 29.77

Elgin Baylor : 29.74
Michael Jordan : 29.19
Magic Johnson : 29.10

Charles Barkley : 28.16
ok
4 items had no tests:

main
main .calcEfficiency
main .findMostEfficient
main .printResults

1 items passed all tests:
3 tests in main .main

3 tests in 5 items.
3 passed and 0 failed.
Test passed.

Note that by running with the '-v' switch at the end of the line, you not only get
information on the tests run but also information on which elements had tests available and
which did not.

Once the example tests are in place, you can run all the tests by simply running the
code. This feature makes test creation at the unit level very easy. The only drawback can be
the length of the docstring now associated with the code.

E X E R C I S E S 647

15.5.2 Other Kinds of Testing
Python provides a number of support modules for testing. The unittestmodule provides
a much greater level of control to run testing. The module nose5 provides a greater level
of control, and both can do some system testing. In-depth coverage of those modules is
beyond the scope of an introductory book and is left to the reader.

Summary
In this chapter, we introduced the built-in testing capabilities of Python. These techniques
assist in developing better code.

Exercises
1. The find most efficient function is not implemented. Implement it as indicated

in the comments.

2. Refactor your find most efficient function to use comprehension. Did the
change make your function more readable?

3. Having written the find most efficient function, add tests for that function
using the doctest approach discussed in the chapter.

4. In Chapter 7 an anagram function was developed. Add tests using the doctest
approach of this chapter.

5. Multiple exercises developed a multi find function. Add tests using the doctest
approach of this chapter.

6. In Chapter 9, the example counted words in the Gettysburg Address. Add tests using
the doctest approach of this chapter.

7. Choose a function that you have written and add tests using the doctest approach
of this chapter.

5 http://code.google.com/p/python-nose

http://code.google.com/p/python-nose

This page intentionally left blank

•16C H A P T E R

Recursion: Another
Control Mechanism

A journey of a thousand miles begins with a single step.

Lao-Tzu (��),The Way of Lao-Tzu

EARLIER YOU LEARNED ABOUT LOOPING AND SELECTION AS CONTROL TECHNIQUES. IN

this chapter you learn about another control mechanism: recursion. Recursion does not add
any power to our programming, as looping and selection are sufficient for all programs, but
there are some solutions that are easier to both understand and implement with recursion.
In fact, there is a class of languages called functional programming languages, such as Haskell,
Scheme, and Lisp, that feature recursion as their primary control mechanism. Once under-
stood, recursion can be a natural way to express a solution to a problem, so we need it in
our problem-solving tool box.

16.1 W H A T I S R E C U R S I O N ?
Syntactically, recursion is simple: it is a function that calls itself. For example:

def f(n):
...
f(n-1)

At first blush, however, it looks rather odd. Take a look ahead at the recursive function
factorial in Section 16.2. It seems that there is nothing there. It looks quite “circular,”
defining something in terms of itself. How could that work?

649

650 C H A P T E R 1 6 • R E C U R S I O N : A N O T H E R C O N T R O L M E C H A N I S M

The key is to understand that recursion is not circular, if there is a condition under
which the circularity ends: it “bottoms out” at some point. That is the key. Understanding
recursion implies understanding two parts of your problem:

� How to break your problem into smaller pieces, each of which can be addressed by your
function and then “put back together”

� Determining when the recursive invocation of a function ends, when the recursion
“bottoms out”

Recursion ends up being an algorithm that, in itself, uses a form of divide and conquer,
our frequently applied approach for designing algorithms. Recursion breaks a problem down
into pieces, down to the “smallest” piece, solves that smallest piece, and then reassembles
the smaller solutions into an overall answer.

Correctly controlling recursion requires dealing with two different cases. The first case
terminates a recursive sequence and is known as the base case. If the base case is missing, the
recursive function calls go on forever. Such a program never halts with an answer—known
as infinite recursion. The second case is the recursive step. It both breaks the problem down
and reassembles the partial solutions.

Recursion can occur in many situations. The English language allows for recursion,
and a classic (and humorous) case of infinite recursion is a recursive definition that simply
refers to itself. Here is an actual, and useless, definition of a “recursive definition” from the
Jargon File1:

Recursion:
see Recursion

Another example of a recursive definition of an English word is a definition of one’s
ancestors:

def ancestors:
One’s parents are one’s ancestors (base case).
The parents of one’s ancestors are also one’s ancestors (recursive step).

We can think of Lao-Tzu’s quote at the beginning of this chapter as a recursive descrip-
tion of how to make a long journey. For the purpose of illustrating recursion, let’s rewrite
the quote as “a journey of a thousand steps begins with single step.” If you have taken 999
steps, you can easily take that 1000th step. If you have taken 998 steps, you can easily take
the 999th step. The process continues recursively until you get to that first step (the base
case), and you know how to take that first step.

Written recursively, our modified version of Lao-Tzu’s quote becomes:

def journey:
The first step is easy (base case).
The nth step is easy after already completing the previous n − 1 steps (recursive step).

1 A glossary of so-called computer hacker slang; see: http://www.catb.org/esr/jargon

http://www.catb.org/esr/jargon

1 6 . 2 • M A T H E M A T I C S A N D R A B B I T S 651

We can express this journey of a thousand steps as a Python function that expresses
each step as a string—the first step is the string “Easy.” All other steps are strings in the
form of step(n). A call to take step(4) results in the string 'step(4) + step(3) +
step(2) + Easy'. Recursively, the take step function begins with n = 4, then calls
itself with n = 3, and so on until it is called with n = 1. At that point, the calling sequence
reaches its end, and we return from the calls backwards from n = 1 with string “Easy.” See
Code Listing 16.1.

Code Listing 16.1

def take step(n):
if n == 1: # base ca s e

return "Easy"
else:

this step = "step(" + str(n) + ")"
previous steps = take step(n-1) # r e cu r s i v e c a l l
return this step + " + " + previous steps

>>> take Step(4)
'step(4) + step(3) + step(2) + Easy'

We’ll look at how the control is managed a little later. An astute reader will notice that
the else is not necessary, because if n != 1, the first return will not happen, and the
program will proceed to the else clause anyway.

16.2 M A T H E M A T I C S A N D R A B B I T S
Let’s consider a recursive definition from mathematics. The factorial function may be
familiar to you. The factorial function is so frequently used in mathematics and statistics
that the shorthand expression uses an exclamation point. That is, factorial(4) is written
as 4! and its value is 4! = 4 × 3 × 2 × 1. Because 1! is defined to have a value of 1, we can
define the factorial function recursively as follows:

factorial(n):
factorial(1) = 1 # base case
factorial(n) = n * factorial(n - 1) # recursive s tep

Our base case, where we “bottom out,” is when the factorial function gets an argument
of 1. At that point, we know the answer (no calculation is required), and we return the
value 1.

652 C H A P T E R 1 6 • R E C U R S I O N : A N O T H E R C O N T R O L M E C H A N I S M

The recursive step both breaks the problem down and reassembles the partial answer.
At every step, we divide the problem into two parts:

� The value n
� The value of factorial(n-1)

Once those two parts are calculated, we combine them (the conquer step) by multiplying
the two values and returning that product.

That is, to find factorial(4) recursively:

4! = 4 * 3!
but we know 3! = 3 * 2!
but we know 2! = 2 * 1!
but we know 1! = 1 base case
so 2! = 2 * 1 = 2
so 3! = 3 * 2 = 6
so 4! = 4 * 6 = 24

Written to look more like Python, we can write the function as:

factorial(n):
if n == 1, return 1 # base case
if n > 1, return n * factorial(n - 1) # recursive case

Code Listing 16.2

def factorial(n):
""" Recur s ive f a c t o r i a l . """
if n == 1:

return 1 # base ca s e
else:

return n * factorial(n-1) # r e cu r s i v e ca s e

>>> factorial(4)
24

Another classic example of recursion is the Fibonacci sequence, which first appeared in
print almost a thousand years ago. The author, Fibonacci, presented the sequence as an artifi-
cial example of how rabbits might breed. If you start with two rabbits, they will breed, to cre-
ated a third rabbit. The three rabbits will produce two more offspring, to yield a total of five.

1 6 . 2 • M A T H E M A T I C S A N D R A B B I T S 653

Fibonacci’s pattern to find the number of rabbits in the next generation was to add the totals
from the two previous generations:

1 # fir s t rabbit
1 # second rabbit
2 = 1 + 1 # two rabbit s (summing the fir s t and second rabbit s)
3 = 1 + 2 # three rabbit s (summing the previous two generations)
5 = 2 + 3 # five rabbit s (summing the previous two generations)
8 = 3 + 5 # eight rabbit s (summing the previous two generations)
. . .

What is our base case? In the case of the Fibonacci sequence, there are two base cases,
because we are summing the previous two generations in our recursive step. That is, our first
base case is the “first rabbit” and the second base case is the “second rabbit.”

For the recursive step, we divide the data into two parts:

� The value for fibonacci(n-1)
� The value for fibonacci(n-2)

The conquer stage is to sum those two values together, once calculated, and return that
sum as the function value.

The resulting recursive definition is (in English first):

fibonacci(n):
For the first two cases (n=0 or n=1): there is 1 rabbit # base case
if n > 1: sum the previous two generations # recursive case

The definition translated into Python is shown in Code Listing 16.3.

Code Listing 16.3

def fibonacci(n):
""" Recur s ive Fibonacci sequence . """
if n == 0 or n == 1: # base c a s e s

return 1
else:

return fibonacci(n-1) + fibonacci(n-2) # r e cu r s i v e ca s e

>>> fibonacci(4)
5
>>> fibonacci(6)
13

654 C H A P T E R 1 6 • R E C U R S I O N : A N O T H E R C O N T R O L M E C H A N I S M

fibonacci(4) = fibonacci(3) + fibonacci(2)
so we next determine fibonacci(3) = fibonacci(2) + fibonacci(1)
and fibonacci(2) = fibonacci(1) + fibonacci(0) base case
the base case yields fibonacci(2) = 1 + 1 = 2
so fibonacci(3) = 2 + fibonacci(1) = 2 + 1 = 3
and fibonacci(4) = fibonacci(3) + fibonacci(2) = 3 + 2 = 5

P R O G R A M M I N G T I P

Recursion must have a base case, and it must appear first in the function.

VideoNote 16.1
Recursion

16.3 L E T ’ S W R I T E O U R O W N : R E V E R S I N G
A S T R I N G

You’ve seen some examples—now let’s write our own recursive function. Let’s reverse a
string. You already know an easy way to reverse a string (remember the slicing with a
negative step in Section 4.1.5), but let’s write a recursive function that does the same
job.

As always, we need to define the base case and the recursive step. In the recursive step
we need to define the divide process and the conquer process. A skeleton function would
then look like Code Listing 16.4:

Code Listing 16.4

r e cu r s i v e funct ion to r e v e r s e a s t r i n g

def reverser (a str):
base ca s e
r e cu r s i v e s t e p

divide into par t s
conquer / rea s s emble

the str = input("Reverse what string:")
result = reverser(the str)
print("The reverse of {} is {}".format(the str,result))

What is the base case for a string reversal? Well, what string is easy to reverse? Certainly
a string with a length of 1 is trivial to reverse—it is just the string itself! We put that in as
the base case as shown in Code Listing 16.5.

1 6 . 3 • L E T ’ S W R I T E O U R O W N : R E V E R S I N G A S T R I N G 655

Code Listing 16.5

r e cu r s i v e funct ion to r e v e r s e a s t r i n g

def reverser (a str):
base ca s e
if len(a str) == 1:

return a str
r e cu r s i v e s t e p

divide into par t s
conquer / rea s s emble

the str = input("Reverse what string: ")
result = reverser(the str)
print("The reverse of {} is {}".format(the str,result))

Now let’s consider the divide-and-conquer step. We need to answer the two ques-
tions: how to divide the data up and how to reassemble (conquer) those data once
the parts are calculated. As you have seen previously, these two steps are often done
together.

What to do? Let’s assume that reverser does what it is supposed to do: reverse a
string. If that is true, how can we take advantage of that? If we were to break a string into
two pieces—one sent to the reverser function recursively and one not—what data should
we send?

Consider the string 'abcde'. If the reverser function works as advertised, we could
just take the first letter, in this case, 'a', and append that to the end of the rest of the string
if that string were reversed. That is,

beginning with: first-character + rest-of-string
the reverse is: reverse of rest-of-string + first-character

or, in Python,

reverser(a str[1:]) + a str[0]

This approach reverses the position of the first letter and leaves the work of reversing
the rest of the string to a recursive call. In typical recursive fashion, we continue with the
process until we hit a string of length 1, and then we can begin reassembly.

Code Listing 16.6 shows the final product. We add some print statements just to
show the “divide” steps as they happen, the “bottoming out” of the base case, and then
finally the reassembly.

656 C H A P T E R 1 6 • R E C U R S I O N : A N O T H E R C O N T R O L M E C H A N I S M

Code Listing 16.6

Rever se a s t r i n g using a r e cu r s i v e funct ion .

def reverse (a str):
""" Recur s ive funct ion to r e v e r s e a s t r i n g . """
print("Got as an argument:",a str)
base ca s e
if len(a str) == 1:

print("Base Case!")
return a str

r e cu r s i v e s t e p
else:

new str =reverse(a str[1:]) + a str[0]
print("Reassembling {} and {} into {}".format(a str[1:],a str[0],

new str))
return new str

the str = input("What string: ")
print()
result str = reverse(the str)
print("The reverse of {} is {}".format(the str,result str))

>python reverser.py
What string:abcde

Got as an argument: abcde
Got as an argument: bcde
Got as an argument: cde
Got as an argument: de
Got as an argument: e
Base Case!
Reassembling e and d into ed
Reassembling de and c into edc
Reassembling cde and b into edcb
Reassembling bcde and a into edcba

16.4 H O W D O E S R E C U R S I O N A C T U A L L Y W O R K ?
How is it possible for a function to call itself, and how does the computer keep track of all
the function calls that result?

1 6 . 4 • H O W D O E S R E C U R S I O N A C T U A L L Y W O R K ? 657

16.4.1 Stack Data Structure
The computer keeps track of function calls on a data structure known as a stack. A stack is
a data structure that grows and shrinks only at one end. Imagine a stack of plates, as you
might find in a cafeteria (see Figure 16.1).

FIGURE 16.1 A stack of plates, cafeteria-style. [© Jupiterimages/Thinkstock/Getty Images]

The stack of plates is spring-loaded. You may add more plates to the stack, but only
the top plate is available. If you remove a plate from the top, the stack of plates lifts up,
presenting the next user with a new “top” plate. The process can continue until the stack fills
up or the stack empties out. One can imagine a data structure with much the same behavior.
You can add and remove new data to and from the stack. The order of availability is often
called LIFO, meaning Last In, First Out. The last data item you add to the stack is the first
item you can retrieve. Such a stack might fill to capacity or run out of data items to provide.
A data structure stack is shown in Figure 16.2. A stack has three standard operations: pop,
push, and top. The names are really quite descriptive of our “stack of plates”:

pop: Pop removes the item at the top of the stack and returns it. The stack is one element
smaller as a result. In our plate analogy, this action removes the top plate from the stack
of plates.

658 C H A P T E R 1 6 • R E C U R S I O N : A N O T H E R C O N T R O L M E C H A N I S M

1 1 1 1 1

2 2 2 2

3 4

push(1) push(2) push(3) push(4)pop()
yields 3

S
ta

ck
 g

ro
w

th

FIGURE 16.2 The operation of a stack data structure.

push: Push takes a parameter and adds that parameter as an element to the top of the
stack. The stack is one element larger as a result. The item just pushed becomes the top
element of the stack. In our plate analogy, this action puts a plate on top of the stack of
plates.

top: Top returns, but does not remove, the top element of the stack. The stack is not
modified. In our plate analogy, in this action we simply look at the top plate.

We can implement a stack data structure using a Python list. Remember, append adds
an element to the end of the list (the top), and pop removes an element from the end of a
list (the top). The top method corresponds the last element of the list. The correspondence
is shown in Table 16.1.

Stack Terminology Python Terminology Action
top() List[-1] Return the value of top of stack

push(x) List.append(x) Push x onto top of stack
y = pop() y = List.pop() Pop top off of stack and assign to y

TABLE 16.1 Stack Terminology Translated to Python

Here is a Python session illustrating stack behavior using Python list methods. We name
the stack “stack list” and illustrate pop, push (Python append), and top:

>>> stack list = [1,2,3] # c r ea t e a s ta ck
>>> x = stack list.pop() # pop an item o f f the s ta ck
>>> x # the poped item was a s s i gned to x
3
>>> stack list # pop removed the item
[1, 2]
>>> stack list.append(7) # push 7 onto the s ta ck (using append)
>>> stack list
[1, 2, 7]

1 6 . 4 • H O W D O E S R E C U R S I O N A C T U A L L Y W O R K ? 659

>>> stack list[-1] # top ()
7
>>> stack list # top () doesn ' t change the s ta ck
[1, 2, 7]

16.4.2 Stacks and Function Calls
Python keeps track of function calls by pushing the namespace for each function call onto
a stack. Examining the stack during recursive calls illustrates how Python keeps track of the
many calls to the same function.

Remember the recursive factorial function of the previous section:

factorial(n):
if n == 1, return 1 # base case
if n > 1, return n * factorial(n - 1) # recursive case

Let’s examine the stack when we execute factorial(4). First, let’s adjust our factorial
function to print information about the state of each recursive function call. An indent
variable was added so that deeper recursion gets more indentation so that it is easier to
visualize the recursion. Printed statements with the same indentation are made within the
same function instance. Also, the recursive function call is moved to a separate line to allow
us to print a line right after the recursive call returns. Included in that line is the value
returned by the recursive call. See Code Listing 16.7.

Code Listing 16.7

def factorial(n):
""" r e cu r s i v e f a c t o r i a l with print to show operat ion . """
indent = 4*(6-n)*" " # more indent on deeper r e cur s i on
print(indent + "Enter factorial n = ", n)
if n == 1: # base ca s e

print(indent + "Base case.")
return 1

else: # r e cu r s i v e ca s e
print(indent + "Before recursive call f(" + str(n-1) + ")")
s epara t e r e cu r s i v e c a l l a l lows print a f t e r c a l l
rest = factorial(n-1)
print(indent + "After recursive call f(" + str(n-1) + ") = ", rest)
return n * rest

>>> factorial(4)
Enter factorial n = 4
Before recursive call f(3)

Enter factorial n = 3

660 C H A P T E R 1 6 • R E C U R S I O N : A N O T H E R C O N T R O L M E C H A N I S M

Before recursive call f(2)
Enter factorial n = 2
Before recursive call f(1)

Enter factorial n = 1
Base case.

After recursive call f(1) = 1
After recursive call f(2) = 2

After recursive call f(3) = 6
24

Notice the the pattern of calls. First is a series of “Enter-Before” pairs that reflect entering
each function call (“Enter . . . ”) followed by a recursive call (“Before . . . ”). This series of
“Enter-Before” pairs reflects the ever deeper recursive calls until we finally reach the base
case. Each is indented as we go deeper. The base case is followed by a series of “After . . . ”
lines, one after each return from a recursive call. Notice how each “After . . . ” line matches
up with a corresponding “Before . . . ” line—identical indentation indicates that the lines
are being printed in the same function instance.

The overall pattern is a series of recursive calls that go deeper and deeper until the base
case is reached. This is followed by an unwinding of the sequence of calls, each completing
and returning a value until the original factorial value is computed.

To see how Python actually keeps track of the values and recursive function calls, see
Figure 16.3. The figure shows the call stack for factorial(4). As time moves from left to
right we see the stack grow until the base case is reached and then shrink until we get back to
the original call. To fit the notation into the figure, we abbreviated “factorial(n)” to “f(n)”.

n 	 4
f(3) 	 ?
return 4∗?

n 	 4
f(3) 	 ?
return 4∗?

n 	 3
f(2) 	 ?
return 3∗?

n 	 3
f(2) 	 ?
return 3∗?

n 	 4
f(3) 	 ?
return 4∗?

n 	 2
f(1) 	 ?
return 2∗?

n 	 3
f(2) 	 ?
return 3∗?

n 	 4
f(3) 	 ?
return 4∗?

n 	 2
f(1) 	 ?
return 2∗?

n 	 1

return 1

n 	 2
f(1) 	 1
return 2∗1

n 	 3
f(2) 	 ?
return 3∗?

n 	 4
f(3) 	 ?
return 4∗?

n 	 3
f(2) 	 2
return 3∗2

n 	 4
f(3) 	 ?
return 4∗?

n 	 4
f(3) 	 6
return 4∗6

f(4) f(3) f(2) f(1) f(2) f(3) f(4)

S
ta

ck
 G

ro
w

th

Time

FIGURE 16.3 Call stack for factorial(4). Note the question marks.

1 6 . 5 • R E C U R S I O N I N F I G U R E S 661

Values that are yet to be determined are labeled with a question mark (?). For example, in
the first call to factorial(4), we see that n = 4, f (3) = ? (the recursive call hasn’t been
completed), and we will eventually execute return 4 * ? once “?” is resolved by the
recursive call. The second stack shows a frame added for the recursive factorial(3)call.
Note the question marks that remain in the bottom frame as well as in this new frame,
because we have not yet determined what those values are. In fact, no question marks are
resolved until we reach the base case at factorial(1). At that point, we finally have a
value (1) to return. After that point, the rightmost stacks successively shrink as the recursive
function calls return and the question mark values are resolved. Eventually, we see a final
return 6*4 that yields our final value of 24.

Compare Figure 16.3 to the output we printed above for the same factorial(4)call
earlier. There is a direct correspondence between the height of the stack in the figure and
the amount of indentation in the output. Also, observe the values of n and the recursive
calls f (n − 1) in both the output and in the figure. It is important to be able to see the
correspondence between the stack and the values output by the program.

16.5 R E C U R S I O N I N F I G U R E S

16.5.1 Recursive Tree
Recursion is used to describe fractals—mathematical figures that can be used to describe
many highly irregular, real-world objects in nature. Figures drawn recursively can also
help illustrate how recursion works. Consider a recursively drawn “tree” in Figure 16.4(a).
Branches are drawn recursively by first drawing a straight line, then turning left, drawing

1

2

34

5
6

78
9

10
11

12
13

14

15

17

18

19
20

21

22

23
16 24

25

26
27

28

29
30

31

FIGURE 16.4 Recursive tree: (a) Python-drawn on left; (b) order-of-drawing on right.

662 C H A P T E R 1 6 • R E C U R S I O N : A N O T H E R C O N T R O L M E C H A N I S M

a (recursive) branch, turning right, drawing a (recursive) branch, and then returning back
along the original line. Figure 16.4(b) shows the order in which the branches were drawn.

The recursive algorithm follows. The “edge” labels refer to the numbered edges in
Figure 16.4(b). Notice how when we draw edge 2, we recursively draw that whole left
branch before returning to this instance and drawing edge 17 and its recursively drawn
right branch. Each time we encounter the first recursive branch, we draw a left branch.
For example, edges 2, 3, 4, and 5 are all drawn first as we successively call on drawing a
left branch. When we eventually reach the base case after drawing edge 5, we finally return
from a (left) branch call, turn right 90◦, and draw a right branch (edge 6). We then move
backward along edge 4, which completes that recursive branch instance, so we can turn
right and recursively execute a right branch starting with edge 7. And so on.

At the highest level, our drawing looks like this:

draw edge 1
turn left
draw edge 2 and left branch # recursive case
turn right
draw edge 17 and right branch # recursive case
turn left
move back

Figure 16.4(a) was drawn using the following Python program with Turtle Graphics.
Notice how the level parameter is reduced on each call, so it provides a way to work
down to the base case. We added a length parameter to our program so that branches
become shorter as we progress to lower levels. Since Turtle Graphics draws relatively slowly,
it is instructive to watch as the branches are drawn. Notice the pattern: forward, turn left,
recursive call, turn right, recursive call, move back. See Code Listing 16.8.

Code Listing 16.8

Breadth−f i r s t t r e e

from turtle import *

def branch(length, level):
if level <= 0: # base ca s e

return
forward(length)
left(45)
branch(0.6*length, level-1) # r e cu r s i v e ca s e : l e f t branch
right(90)

1 6 . 5 • R E C U R S I O N I N F I G U R E S 663

branch(0.6*length, level-1) # r e cu r s i v e ca s e : r i gh t branch
left(45)
backward(length)
return

turn to g e t s t a r t e d
left(90)
branch(100,5)

16.5.2 Sierpinski Triangles
Drawing fractal patterns is a fun way to experiment with recursion. Here is another fractal
figure, the Sierpinski triangle (Figure 16.5). Like the tree we drew previously, it has a simple
pattern: forward, recursive call, backward, turn left 120◦. It must also keep track of levels,
so we can define a base case to stop, and there is a length parameter, so the edges get smaller
with each recursive call. When it reaches the base case, it stamps a triangle shape at that

FIGURE 16.5 Sierpinski triangle.

664 C H A P T E R 1 6 • R E C U R S I O N : A N O T H E R C O N T R O L M E C H A N I S M

spot. Finally, a dot marks the start of each recursive call to help us observe the calls. As with
the tree example, it is instructive to watch the Turtle Graphics slowly draw the triangle so
that you can observe the recursive calls in action. See Code Listing 16.9.

Code Listing 16.9

Draw Si e rp in sk i f i gu r e

from turtle import *

def sierpinski(length, depth):
if depth > 1: dot() # mark po s i t i on to b e t t e r s e e r e cur s i on
if depth == 0: # base ca s e

stamp() # stamp a tr iangular shape
else:

forward(length)
sierpinski(length/2, depth-1) # r e cu r s i v e c a l l
backward(length)
left(120)
forward(length)
sierpinski(length/2, depth-1) # r e cu r s i v e c a l l
backward(length)
left(120)
forward(length)
sierpinski(length/2, depth-1) # r e cu r s i v e c a l l
backward(length)
left(120)

sierpinski(200,6)

16.6 R E C U R S I O N T O N O N R E C U R S I O N
We mentioned earlier that recursion provides a different way to view a problem, but it
does not add any computing power to our tool kit. In fact, there exists an algorithm that
can convert a recursive algorithm to a nonrecursive algorithm. Such an algorithm can be
found in an algorithms textbook.2 Because there is overhead in calling functions, the many
function calls in a recursive algorithm can be slower than the nonrecursive version. When
that is the case, one can think of a solution recursively, write and test a recursive solution,
and then convert the solution into a more efficient nonrecursive one.

2 For example, R. Sedgewick, Algorithms (Boston: Addison-Wesley, 1988).

E X E R C I S E S 665

Summary
In this chapter, we introduced the concept of recursion. Some problems are naturally
recursive, and writing code recursively can be particularly effective for crafting a solution to
such problems. For example, we show that fractals can be very complex, but many can be
expressed with relatively simple recursive algorithms.

The recursive function syntax is simple: a function simply calls itself. However, a base
case is needed at the beginning of the function so that the series of recursive calls will
eventually terminate.

Exercises
1. A common task in an editor application, such as WordPad or TextEdit, is parentheses

matching. For example, “(()())” is a valid string of parentheses, because each opening
bracket has a corresponding closing bracket. On the other hand, “(()” is not a valid
string. Another invalid example would be “)(,” as the opening bracket should precede
the closing bracket.

Write a recursive function that takes a string as input and returns True if the string
is valid with respect to matched parentheses. To simplify matters, begin by considering
that the input string has only “(” or “)” and no other characters.

2. An XML file has entries of the type:

<abc>
<xyz> Mother </xyz>
<pqr> Father </pqr>
<lmn> Brothers </lmn>
<def> Sisters </def>

</abc>

In this example, <abc> is a start tag and </abc> is the corresponding end tag, and
so on for the others. Your task is to write a recursive function to check whether each
start tag has a corresponding end tag in the correct order. Return True if the XML file
is valid; otherwise, return False.

The order is important here—the end tag for any tag cannot occur before its
corresponding start tag.

3. When developing the Rational class, we created a function to calculate the greatest
common denominator: gcd. Refactor the function to be recursive.

4. A recursive function to calculate the Fibonacci numbers was presented in this chapter.
However, each time a number was calculated, it recalculated previous Fibonacci num-
bers. Refactor your recursive function to retain previous, already calculated Fibonacci
numbers and reference them instead of recalculating them. A list could be used, but a
dictionary works better. The name for this technique is “memoization.”

666 C H A P T E R 1 6 • R E C U R S I O N : A N O T H E R C O N T R O L M E C H A N I S M

5. A formula exists for calculating the amount of money in a savings account that begins
with an initial value (the initial principal, P) and earns interest with an annual interest
rate i , for n years: P (1 + i)n .

Write a recursive function that calculates that same value, and check your result
against the formula.

6. Converting decimal numbers to binary numbers can be done recursively. Write a
function that takes a positive int argument and returns the corresponding binary
number as an int composed of only 1s and 0s. For example, convert(5) returns
the int: 101.

The insight for this problem comes from the fact that the rightmost digit of a
decimal n is easy to calculate. It is the remainder when dividing by the base 2: n%2.
To get the next rightmost digit, you take the resulting quotient, i.e., n2 = n/2, and
find its remainder, n2%2, which is the next digit. Unfortunately, that generates the
digits from right to left, and we want them from left to right. We could easily do that
nonrecursively using string concatenation or string reversal, but in this exercise you are
to use recursion to recursively calculate the digits. Effectively, you are letting recursion
reverse the ordering: think in terms of calculating the rightmost digit as described
previously, but then let recursion reverse the digits.

7. The United States still uses the traditional English system of measurement. Each inch
on a ruler is marked off as fractions, using tick marks that look like this:

The tallest tick mark is the one-half-inch mark, the next two tallest ticks are the quarter-
inch marks and even shorter ones are used to mark the eighths and sixteenths, and so
on. Write the following recursive function:

drawRuler(x, y, width, height)

where (x,y) represents the lower-left corner of a rectangle that has dimensions
width × height. The ruler will be drawn within that rectangle. The function
draws a line along the rectangle’s bottom edge and then recursively draws vertical tick
marks. The rectangle itself is not drawn. The middle-most tick mark is centered in the
rectangle and is as tall as the rectangle height. Each smaller tick mark is half the height
of the next larger one. Once the tick marks become sufficiently small, the recursion
terminates. The recursive insight to this problem is to recognize that the middle-most
tick mark subdivides the rectangle into two smaller rectangles, each of which is a smaller
ruler of its own. Use Turtle Graphics to draw the figure.

•17C H A P T E R

Other Fun Stuff
with Python

People rarely succeed unless they have fun in what they are doing.

Dale Carnegie, author/lecturer

WE HAVE COME A LONG WAY IN OUR PROGRAMMING JOURNEY, AND WE HAVE LEARNED

to do many interesting and useful things using Python. The experience you have gained will
serve you well in your nascent Python career.

However, we would be remiss in leaving you with the impression that we have covered all
of Python. We most definitely have not! Python has many features that we have overlooked
for the sake of teaching you the fundamentals of programming. That is, when we had to
make a choice, we chose not to introduce a new Python feature when the programming
concept we were introducing could be done using our existing Python skills. We hoped to
focus on programming and less on Python when such a choice was presented.

However, we really do want to talk about some of the cool things you can do in Python,
so we have added those topics here at the end of the book. These things may not be essential
to understanding programming or even Python, but they are useful tools that allow you to
solve problems in interesting ways.

So, enjoy these interesting aspects of Python.

17.1 F U N C T I O N S T U F F
Because functions are such an important aspect of programming, Python has added quite
a few features that make the programming and use of functions easier. They may not be
essential to writing functions, but they can definitely be very useful! Let’s take a look.

667

668 C H A P T E R 1 7 • O T H E R F U N S T U F F W I T H P Y T H O N

17.1.1 Having a Varying Number of Parameters
Imagine that you are faced with the task of re-implementing the standard Python print
function with the same basic operation. You might start by writing a skeleton definition as we
have frequently done, providing the name of the function and the list of parameters it needs.

However, at that point you already have a problem. How many parameters should a
re-implementation of print have? That turns out to be a hard question to answer. Think
about it, how many arguments might be provided in a print function call: 0, 2, 10,
100? The answer is that it varies, and having a varying number of arguments (and hence
parameters) is a bit of a problem. What should we do? We could write the function with
some large number of parameters, most with defaults, but that is unwieldy.

What Python does (and other programming languages do as well) is to provide a way
to pass a varying number of arguments to a function. In fact, Python provides two ways to
deal with this problem.

Let’s review two concepts: the difference between positional arguments and keyword
arguments. Positional arguments are arguments that are provided in the function call at
some position in the argument list. The argument is passed to the parameter based on
their positions: the first argument to the first parameter, and so on. Keyword arguments are
designated in the call with an equal (=) sign. Keyword arguments are passed to parameters
based on the name of the parameter.

It can be messy to mix keyword arguments and positional arguments in one function
call. There is a detailed algorithm for how such a mix can occur, but here are two pieces of
advice:

� Don’t mix positional and keyword arguments, because it can be tangled. If you don’t
do it right, you can get syntax errors.

� If you mix the two anyway, provide all the positional arguments first followed by
keyword arguments, making sure you are not trying to “double assign” a parameter
with both a positional and keyword argument.

With that in mind, let’s look at the two approaches.

Multiple Positional Arguments
Python allows you to define a special parameter in the parameter list of a function definition
that will gather all the extra positional arguments provided by a function call. What makes
this parameter special is that it is preceded by an asterisk (*), sometimes called a star. Take
a look at the following session.

>>> def my function (param1, param2, *param rest):
print('p1={}, p2={}, p3={}'.format(param1, param2, param rest))

>>> my function(1,2)
p1=1, p2=2, p3=()
>>> my function(1,2,3,4,5)

1 7 . 1 • F U N C T I O N S T U F F 669

p1=1, p2=2, p3=(3, 4, 5)
>>> my function('hi','mom','how','are','you')
p1=hi, p2=mom, p3=('how', 'are', 'you')
>>> my function(1) # 2 arg s required
Traceback (most recent call last):
File "<pyshell#7>", line 1, in <module>
my function(1)

TypeError: my function() takes at least 2 arguments (1 given)
>>> my function(param1=1, param2=2, 3,4,5,6) # po s i t i ona l f i r s t
SyntaxError: non-keyword arg after keyword arg
>>>

Placing a single star in front of a parameter name means that any extra position
arguments are gathered as a tuple and associated with that parameter. If no extra arguments
are passed, then the starred parameter (such as *param rest) has the value of an empty
tuple. This means that, no matter how many arguments you pass, the starred parameter
will store them. Note that in the session, the two arguments are required (two positional
arguments before *param rest) for the function call to proceed. The session demonstrates
the “positional arguments first” error mentioned above.

Note that you cannot use a starred parameter as a keyword argument. It is forbidden
by Python syntax rules.

Multiple Keyword Arguments
Having provided a way to pass multiple positional arguments, Python also provides a
way to pass an unknown number of keyword arguments where keyword parameters have
not all been provided. That is, you can write an argument of the form my key=value
where my key has not been defined as a parameter of the function. The following session
demonstrates this process.

>>> def a function(param1, param2, **param dict):
print(param1, param2, param dict)

>>> a function(1,2)
1 2 {}
>>> a function(param2=1, param1=2)
2 1 {}
>>> a function(param2=1, param1=2, new key=10, another key=20)
2 1 {'new key': 10, 'another key': 20}
>>> a function(1,2, new key=10, another key=20)
1 2 {'new key': 10, 'another key': 20}
>>> a function(1,2,3) # too many po s i t i ona l arg s
Traceback (most recent call last):
File "<pyshell#28>", line 1, in <module>
a function(1,2,3)

TypeError: a function() takes exactly 2 positional arguments (3 given)
>>>

670 C H A P T E R 1 7 • O T H E R F U N S T U F F W I T H P Y T H O N

In this case the special parameter requires two stars (**). The two stars indicate that any
extra keyword arguments are assigned to a dictionary stored in the two-starred parameter
(such as **param dict). The keywords are assigned as string keys in the dictionary. Thus,
the call bill=100 would create an entry 'bill':100 in the dictionary.

Using a two-starred parameter allows more freedom in mixing positional and keyword
arguments. Positional arguments can be provided first in the argument list, followed by
keyword arguments. However, only the number of positional arguments in the function
definition can be used positionally. That is, a two-starred parameter will not pick up extra
positional arguments.

As with a starred parameters, two-starred parameter names cannot be used as a keyword
argument.

Both starred and two-starred parameters can be used in the same function as long as
positional (starred) parameters preceded named parameters (two-starred). We illustrate with
Code Listing 17.1, which creates a grade dictionary. It accepts the dictionary and a default
grade as two positional arguments, then a variable number of students (who will be assigned
the default grade), then a variable number of keyword arguments (student=grade) that will
also be entered in the dictionary. The associated session is also shown.

Code Listing 17.1

def setup grades (grade dict, default grade, *student tuple, **special dict):
' ' ' Set up a grade di c t ionary . Al l s tuden t s (var iab l e number) g e t

the de fau l t grade exc ep t f o r any keyword pa i r s provided
' ' '
for student in student tuple:

grade dict[student] = default grade

for student,grade in special dict.items():
grade dict[student] = grade

grade dict = {}

setup grades(grade dict, 0, 'wanda', 'fred', 'irving', bill=100, rich=100)

for key,val in grade dict.items():
print('{:10} | {:5}'.format(key,val))

>>>
wanda | 0
bill | 100
irving | 0
rich | 100
fred | 0
>>>

1 7 . 1 • F U N C T I O N S T U F F 671

17.1.2 Iterators and Generators
Iterators have been discussed multiple times, especially iteration over a collection of elements.
We know that all collections can be placed in a for loop and that, subsequently, the loop
will move through every element of the collection.

We have not talked much about how iteration is done. In so doing, we can gain some
insight into the underlying structure of Python and even get an idea of how we might write
our own classes so that they, too, could do iteration.

Iterator Objects
Like nearly everything else in Python, iterators are objects. As an object, iterators support two
attributes: a next () method and an iter () method. Both of these methods
are more easily accessed using their respective Python built-in functions: next and iter.
These two functions are relatively easy to understand:

next(an iterator): The next function takes a single argument, an iterator, and returns the
next element of the iteration. It raises a StopError exception when it reaches the end
of the elements it can provide.

iter(an iterator): The iter function takes as an argument an iterator and returns that
iterator.

It is the next function that is at the heart of iteration. Consider the following
session, which iterates through a file named test.txt with contents we have seen previously,
namely:

First Line
Second Line
Third Line
Fourth Line

>>> test file = open('test.txt', 'r')
>>> test file
< io.TextIOWrapper name='test.txt' mode='r' encoding='UTF-8'>
>>> iter(test file)
< io.TextIOWrapper name='test.txt' mode='r' encoding='UTF-8'>
>>> next(test file)
'First line\n'
>>> next(test file)
'Second line\n'
>>> next(test file)
'Third line\n'
>>> next(test file)
'Fourth line\n'
>>> next(test file)

672 C H A P T E R 1 7 • O T H E R F U N S T U F F W I T H P Y T H O N

Traceback (most recent call last):
File "<pyshell#7>", line 1, in <module>
next(test file)

StopIteration
>>> next(test file)
Traceback (most recent call last):
File "<pyshell#8>", line 1, in <module>
next(test file)

StopIteration
>>>

A file object is, in fact, an iterator object. It can be used as an argument in both the
iter and next function calls. When used in a next call, it yields the next item in the
iteration: a line of the file. Every subsequent call yields the next item (next line in this case)
until no more items are available, at which point the next call yields a StopIteration
exception, and it will continue to do so for subsequent calls.

Iterator objects are interesting because they store some state information about the
elements they are iterating over. That is, they “remember” what the last call of next
provided and provide the following element (whatever the order may be for the elements of
that type) for subsequent calls.

Collections and Iterator Objects
Collections themselves are not iterators. They cannot be used as an argument to the next
method. However, all collections are iterable objects. By that we mean, we can create an
iterator from any collection. We do this by use of the iter function.

iter(a collection): Creates an iteration object for the particular collection.

When called with a collection as an argument, iter yields an iterator object specific
for the type of collection (a str yields a str iterator, a list a list iterator,
etc.). It is specific for the type, as it matters what elements are provided and their order,
depending on the type (a str for the next character in the sequence, a dict for one of
the keys but without any implicit order, etc.). Each call of next on the iterator yields the
next value. Note that if we use the list function with the iterator object as an argument,
all the elements are provided and a list of the elements is created. The session below shows
working with iterators from collections.

>>> range object = range(10)
>>> type(range object)
<class 'range'>
>>> next(range object)
Traceback (most recent call last):
File "<pyshell#32>", line 1, in <module>
next(range object)

1 7 . 1 • F U N C T I O N S T U F F 673

TypeError: range object is not an iterator
>>> range iter = iter(range(10))
>>> type(range iter)
<class 'range iterator'>
>>> next(range iter)
0
>>> next(range iter)
1
>>> dict iter = iter({'a':1, 'b':2, 'c':3})
>>> type(dict iter)
<class 'dict keyiterator'>
>>> next(dict iter)
'a'
>>> next(dict iter)
'c'
>>> next(dict iter)
'b'
>>> next(dict iter)
Traceback (most recent call last):
File "<pyshell#41>", line 1, in <module>
next(dict iter)

StopIteration
>>>dict iter = iter({'a':1, 'b':2, 'c':3})
>>>list(dict iter)
['a', 'c', 'b']
>>>

How for Works
Given what we know now, it should be clear how a for loop works. When started, a for
loop uses the iter function to create an iterator object from its target. If the target is already
an iterator object, then iter returns that object. If the target is a collection, iter returns
a new iterator object specific for that collection. The loop then calls the next function on
the iterator object during each iteration of the loop. It continues to do so until the next
function call results in a StopIteraton exception, which the for loop captures and uses
to end the loop.

Generators
We can write our own functions that act like iterator objects. These are functions that yield
a sequence of elements as a result of their operation but yield them one at a time in response
to a next call. As a result, these functions remember what element they yielded last and
know what element to yield next.

We used the word yield in the previous paragraph, and there is a good reason for that.
The only thing that differentiates a regular, everyday function and a generator is a single

674 C H A P T E R 1 7 • O T H E R F U N S T U F F W I T H P Y T H O N

Python keyword, yield. Instead of a return statement, generators use the yield statement
to return values. In so doing, the function changes significantly. When a yield expression
is evaluated, the associated function generates its next value, only its next value, returns it,
and then waits for its next function call at the yield. When the function ends (cannot
yield more data), the next call raises a StopIteration error. If you take a look back at
the paragraph above, this generator looks a lot like an iterator. It is, in fact, a way to write
your own iterator. Let’s look at a session.

>>> def regular function(int list, an int):
result list=[]
for num in int list:

result list.append(num * an int)
return result list

>>> def generator function(int list, an int):
for num in int list:

yield num * an int

>>> regular function([1,2,3], 5)
[5, 10, 15]
>>> generator function([1,2,3],5)
<generator object generator function at 0x1018c1e10>
>>> gen object = generator function([1,2,3],5)
>>> next(gen object)
5
>>> next(gen object)
10
>>> next(gen object)
15
>>> next(gen object)
Traceback (most recent call last):
File "<pyshell#62>", line 1, in <module>
next(gen object)

StopIteration
>>> gen object = generator function([1,2,3],5)
>> list(gen object)
[5, 10, 15]
>>>

We wrote two versions of a function that multiplies each element of a list of integers by
an integer argument. The first, regular function, iterates through the list, multiplies
each element by the integer parameter, and collects the results in a list result list. This

1 7 . 1 • F U N C T I O N S T U F F 675

list is returned. The second version, generator function, performs the same operation
but with two differences:

� This function uses the yield statement instead of the return statement.
� As a result, no intermediate result list is created and returned. Each result is

yielded individually.

It is also interesting to note the result of the invocations of the two functions. The first
yields a list result as expected. The second simply returns a generator object. That generator
object can then be used as an argument to the next function to yield the next result in
the sequence. When all the results have been provided, subsequent calls to next raise a
StopIteration error. If we use a generator object as the argument to the list function,
it captures all the elements of the generator in a list. See, a generator looks very much like
an iterator!

Why Generators?
Why would having such a thing as a generator be useful? You can write a generator to
represent a sequence of elements without actually having to generate all the elements in
that sequence. Like the range function, a generator is a representation of a sequence that
could be very long, but only a representation, not the sequence. In fact, you can write a
generator to represent a sequence that is infinitely long. Remember the Fibonacci sequence
from Section 16.2? We wrote the solution to that sequence recursively, but here is a generator
version of the Fibonacci sequence in Code Listing 17.2.

Code Listing 17.2

def fibo generator():
first, second = 0,1
while True:

yield first
first,second = second, first + second

fibo generator object = fibo generator()

print(next(fibo generator object))
print(next(fibo generator object))

for count in range(100):
print(next(fibo generator object), end=', ')

676 C H A P T E R 1 7 • O T H E R F U N S T U F F W I T H P Y T H O N

How many elements of the series will this program generate? As many as you like. Every
call to next will yield the next value. This generator really does represent the series, and all
the elements of the series can be generated by this function. Yet, we only get as many as we
wish. Generators can be very useful in this way.

17.1.3 Other Functional Programming Ideas
Though we have not talked explicitly about it, we have really worked with two different
programming paradigms in Python:

Procedural: Procedural programming is the use of instructions, followed line by line,
that change the values of variables and other elements using built-in or user-defined
functions.

Object oriented: Object-oriented programming uses classes and instances as a way to en-
capsulate programming elements and provide interfaces to those elements via methods.

There is another (there are, in fact, many others) programming paradigm that Python
also provides access to, called functional programming. Functional programming is focused
on the use of functions, but functions that do not have side effects as we have often seen.
A function in this paradigm focuses on taking input, doing a computation, and providing
output without side effects.

The use of generators, iterators, and comprehensions is a kind of functional program-
ming. These are functions that take inputs and provide outputs but without side effects.
You can chain the output of one as the input of another and create complicated programs
that rarely set values, only pass data elements through functions. Let’s look at a few other
functional elements you can find in Python.

Anonymous Functions: lambda
There is a special way to define a function called a lambda expression. The word lambda
is a kind of homage to the original method used to define functional programming, the
lambda calculus.1 However, for our purposes it is a regular function definition with three
restrictions:

� The body of a lambda expression can contain only a single line.
� The body can only contain an expression (something that returns a value), no statements

or other elements.
� The result of the expression is automatically returned; no return statement is required

(or allowed).

The form of a lambda is:

lambda arg list: expression

1 http://en.wikipedia.org/wiki/Lambda calculus

http://en.wikipedia.org/wiki/Lambda_calculus

1 7 . 1 • F U N C T I O N S T U F F 677

The following session shows some examples.

>>> def add func (int1, int2):
return int1 + int2

>>> add lambda = lambda int1,int2: int1 + int2
>>> add func(2,3)
5
>>> add lambda(2,3)
5
>>>

You might ask why this style is useful. It has two uses. One, anywhere an expression can
be used, you can use a lambda as it is—in effect, an expression (it always returns something;
it has to). Second, if you need a function for something but only for some small task, you
can use a lambda. A lambda is essentially an anonymous function—a function without a
name. Some applications below will show how you might use a lambda.

17.1.4 Some Functional Tools: map, reduce, filter
The three functions map, filter, and reduce are good examples of functional program-
ming tools.

map: This function takes as arguments a function and one or more iterables. For one
iterable, the function should take one argument; for two iterables, two arguments. It
applies the provided function to each element of the iterable(s). It returns an interable,
a map object.

filter: This function takes as arguments a Boolean function and an iterable. It applies the
function to each element of the iterable and collects those elements for which the
function returns True. It returns an iterable, a filter object.

reduce: This function is part of the functools module. It takes as arguments a function
of two arguments and an iterable. The function is applied first to the first two elements
of the iterable and is then reapplied to the previous result and the third element of the
iterable, then reapplied to the previous result and the fourth element, and so on. It
returns the value that results from the application.

An example of their use is shown in the following session.

>>> map result1 = map(lambda x: x + 1, [1,2,3,4,5])
>>> map result1
<map object at 0x1018c7290>
>>> list(map result1)
[2, 3, 4, 5, 6]
>>> list(map result1)
[]

678 C H A P T E R 1 7 • O T H E R F U N S T U F F W I T H P Y T H O N

>>> map result2 = map(lambda x,y: x + y, [1,2,3,4,5], [10,20,30,40,50])
>>> list(map result2)
[11, 22, 33, 44, 55]
>>> filter result1 = filter(lambda x : x.isdigit(), 'abc123')
>>> filter result1
<filter object at 0x1018c75d0>
>>> list(filter result1)
['1', '2', '3']
>>> from functools import reduce
>>> reduce result = reduce(lambda x,y: x + y, [1,2,3,4,5])
>>> reduce result
15
>>>

A couple of things to note:

� With both map and filter, the return result is an iterable. If you use the result as an
argument to list, the contents of the iterable are shown.

� With both map and filter, the result, once iterated over, is exhausted. Further
iteration yields no value.

� We used only lambda expressions in the examples (since we just talked about them),
but any function with the correct number of arguments works.

17.1.5 Decorators: Functions Calling Functions
Of all the interesting things you can do with functions, the Python decorator is one of the
most interesting—but also one of the hardest to understand, at least the first time through.
Once you understand decorators we think you will find them very useful, but it takes a little
work. Here we go.

Imagine you have written a set of functions that each performs the same task—say, add
up all the integers in a list of integers—but you’d like to know which one is the fastest. How
can you do this without changing the functions?

One way is shown in Code Listing 17.3.

Code Listing 17.3

import time

def add list1 (int list):
' ' ' add a l i s t o f in t s , i t e r a t i on ' ' '
result sum=0
for num in int list:

result sum = result sum + num
return result sum

1 7 . 1 • F U N C T I O N S T U F F 679

def add list2(int list):
' ' ' add a l i s t o f in t s , use bui l t in sum ' ' '
return sum(int list)

def timer func(int list):
t1 = time.time()
add list1(int list)
t2 = time.time()
print("First function took {:7f} seconds".format(t2 - t1))

t1 = time.time()
add list2(int list)
t2 = time.time()
print("First function took {:7f} seconds".format(t2 - t1))

big l i s t
int list = list(range(100000))

run timer
timer func(int list)

We define the two functions, add list1 and add list2, which are the functions
we want to test. The first iterates through the list, adding up the values. The second uses
the built-in sum function.

We then define a third function, timer func. The timer func uses the time
module, in particular the time.time function (the function time in the module time).
The time.time function returns the present time to some number of fractions of a second
depending on the operating system you are using.

To time a particular invocation of one of our two functions, we then wrap around the
function call two invocations of time.time. The difference between the two times should
be the difference it took to run the function. We do this for both functions.

The following session shows the result of running our code. Note that the time varies
depending on how much other stuff is going on in your computer, but the general difference
is shown: the built-in approach is definitely faster.

>> ================================ RESTART ================================
>>>
First took 0.0063229 seconds
Second took 0.0014639 seconds
>>> ================================ RESTART ================================
>>>
First took 0.0077262 seconds
Second took 0.0019238 seconds

680 C H A P T E R 1 7 • O T H E R F U N S T U F F W I T H P Y T H O N

>>> ================================ RESTART ================================
>>>
First took 0.0072241 seconds
Second took 0.0014629 seconds
>>> ================================ RESTART ================================
>>>
First took 0.0072711 seconds
Second took 0.0018129 seconds
>>>

What we showed was that we can write an extra timer function, and every time we need
to time a function we can modify the timer function to include the new function to time.
That works, but it is inconvenient. We don’t have to rewrite the function we want to time,
but we do have to rewrite the timer function. That seems kind of silly in a way, because
what we do, the wrapping part, is exactly the same except for the particular function we are
timing. Can we get around that?

Well, the answer is yes, but let us do it in two parts.

Passing a Function Object as a Parameter
We have said this before, but let us say it again. Everything in Python is an object, and
a function is no different. As such, we can pass a function as a parameter to another
function (in this case, our timer func) and have the parameter function invoked inside
timer func. That’s worth saying again. We can pass a function as a parameter and invoke
the passed function wherever we pass it to. How to do that? Execution of a function is
indicated by adding an argument list to the end of the function name. If it is a function, it
is invoked. If not, you get an TypeError, indicating it is not a callable item. Take a look
at Code Listing 17.4 and session.

Code Listing 17.4

import time
import functools

def add list1 (int list):
' ' ' add a l i s t o f in t s , i t e r a t i on ' ' '
result sum=0
for num in int list:

result sum = result sum + num
return result sum

def add list2(int list):
' ' ' add a l i s t o f in t s , use bui l t in sum ' ' '
return sum(int list)

1 7 . 1 • F U N C T I O N S T U F F 681

def add list3(int list):
' ' ' use a map to do the addition ' ' '
return functools.reduce(lambda x,y: x + y, int list)

def timer func(int list, *func tuple):
' ' ' time a tup l e o f func t ion s and repor t ' ' '
func counter = 1

for func in func tuple:
t1 = time.time()
func(int list)
t2 = time.time()
print("Function {} took {:7f} seconds".format(func counter, t2 - t1))
func counter += 1

big l i s t
int list = list(range(100000))

run timer
timer func(int list, add list1, add list2, add list3)

>>>
Function 1 took 0.006709 seconds
Function 2 took 0.001549 seconds
Function 3 took 0.015519 seconds
>>> add list1
<function add list1 at 0x1020cee20>
>>> add list1(int list)
4999950000
>>> renamed func = add list1
>>> renamed func
<function add list1 at 0x1020cee20>
>>> renamed func(int list)
4999950000
>>> my int = 10
>>> my int(int list)
Traceback (most recent call last):
File "<pyshell#10>", line 1, in <module>
my int(int list)

TypeError: 'int' object is not callable
>>>

We did a few things here. First, we added yet another test function, add list3, that
used reduce and a lambda function.

682 C H A P T E R 1 7 • O T H E R F U N S T U F F W I T H P Y T H O N

Second, the session shows that a function is just like any other object. We can assign
the function object to another name, here renamed func, and still invoke it under the
new name. Only a function is callable, and Python reports an error if you try to call a
non-function.

Third, and most important, we really changed timer func. Instead of taking a single
parameter, and a list of integers to add, we also provided a varying length, positional
argument that is a list of functions. We pass in the functions we want to run, and run them.
For each function we run, we wrap the function with time checks and invoke the function
with the list of integers. We can pass as many functions to test as we like to timer func and
it will time all of them! Note how timer func is invoked. It now passes all the functions
we want to test as arguments. Note that the reduce lambda combination is the slowest.

Decorators
The previous example was an improvement because we wrote a function that accepts other
functions as parameters. We can then invoke the passed function and wrap whatever we
need around the invocation, such as timing information. Can we do better than that?

Yes, a little better. It would be even better if we could find a way to automatically do the
wrapping on the function itself instead of calling a separate wrapper function. That is, could
we easily turn on or turn off the kind of wrapping we are doing by somehow augmenting the
function itself? That, in essence, is what a decorator does. Let’s look at it in Code Listing 17.5
and then explain it.

Code Listing 17.5

1 import time
2 import functools
3

4 def timer decorator(func):
5 ' ' ' time a tup l e o f func t ion s and repor t ' ' '
6 def wrapper(int list):
7 t1 = time.time()
8 result = func(int list)
9 t2 = time.time()

10 print("Function took {:7f} seconds".format(t2 - t1))
11 return result
12 return wrapper
13

14 # decorate add li s t1
15 @timer decorator
16 def add list1 (int list):
17 ' ' ' add a l i s t o f in t s , i t e r a t i on ' ' '
18 result sum=0

1 7 . 1 • F U N C T I O N S T U F F 683

19 for num in int list:
20 result sum = result sum + num
21 return result sum
22

23 # @timer decorator comment out decorat ion
24 def add list2(int list):
25 ' ' ' add a l i s t o f in t s , use bui l t in sum ' ' '
26 return sum(int list)
27

28 # and do i t by hand
29 add list2 = timer decorator(add list2)
30

31 @timer decorator
32 def add list3(int list):
33 ' ' ' use a map to do the addition ' ' '
34 return functools.reduce(lambda x,y: x + y, int list)
35

36 int list = list(range(100000))
37

38 print(add list1(int list))
39 print(add list2(int list))
40 print(add list3(int list))

>>>
Function took 0.007209 seconds
4999950000
Function took 0.001441 seconds
4999950000
Function took 0.013848 seconds
4999950000
>>>

The big idea here is found in the timer decorator function. Note that it takes in
a function as a parameter as we have seen before. The timer decorator function also
wraps the function parameter with timing, calls as before. However, the big differences are
in the following:

Line 6: Inside timer decorator we defined another function, here called wrapper,
that does the wrapping.

Line 12: What timer decorator returns is the internally defined function wrapper.

What does all that mean, wrapping the provided parameter function inside another
function and returning that function? Take a look at line 15 and line 29. Line 15 decorates
the function add list1, and line 29 does the decoration by hand. Look at that line 29.
What we have done is pass, as an argument, the original function (add list2) to the

684 C H A P T E R 1 7 • O T H E R F U N S T U F F W I T H P Y T H O N

decorator. The decorator creates a new function that wraps the original function and then
reassigns the new wrapper function to the same name as the parameter function. Having run
that code, the parameter to time decorator, used in wrapper, points to the original
function we are trying to wrap, and the original name of that function we are trying to wrap
is associated with the returned function wrapper. Since the wrapper function (which
is now also the add2 list function) takes a single argument, we call the new function
with that single argument. That’s all a decorator does: change the original function to be
associated with the new wrapped function.

Note a couple of things:

� Running a decorator changes the function that is decorated to be the wrapped function
in the decorator.

� It is easy to turn decoration on and off. Just comment/uncomment the decorator and
reload the code.

Why Is This a “Good Thing”?
With decorators, we now have the ability to modify the operation of a function without ever
changing the definition of the function. We just “wrap” whatever changes we want around
the function to change its behavior. We can even wrap built-in functions—functions to
which we do not have the definition—and change their behavior, and we can turn it on
and off at will. Very handy indeed!

17.2 C L A S S E S
Writing your own classes is an important part of Python programming. Python provides
some advanced tools to aid in the writing of classes. We will look at a few of them here.

VideoNote 17.1
Properties

17.2.1 Properties
You are probably familiar with writing spreadsheets using applications such as Excel. When
writing a spreadsheet, there are two kinds of elements (more really, but we only care about
two here) that you can put in the spreadsheet: actual values and a calculation that depends
on actual values. Figure 17.1 shows a very simple spreadsheet.

The fourth column, labeled “Sum of Grades” is not a value but a formula. It adds the
previous two values in the row, creating the sum value. If either of those two values is ever
modified, the formula will upgrade the sum to reflect that change. One way to phrase this is
to say that any change to one of the grade values will trigger a change to the formula result.
It triggers this update automatically, which is why spreadsheets are so useful.

It would be nice to have the same kind of trigger mechanism in our instances. If we
need a particular attribute of an instance to depend on other attributes, then whenever the

1 7 . 2 • C L A S S E S 685

FIGURE 17.1 A simple spreadsheet with a formula. [Screenshot by Microsoft. Copyright ©
2011 by the Microsoft Corporation. Reprinted with permission.]

other attributes are changed, the trigger attribute will update itself based on these changes,
just like a spreadsheet. How can we do this?

Python provides properties as a way to write trigger functions for an attribute. It does this
in a very nice way. The normal way to fetch or set a value from the point of view of the person
using the attribute does not change. He or she can print(my instance.attribute)
or my instance.attribute = 10 as would normally be done. However, we the class
designers can change these attributes to be functions (triggers), not just values.

Python provides three activities that can be triggered: the setting of an attribute, the
fetching of an attribute, and the deletion of an attribute (though this is less commonly
used). The first two are often called “setters” and “getters”: functions used to set and get an
attribute’s value.

Let’s take a look at a simple example. We will create a Circle class that has attributes
radius, area, and circumference. The behavior we want is that, whenever radius
is set, then the other two values are properly updated. Furthermore, neither area nor
circumference should be settable: only radius. Lets take a look at Code Listing 17.6.

686 C H A P T E R 1 7 • O T H E R F U N S T U F F W I T H P Y T H O N

Code Listing 17.6

1 from math import pi
2

3 class Circle (object):
4 ' ' ' only al lows s e t t i n g radius . When radius i s s e t , area and circumference
5 are updated . Neither area nor c ircumference can be s e t .
6 ' ' '
7 def init (self, rad=1):
8 self. radius = rad
9 self. circumference = 2*pi*rad

10 self. area = rad*rad*pi
11 def str (self):
12 return 'Radius={:.2f}, Circumference={:.2f}, Area={:.2f}'.\
13 format(self. radius, self. circumference, self. area)
14

15 # propety func t ion s
16 def get radius(self):
17 print('in get radius')
18 return self. radius
19 def set radius(self,rad):
20 print('in set radius')
21 self. radius = rad
22 self. circumference = 2*pi*rad
23 self. area = rad*rad*pi
24 def get area(self):
25 print('in get area')
26 return self. area
27 def get circumference(self):
28 print('in get circumference')
29 return self. circumference
30

31 #proper ty a t t r i b u t e s
32 radius = property(fget=get radius,fset=set radius)
33 circumference = property(fget=get circumference)
34 area = property(fget=get area)

>>> default circle = Circle()
>>> new circle = Circle(2)
>>> print(default circle)
Radius=1.00, Circumference=6.28, Area=3.14
>>> print(new circle)
Radius=2.00, Circumference=12.57, Area=12.57
>>> new circle.radius

1 7 . 2 • C L A S S E S 687

in get radius
2
>>> new circle.radius = 4
in set radius
>>> print(new circle)
Radius=4.00, Circumference=25.13, Area=50.27
>>> new circle.area = 4
Traceback (most recent call last):
File "<pyshell#19>", line 1, in <module>
new circle.area = 4

AttributeError: can't set attribute
>>> dir(new circle)
[' Circle area', ' Circle circumference', ' Circle radius', ' class ',
' delattr ', ' dict ', ' doc ', '...
' sizeof ', ' str ', 'area', 'circumference', 'get area', 'get circumference',
'get radius', 'radius', 'set radius']
>>>

Some important ideas to pay attention to:

� The init function defines three attributes prefixed with double underscores ()
(lines 8–10). These indicate privacy. However, remember how to access them. Inside the
class methods, they are accessed normally. Outside the class methods, they get mangled
with the class name: so area gets mangled to Circle area. The dir function
shows this for the class instance new circle.

� We define four methods as our trigger functions: three getters (get radius,
get area, and get circumference) and one setter (set radius).

� All four of the trigger methods work with the private variables defined in init .
We’ll see why in a minute.

� Finally, the interesting part. At the very end (lines 32–34) we define three new attributes
and set them as properties using the property function. The property function
takes three keyword arguments: fget, fset, and fdel. Each is a function that gets
triggered under the appropriate access:
- fget is the function triggered on a get (a fetch of the property value).
- fset is the function triggered on a set (a setting of the property value).
- fdel is the function triggered on the deletion of a property value.

We defined three properties in our class. We can access those properties as if they were
normal attributes. To make that obvious, we have placed print statements in the getters
and setters (lines 17, 20, 25, 28). We don’t need these prints for the class, but they illustrate
what functions are being run (we can comment them out later).

In the session, when we write new circle.radius, it triggers the get radius
method as that is the function we associated with the fget property of radius (line 32).
Note what happens when we try to do new circle.area=4. Since we did not provide

688 C H A P T E R 1 7 • O T H E R F U N S T U F F W I T H P Y T H O N

an fget for the area property (line 34), there is no way to set that attribute. We have
made it a read-only attribute!

Effectively, we have made two sets of attributes in our class: the private attributes and
the public property attributes. If the class user only uses the property attributes, then by
setting the radius, all other values are updated automatically. If the user tries to update
the other attributes, an error is thrown. The associated methods manipulate the private
variables, which store the actual values. Thus, the properties are the public face of the class,
and the private attributes are hidden.

Properties give us a more powerful way to control how a class user accesses our class.
Properties are an active control on how the class gets used.

17.2.2 Serializing an Instance: pickle
Imagine you have developed a grade class for recording grades. Inside this class is a dictionary,
where the dictionary keys are the names of the students and the values are a tuple of the
recorded grades. You want to create an instance of this grade class for each class, develop a
nice interface to initialize, and modify the contents of the instance. All very nice!

However, let’s imagine that you want to work with this class instance over the course of
the semester (grades come in over time, remember?). Therefore, you want to be able to store
and reload the instance and its contents so you can save the state of the instance. You don’t
want to forget any grades, and you want to update them over time. How are you going to do
this? You could develop your own way to record the contents of an instance and reestablish
it, but that is likely a lot of work. Again, Python to the rescue.

Python implements what is called a serialization protocol. It is a big word, but serial-
ization means that we take a set of elements (objects, variables, etc.) and turn them into a
sequence that we can save, hence the serializing of the objects. The sequence that serializa-
tion creates is a series of instructions that when executed, re-create the original object and its
contents. This means you can save your data structures and their contents and later reload
them and pick up where you left off. Very nice.

Python provides a couple of ways to serialize objects, but the best is the pickle
module (and its close cousin, the cPickle, which is much faster). The main methods are
the following:

dumps(obj): This method creates the serialization string that can re-create the provided
object.

dump(obj, file): This method stores the serialization string of the object to a file
object. The file must have been opened for writing as a binary file.

load(file): This method loads from a file object whose file contains pickle (serialized)
strings and re-creates the object. The file associated must be opened for reading as a
binary file.

1 7 . 2 • C L A S S E S 689

Code Listing 17.7 creates a very simple implementation of a Grades class. The session
creates a Grades instance, fills it with grades, dumps the contents of the Grades instance
to a file, and then reloads it.

Code Listing 17.7

import pickle

class Grades(object):
' ' ' g rades are a l i s t o f t up l e s : t e s t , grade ' ' '
def init (self, name='', semester='FS12'):
self.grades dict = {}
self.class name = name
self.semester = semester

def add name(self, name):
self.grades dict[name] = []

def add grade(self, name, grade):
try:

self.grades dict[name].append(grade)
except KeyError:

print("Bad name, can't add grade")

def str (self):
' ' ' pr int in a lphabe t i ca l order ' ' '
grade list = list(self.grades dict.items())
grade list.sort()
result str = ''
result str += 'Class:'+self.class name+', Semester:'+self.semester+'\n'
for student in grade list:
result str += 'Student:{:10}, Grades:{}\n'.format(student[0],student[1])

return result str

>>> grades = Grades("cse231", "FS11")
>>> for name in ['bill', 'rich', 'irving']:

grades.add name(name)

>>> print(grades)
Class:cse231, Semester:FS11
Student:bill , Grades:[]
Student:irving , Grades:[]
Student:rich , Grades:[]

690 C H A P T E R 1 7 • O T H E R F U N S T U F F W I T H P Y T H O N

>>> grades.add grade('rich', ('mid1', 100))
>>> grades.add grade('rich', ('mid2', 50))
>>> grades.add grade('rich', ('final', 75))
>>> grades.add grade('bill', ('mid1', 50))
>>> grades.add grade('bill', ('mid2', 50))
>>> grades.add grade('bill', ('final', 50))
>>> print(grades)
Class:cse231, Semester:FS11
Student:bill , Grades:[('mid1', 50), ('mid2', 50), ('final', 50)]
Student:irving , Grades:[]
Student:rich , Grades:[('mid1', 100), ('mid2', 50), ('final', 75)]

>>> pickle.dumps(grades)
b'\x80\x03c main \nGrades\nq\x00)\x81q\x01}q\x02(X\n\x00\x00\x00class nameq\x03X\
x06\x00\x00\x00cse231q\x04X\x08\x00\x00\x00semesterq\x05X\x04\x00\x00\x00FS11q\x06X
\x0b\x00\x00\x00grades dictq\x07}q\x08(X\x04\x00\x00\x00billq\t]q\n(X\x04\x00\x00\
x00mid1q\x0bK2\x86q\x0cX\x04\x00\x00\x00mid2q\rK2\x86q\x0eX\x05\x00\x00\x00finalq\
x0fK2\x86q\x10eX\x06\x00\x00\x00irvingq\x11]q\x12X\x04\x00\x00\x00richq\x13]q\x14(X
\x04\x00\x00\x00mid1q\x15Kd\x86q\x16X\x04\x00\x00\x00mid2q\x17K2\x86q\x18X\x05\x00\
x00\x00finalq\x19KK\x86q\x1aeuub.'
>>> grade file = open('cse231.grades', 'wb')
>>> pickle.dump(grades, grade file)
>>> grade file.close()
>>> ================================ RESTART ================================
>>> grades
Traceback (most recent call last):
File "<pyshell#16>", line 1, in <module>
grades

NameError: name 'grades' is not defined
>>> grade file = open('cse231.grades', 'rb')
>>> reloaded grades = pickle.load(grade file)
>>> print(reloaded grades)
Class:cse231, Semester:FS11
Student:bill , Grades:[('mid1', 50), ('mid2', 50), ('final', 50)]
Student:irving , Grades:[]
Student:rich , Grades:[('mid1', 100), ('mid2', 50), ('final', 75)]

>>>

We load the program, which restarts Python, and proceed to create some grades, which
we store in the class instance associated with grades. We dumps the object associated with
grades to see the (mostly unreadable) serialization of the object. We then open a binary file
for writing. It must be binary because the serialization object is a series of bytes (bytes
is a Python type; see the next section), not a string or other readable type. We dump the
object to the file and close the file.

1 7 . 2 • C L A S S E S 691

We can then restart Python and load the Grade class file. We need the definition of the
Grade class to be loaded into the shell so that the saved instructions will operate properly,
re-creating the saved instance. We then open the same file for reading as a binary file and
call the load function. The new object is associated with a new variable name, which when
we print, showing we re-obtained the same values.

Restrictions
There are some restrictions on serialization that we have to pay attention to:

� By default, we cannot serialize a file object’s connection to a file. In general, we cannot
serialize any resource connected to the operating system of the machine on which we
are running.

� Serializing instances (as we did) requires that the class definition be loaded and not
nested inside another class or other scope. It must be available at the top level of the
shell or module.

� Pickle is not considered secure. The file that is created can be modified and the resulting
loaded object changed.

17.2.3 Random Numbers
Earlier we described random numbers and various methods from the random module.
However, just what does it mean to have a “random number” module, and what does it do?
Take a look at the following session:

>>> random.seed(1)
>>> for r in range(4):

print(random.random())

0.13436424411240122
0.8474337369372327
0.763774618976614
0.2550690257394217
>>> random.seed(1)
>>> for r in range(4):

print(random.random())

0.13436424411240122
0.8474337369372327
0.763774618976614
0.2550690257394217
>>>

692 C H A P T E R 1 7 • O T H E R F U N S T U F F W I T H P Y T H O N

The session uses two of the modules functions:

seed(obj): Initializes the random number generator
random(): Generates a random number in the range from 0.0 to 1.0

Look what happened. We set the seed and then generated four random numbers. We
set the seed again, to the same value, and generated four more random numbers. However,
those four numbers were the same as the previous four! How is that random?

What the random package has are functions to generate what are called pseudo-random
numbers. They are random numbers in the following sense: When looking at a sequence of
generated “random” numbers, it is hard to predict what the next generated random number
will be. The sequence looks random. However, the algorithm that generates the numbers
is an algorithm. If you initialize it with the same seed, it will generate the same sequence.
The sequence generated isn’t random, but the elements within the sequence appear random
relative to each other, even to sophisticated statistical tests.

To simulate what most people would consider random numbers, a random sequence,
the seed function will, if provided with no argument, seed a value based on the present
clock value on the local computer. As that value changes from microsecond to microsecond,
it generates a sufficiently random sequence for most purposes.

Here is a list of functions that you might find useful in the module random.

randint(a,b): Generate a random integer N in the range a ≤ N ≤ b.
choice(sequence): Select a random element from the sequence and return it.
shuffle(sequence): Shuffle the order of the sequence in place.
sample(sequence, num): Generate a new sequence by sampling k elements from

the original sequence.

The following session shows the use of some of these functions.

>>> random.seed() # seed i t to the c l o ck
>>> random.random()
0.8906539974571333
>>> random.randint(1,100)
1
>>> random.randint(1,100)
31
>>> random.randint(1,100)
13
>>> random.choice('abcdefgh')
'f'
>>> random.choice('abcdefgh')
'h'
>>> random.choice('abcdefgh')
'f'
>>> random.shuffle([1,2,3,4,5]) # s h u f f l e i s in p lace
>>> a list = [1,2,3,4,5]

1 7 . 3 • O T H E R T H I N G S I N P Y T H O N 693

>>> random.shuffle(a list)
>>> a list
[1, 3, 4, 5, 2]
>>> random.shuffle(a list)
>>> a list
[4, 1, 3, 5, 2]
>>> random.shuffle(a list)
>>> a list
[1, 3, 2, 4, 5]
>>> random.sample(a list,2)
[3, 4]
>>> random.sample(a list,2)
[4, 2]
>>> random.sample(a list,2)
[3, 2]
>>>

17.3 O T H E R T H I N G S I N P Y T H O N
The list of things we have not covered is quite long, but here are a couple of other things in
Python you might want to take a look at.

17.3.1 Data Types
Python has the following built-in data types that we have not covered:

bytes, bytearray The bytes type is an immutable array of 8-bit bytes (0 ≤ by te ≤ 255).
The bytearray is a mutable array of the same type.

frozenset An immutable set.
collections There are a number of other data types in the collections module.

namedtupel : A way to create a new subclass of tuple that has all the properties of a tuple
but also named attributes.

OrderedDict: A dictionary that “remembers” the order in which elements were added. It
can be used to create a sorted dictionary.

deque: Pronounced “deek,” this is a list-like data structure with fast access (append or
pop) to either end.

17.3.2 Built-in Modules
Python has a large number of built-in modules. Here are a few interesting ones:

calendar: Module to support making calendars
functools: More tools to support functional programming

694 C H A P T E R 1 7 • O T H E R F U N S T U F F W I T H P Y T H O N

array: Sequence of same-type numeric values; more efficient
shelve: A “permanent” dictionary, whose keys and values are stored in a file via pickle
email: A module to manipulate MIME types and email contents
urllib.request: A way to request web content over the Internet via Python calls
http.server: A way to establish a web server in Python
tkinter: Python’s default 2-D graphics library and GUI development system
pdb: The Python debugger, for understanding the cause of errors and fixing them
timeit, trace: Profiling tools to figure out where your Python programming is spending all

of its computational resources

17.3.3 Modules on the Internet
Of course, one of the best things about Python is the large number of modules that other
developers make available to share with Python users. The best way to look at such modules
is through the Python Package Index (pypi) at http://pypi.python.org. Here are
some great modules that you might want to take a look at.

pygame: Module for developing graphics and audio to support gaming in Python
Vpython: Visual Python is a stunning package that makes it very easy to create 3-D graphics

with animation
nltk: The Natural Language Toolkit, a Python implementation of many tools to work with

natural language
django: A framework for the development of websites using Python
pyWemSMS: A program that lets you send sms through the Internet without opening any

browser
python-itunes: A simple Python wrapper to access the iTunes Store API
biopython: Tools for computational molecular biology
ephem: A toolkit for high-precision astronomical calculations
ChemKit: Artificial Chemistry Kit, a spin-off topic of Artificial Life; aimed at emergence

of life from nonliving environment – primordial soup
music21: A toolkit for computer-aided musical analysis and manipulation

There are so many more than that available. Take a look and see if you can find the
Python module that fits your needs, or write your own and publish it in pypi.

http://pypi.python.org

•18C H A P T E R

The End, or Perhaps
the Beginning

Every new beginning comes from some other beginning’s end.

Seneca, Roman philosopher

WE HAVE REACHED THE END OF OUR PROGRAMMING JOURNEY. HOWEVER, IT IS REALLY

not the end. You will surely continue on, learning more about programming, expanding
your problem-solving abilities, and hopefully doing wonderful things with Python.

We feel the same way. Programming is a dynamic process, with new topics popping up
all the time. As a result, Pearson has established a website:

http://www.pearsonhighered.com/punch-enbody

At this site, we plan on posting new material that we think you, as Python programmers,
might find interesting. They might be proto-chapters that we are working on, new exercises,
other web connections—anything of interest to us and, hopefully, to you as well.

So please stop by and see what is new and exciting. We wish you a happy programming
journey.

695

http://www.pearsonhighered.com/punch-enbody

This page intentionally left blank

•AA P P E N D I X

Getting and Using Python

A.1 A B O U T P Y T H O N

A.1.1 History
PYTHON WAS CONCEIVED IN THE 1980S BY GUIDO VAN ROSSUM, AND THE FIRST

version was published in 1991. Python was designed around a philosophy that emphasized
the importance of programmer effort over computer effort, so it prioritized readability.
Python is often characterized as minimalist, but only with respect to the core language’s
syntax and semantics. Both of these characteristics make it appropriate for a first language.
The large number of modules developed to support Python allows it to be used in a wide
variety of environments, which greatly enhances its utility beyond a first language. That is,
it offers the best of both worlds: it’s readable and powerful to use.

An important goal of the Python developers was to make Python fun to use. This
goal is reflected in the origin of the name (after the television series Monty Python’s Flying
Circus), in the common practice of using Monty Python references in example code, and in
an occasionally playful approach to tutorials and reference materials. For example, although
many programming languages choose the nonsense words foo or bar for arbitrary variable
names in examples, one is more likely to find nit and spam in Python literature. We will
hold to that Python tradition.

A.1.2 Python 3
In April 2006, discussions began on how to improve the Python language. These were
discussions about “Python 3000” or “Python 3k,” eventually settling on the name Python 3,
a new version of the language that is both more stable and more consistent. As is true with
any project, first attempts often have flaws, and these can be hard to correct once the project

697

698 A P P E N D I X A • G E T T I N G A N D U S I N G P Y T H O N

takes off. This is true of Python as well. The problem is that, to correct many of these flaws,
the new Python would have to be made such that older (pre–Python 3) programs would
not run under it. Thus, to get the language to this better state, the Python team made a
bold decision. They would fix the known problems with Python and make a new version,
Python 3, that would not be backward compatible with older programs. A program written
in a version of Python 2 would not work under Python 3. After many years of group effort,
the first release of Python 3.0 was made in December 2008.

Python 3 is not a wholesale rewriting of the Python language, but it does fix many
fundamental issues. Even simple things like the print statement changed! One of the
downsides of such a big change was that the many packages that were already written have
to catch up to the changes. This is proceeding, and Python 3 is fast becoming the new
standard for Python programming.

In this book, we focused strictly on Python 3 programs. We did not even discuss
conversion from Python 2 to Python 3. If you are starting to program today (and that is the
audience this book is intended for), you should start with Python 3.

A.1.3 Python Is Free and Portable
It is important to note that the Python language and many of its components are free.
It is also important to note that Python is mostly agnostic1 when it comes to operating
systems. You can run Python on a Windows machine, a Macintosh machine, or under any
of the Unix variants out there, especially Linux. Even more useful is that fact that a Python
program written on one kind of machine should run exactly the same on another without
any changes being required.2 This portability means that you can work in your favorite
environment. You can also move to a new environment, and your Python program should
run there as well. Very convenient!

You can download Python for the operating system of your choice from the web
at http://www.python.org. Go to the download section (currently on the left-hand
side of the web page) and select the Python 3 version (currently Python 3.2.1) that is
right for you (actually, right for your computer, depending on the operating system that
you are using). Download that package and install Python. You are now all set to begin
experimenting!

Included in your Python download are hundreds of packages. If you are feeling ad-
venturous, you can also browse the list of more packages (at the time of this writing, over
16,000 supporting packages) at http://pypi.python.org/pypi, and many of them
are Python 3 compatible. However, remember to check! Python 2 programs will not run
under Python 3.

1 There are some aspects of Python that depend on the particular operating system being used, but for the most part Python works the
same anywhere.

2 The exceptions being when you use operating-system-specific code.

http://www.python.org
http://pypi.python.org/pypi

A . 1 • A B O U T P Y T H O N 699

What You Get
When you install Python for your computer, you get a number of features:

� A Python shell, which is a window into which you can directly type Python commands
and where interaction between you and programs you write typically occurs.

� A simple editor called IDLE,3 in which you can type programs, update them, save them
to disk, and run them. IDLE’s interface is essentially the same on any machine, because
it is a Python program!

� You get access to all the Python documentation on your local computer, including the
following:
- A tutorial to get you started
- A language reference for any details you might want to investigate
- A library reference for modules you might wish to import and use
- Other nifty items

A.1.4 Starting Python Up
Let’s get started with Python. To start the Python/IDLE combination on Windows, go to
Start Menu =⇒ All Programs =⇒ Python 3.2 =⇒ IDLE (Python GUI), as shown in
Figure A.1.

FIGURE A.1 Starting Python in Windows 7.

3 Named after Monty Python actor Eric Idle.

700 A P P E N D I X A • G E T T I N G A N D U S I N G P Y T H O N

FIGURE A.2 Starting Python in Mac OS X. [Screenshot from Mac OS X. Copyright © 2011 by
Apple, Inc. Screenshot reprinted with permission from Apple, Inc.]

For the Mac (OS X), go to the Finder and Select Applications =⇒ Mac Python 3.2
=⇒ Idle.app, as shown in Figure A.2.

For Linux, it depends on the distribution you are using and even the window manager.
If you just start a terminal session, you should be able to start the system by just typing
“idle.” The window in Figure A.3 shows an Ubuntu Linux install in GNOME, with the
two ways to start IDLE.

A.1.5 Working with Python
The good news is that no matter how you start it, you should get a window that looks like
pretty much like Figure A.4 (the remaining examples are from Windows 7).

What you type shows up after the >>> prompt. When you type something and hit
the Enter key, the result shows up on the next line(s). For example, go to the Python shell
and type in the following:

1 + 1 <Enter Key>
print('Hi Mom') <Enter Key>

If you begin to type a command, such as the len command (which gives the length of
the element in parentheses), but don’t complete it, Python will prompt you with some

A . 1 • A B O U T P Y T H O N 701

FIGURE A.3 Starting Python in Linux. [Screenshot by Linux. Copyright © 2011 by the Linux
Foundation. Reprinted with permission.]

FIGURE A.4 The Python interactive “shell.”

702 A P P E N D I X A • G E T T I N G A N D U S I N G P Y T H O N

FIGURE A.5 Typing your first Python commands.

information on the command and what it expects. Figure A.5 shows an example of interactive
input.

Sometimes you can get results you expect; sometimes you get an error. For example,
try entering:

1 + 1.2 <Enter Key>
print(hello) <Enter Key>

The results would look like Figure A.6:
The last output shows that an error occurred. Because hello was not a variable and

did not have quotes around it, print failed to perform.

A.1.6 Making a Program
Typing into the shell is useful, but the commands that you write there are not saved as a
file so they cannot be reused. We need to save our commands in a file so we can run the
program again and again and, more important to turn programs in as assignments!

To open a file, go to the shell window, and left-click on File =⇒ New Window, as
shown in Figure A.7:

A second window will appear, into which you can type Python commands. This window
is an editor window, into which you can type your first program.

A . 1 • A B O U T P Y T H O N 703

FIGURE A.6 How Python shows errors.

FIGURE A.7 Opening an editing session in IDLE to make a Python program.

704 A P P E N D I X A • G E T T I N G A N D U S I N G P Y T H O N

There is a tradition in computer science: the first program you run in a new language is
the Hello World program. This program does nothing put print the words Hello World. It
is a tradition, because it does very little except focus on the mechanics of writing your first
program and running it. There is a wikibooks.org page with more than 200 programming
language examples of Hello World programs.4 In Python, the Hello World program is very
easy. Type the following in the Untitled window:

print('Hello World') <Enter Key>

The phrase after print should be in quotes. Having done that, we should save our
first program so that we can use it again. How and where you save a file differs depending
on your operating system. For Windows, in the Untitled window select the menu File =⇒
Save As. Your system will look something like Figure A.8:

FIGURE A.8 Saving your Python program.

This figure shows part of the way to save a file—not quite completed. It shows the
file dialog, and there are a few things to note. First, we type the name of the file at the
bottom of the dialog. The name I have chosen is “helloWorld.py.” The .py file exten-
sion is important to add—very important. If you do not, then all the nice coloring and

4 http://en.wikibooks.org/wiki/List of hello world programs

http://en.wikibooks.org/wiki/List_of_hello_world_programs

A . 1 • A B O U T P Y T H O N 705

formatting you get in the IDLE editing window will be lost. Second, once saved, you will
notice that the title of the editing window changes to the file name you used to save your
program.

You can then run your module to see what your program produces. To run the program
in the editing window menu, select Run =⇒ Run Module (see Figure A.9).

Congratulations—you wrote your first Python program. Celebrate with a Spam sand-
wich!

FIGURE A.9 Running your Python program.

A Couple of Early Tips
Every time you make a change to a file, IDLE asks you to save the file before you run
it. If you try to run it before you save, it will display the following dialog to remind you
(Figure A.10).

After saving the program, you will then be able to run the program.
After some time, you will come to find two keyboard shortcuts very useful. After you

save the file for the first time, the keyboard combination Ctrl-S will resave the file under the
present file name (Command-S on a Mac). The key F5 will then run the program. So the
combination Ctrl-S followed by F5 will help you try things out quickly and clean up errors
as you go.

706 A P P E N D I X A • G E T T I N G A N D U S I N G P Y T H O N

FIGURE A.10 Python reminds you to save a file before you run it.

A.2 S O M E C O N V E N T I O N S F O R T H I S B O O K
Looking at screen shots can be a bit tedious, as the fonts can be small and hard to read. We
have adopted the following conventions for both interactive and edited code in this book.

A.2.1 Interactive Code
When we type code that is interactive—that is, typing directly into the Python shell—we
will frame the interaction as follows:

>>> print("Something")
Something
>>> len("Something")
9
>>> 3 + 4 * 7
31
>>> 3.14159/2
1.570795
>>>

A . 3 • S U M M A R Y 707

A.2.2 Program: Written Code
When we display a program (written in IDLE), we will use code listings, as shown here:

Code Listing A.1

1 # ca l cu l a t e area o f a t r i ang l e
2

3 base = 4
4 height = 3
5

6 area = 1.0/2.0 * base * height
7

8 print("Area is: ", area)

A.2.3 Combined Program and Output
Sometimes we will display both a program and its output (after it was “run”), so we will use
this type of code listing:

Code Listing A.2

ca l cu l a t e area o f a t r i ang l e

base = 4
height = 3

area = 1.0/2.0 * base * height

print("Area is: ", area)

Area is: 6.0
>>>

A.3 S U M M A R Y
Now you have Python. You can begin to learn to program!

This page intentionally left blank

•BA P P E N D I X

Simple Drawing with
Turtle Graphics

TURTLE GRAPHICS IS A SIMPLE WAY TO DO GRAPHICS THAT DATES BACK TO THE 1960S.

A turtle module has been included with standard distributions of Python, starting with
Python 2. The “turtle” is a cursor that you can control to draw on a two-dimensional palette.
The last half century of experience indicates that it is relatively easy for novice programmers
to control a turtle by imagining that they are the turtle as it moves around. The Turtle
Graphics module provides an easy way to do two-dimensional drawing in Python.

B.1.1 What Is a Turtle?
The programming language LOGO was created in the 1960s as a teaching tool for children
to experiment with math and programming. One of its main features was a “turtle robot.”
Literally, they imagined that a tethered robot could be controlled from a workstation, with
a pen attached to the robot, so that children could draw. Typically they used an artificial
turtle (a cursor on the screen) as a way to learn to control the robot.

This approach to drawing was a very important concept. All the drawing was done relative
to the present position of the turtle. It could turn, move forward and position the pen to create
drawings. This approach has proven to be simpler than trying to teach the concepts of Cartesian
absolute coordinates. Children could literally ‘‘be the turtle’’ and imagine what would be drawn.

Thus was born Turtle Graphics. As such, our artificial Turtle Graphics system has a
number of characteristics:

� A two-dimensional drawing screen
� One (or more) turtles; each turtle has:

- A position
- An orientation or direction
- A pen, with attributes such as color, width, up/down, etc.

709

710 A P P E N D I X B • S I M P L E D R A W I N G W I T H T U R T L E G R A P H I C S

When Turtle Graphics are started, with the import turtle line, a window is created
with a small “turtle” cursor in the center. The default screen is 400 × 300, though it can be
modified. The default turtle is actually an arrow that points in the direction of its current
orientation. The turtle starts in the middle of the screen facing east (right), with increasing
angles going counterclockwise (turtle facing 0 degrees, standard Cartesian angle settings).
See Figure B.1.1

FIGURE B.1 The initial turtle screen. [Screenshot by Python. Copyright © 2001 – 2010 by
Python Software Foundation. All Rights Reserved. Reprinted with permission.]

1 All figures in this chapter were done on Mac OS X.

S I M P L E D R A W I N G W I T H T U R T L E G R A P H I C S 711

We create drawings on the screen by giving the turtle(s) a series of commands. Let’s
look at some of those commands.

B.1.2 Motion
As mentioned, commands move a turtle relative to its current position---e.g., ‘‘move forward
10 pixels’’ or ‘‘turn right 45 degrees.’’ The distance moved (pixels) or degrees turned can be
integer or floating-point numbers. These values can be positive or negative as well. Many of the
commands have shortcuts, but these tend to be a bit cryptic (fd for forward, bk for backward) so
we only show the full command names. See the official Python documentation (http://
docs.python.org/py3k/library/turtle.html#module-turtle). Table B.1
shows some of these commands.

forward(distance) Move forward distance in current direction.

backward(distance) Move backward distance in the opposite direction.

right(angle) Turn right by angle units.

left(angle) Turn left by angle units.

goto(x,y) Move turtle to absolute screen position (x,y).

home() Move turtle to origin (0,0), facing the default direction

(typically east).

speed(speed) Set turtle drawing speed as int in range 0–10.

TABLE B.1 Turtle Movement Commands

Speed can be a particulary useful attribute. First, calling speed() with no arguments
will yield the present setting. This is true for most of the attribute settings of the Turtle
Graphics module: calling them without arguments yields the present setting.

Second, the turtle is purposefully set to be animated so you can see the process of
drawing. However, with longer, more complicated drawings, the animation can be tedious.
The default setting is 3, with the range 1–10 indicating slower to faster. However, a setting
of 0 (zero) should mean no animation, making 10 the fastest setting. However, if the driving
program itself is slow, the turtle can still look slow, but this is not because of the speed
setting.

B.1.3 Drawing
Drawing is what Turtle Graphics is all about, and the turtle module provides many
commands for just that purpose. We list the important ones in Table B.2.

http://docs.python.org/py3k/library/turtle.html#module-turtle
http://docs.python.org/py3k/library/turtle.html#module-turtle

712 A P P E N D I X B • S I M P L E D R A W I N G W I T H T U R T L E G R A P H I C S

pendown() Put the pen down—drawing when moving.

penup() Pull the pen up—no drawing when moving.

pensize(width) Set the line thickness to width, a positive int.

circle(radius, extent=None, steps=None) Draw a circle (see below).

dot(size=None, color) Draw a filled dot.

stamp() Stamp a copy of the turtle at the present
position.

Returns a stamp id.

clearstamp(stamp id) Remove stamp with stamp id.

clear() Clear the screen.

Leave the turtle position and orientation
unchanged.

reset() Clear screen.

Reset turtle to initial configuration
(at (0,0) facing east).

TABLE B.2 Turtle Drawing Commands

The circle command is a little tricky. Here are some details that are good to know
when using it:

� Draws a circle of size radius. Turtle position is unchanged and the circle center is
radius distance left of the turtle. Thus, just changing the orientation, not the position,
of the turtle draws a different circle.

� The argument extent is an angle. By setting this value, you can draw semicircles, where
extent is the number of degrees completed. Both the turtle position and orientation
are changed when extent is provided.

� The argument steps is the number of straight line segments used to draw the circle. By
default, the circle is drawn smoothly (many steps), but by setting the value to a particular
number, you can create polygons. For example, steps=6 will draw a hexagon.

Code Listing B.1 exercises some of these commands. Figure B.2 is the result of the
process.

Code Listing B.1

draw a smi ley fa c e

from turtle import *
import time

S I M P L E D R A W I N G W I T H T U R T L E G R A P H I C S 713

speed(10) # draw f a s t !

penup() # r i gh t s i d e o f f a c e
forward(75)

pendown() # draw an eye
right(90)
circle(25)
circle(10)

penup() # l e f t s i d e o f f a c e
right(90)
forward(150)

pendown() # draw an eye
right(90)
circle(25)
circle(10)

penup() # cen t e r and down
right(90)
forward(75)
right(90)
forward(50)

pendown() # draw a nose
left(45)
forward(40)
right(135)
forward(56.56)
right(135)
forward(40)

penup() # center , down, then 100 l e f t
right(135)
forward(50)
right(90)
forward(100)
left(90) # need to fa c e e a s t

pendown()
circle(100, 180) # smile

time.sleep(3) # hold f o r 3 s e conds so we can s e e

714 A P P E N D I X B • S I M P L E D R A W I N G W I T H T U R T L E G R A P H I C S

FIGURE B.2 Our first turtle figures. [Screenshot by Python. Copyright © 2001 – 2010 by
Python Software Foundation. All Rights Reserved. Reprinted with permission.]

B.1.4 Color
What would good drawing be without color! The turtle module provides ways to specify
color and to apply color to your drawing.

Specifying Color
There are three ways to specify color in Python Turtle Graphics, two of which are very common:

� A colorstring
� A tuple of three values, each value in the range 0--255 (usually as int, but float is accepted)
� A tuple of three values, each value in the range 0.0–1.0 (less common, so not discussed)

S I M P L E D R A W I N G W I T H T U R T L E G R A P H I C S 715

For colorstrings, Python accepts any of the standard color strings provided by Python’s
built-in drawing module, Tk. Tk provides a long list of predefined color strings, where as
in all things Python the case of the string matters. Common strings such as “green,” “blue,”
“red,” and “yellow” are obvious, but others such as “BlanchedAlmond” or “CornflowerBlue”
are less so. The full list can be found at http://www.tcl.tk/man/tcl8.5/TkCmd/
colors.htm.

In general, color can be complicated to specify, and there are various ways to do it. One
way is additive color, where a mixture of red, green, and blue is sufficient to reproduce any
color. Therefore, a common way to specify a color is to provide the mixture of the color’s
red, green, and blue content, often referred to as the rgb color. The use of rgb specifications
of color is common, as most television and monitors typically use these three pixel colors
to create color. Specifying color as three integer values between 0–255 is a common way
to represent color in computer applications. Thus, specifying a tuple of (0,0,0) (zero red,
zero green, and zero blue) is another way to specify black. Blue would be (0,0,255), red
(255,0,0), yellow (255,255,0), and CornflowerBlue (100, 149, 237).

B.1.5 Drawing with Color
You can specify two different drawing colors: the color of the pen and the color used to fill
a region drawn on the screen. Not suprisingly, the first is set by the pencolor command
and the second by the fillcolor command. Table B.3 lists the commands.

pencolor(a color) a color is either a colorstring or an rgb tuple.

fillcolor(a color) a color is either a colorstring or an rgb tuple.

colormode(255) Sets rgb values to be 0–255 (defaults to 0.0–1.0,
better to set to 255).

color(pen color, fill color) Set both with one function.

begin fill() Mark where region to color in begins.

end fill() Mark where region to color in ends.

TABLE B.3 Turtle Pen Commands

Some things to note.

� The color command will set both colors in one call. If you provide one argument,
both the pen and fill colors are set to the argument color. If you provide two arguments,
the first is the pen color and the second is the fill color.

� Filling an area is done by bracketing the drawing with the two commands, begin
fill() and end fill(). The area filled is whatever occurs between the two calls.
When end fill() is executed, the area is filled using the line between end and begin
as the final part of the filled area.

� As with most of the commands we have seen, calling any of these commands without
arguments will yield the present values.

http://www.tcl.tk/man/tcl8.5/TkCmd/colors.htm
http://www.tcl.tk/man/tcl8.5/TkCmd/colors.htm

716 A P P E N D I X B • S I M P L E D R A W I N G W I T H T U R T L E G R A P H I C S

Code Listing B.2 exercises some of these calls. Figure B.3 shows the result of using this
code.

Code Listing B.2

draw squares , change the pen s i z e and co l o r
j u s t to show o f f

from turtle import *
import time

colormode(255) # c o l o r s in range 0−255

def square(length, fill tuple):
' ' ' Draw a square , s i d e length , c o l o r f i l l t u p l e ' ' '
fillcolor(fill tuple)
begin fill()
for i in range(4):

forward(length)
right(90)

end fill()

in i t values , fun to change
red = 100
green = 0
blue = 50
color inc = 10
side length = 50
pen width = 1
pen inc = 1
pen limit = 5

speed(0)
for i in range(36):

square(side length, (red,green,blue))
right(10)
red = (red + color inc) % 255 # range 0−254
blue = (blue + color inc) % 255
green = (green + color inc) % 255
side length += 3
range 1−pen limit
pen width = ((pen width + pen inc) % pen limit) + 1
pensize(pen width)

time.sleep(5)

S I M P L E D R A W I N G W I T H T U R T L E G R A P H I C S 717

FIGURE B.3 Turtle squares. [Screenshot by Python. Copyright © 2001 – 2010 by Python
Software Foundation. All Rights Reserved. Reprinted with permission.]

B.1.6 Other Commands
There are over 90 turtle commands, so there are many things you can do with Turtle
Graphics. Here are some commands we have not yet mentioned.

The write command is a bit tricky in that you have to know something about fonts
to use it. A typical font tuple would be something like ('Arial','14','normal'),
but you need to know what fonts you have on your system. The hide and show turtle
functions are useful. When you hide the turtle, drawing goes much faster. Also, you can
hide the turtle and move the pen somewhere to write a string and then move it back and
show the turtle again.

718 A P P E N D I X B • S I M P L E D R A W I N G W I T H T U R T L E G R A P H I C S

shape(a shape) Set the turtle to one of the 6 shapes:

“classic,” “arrow,” “turtle,” “triangle,” “square,” “circle.”

write(a str, font=font tuple Write a string with the turtle.

font tuple has 3 elements: font, size, type.

onclick(click fn) Click on turtle, runs the click fn.

onrelease(release fn) Release mouse on turtle, calls release fn.

hideturtle() Hide the turtle.

showturtle() Show the turtle.

TABLE B.4 Other Commands

Finally, you can subclass that Turtle class and create new kinds of turtles. You can
also create multiple turtles on the screen and move them around in parallel.

Code Listing B.3 shows making an “exploding” turtle, one that you can click on and
it does a brief animation of an explosion, finally writing a string on the screen. Figure B.4
shows the result of clicking on a turtle (which is in the shape of a turtle).

Code Listing B.3

from turtle import *
import time

class NewTurtle(Turtle):
def init (self, shape='classic', color='red'):

' ' ' s t o r e boom color , c a l l parent with the r e s t ' ' '
Turtle. init (self,shape=shape)
self.boom color=color

def explode(self,x,y):
' ' ' quick animation , draw expanding dots , then c l e a r ' ' '
self.dot(5, self.boom color)
self.dot(20, self.boom color)
self.dot(50, self.boom color)
self.dot(50,'white') # c l e a r the c o l o r
self.write(' boOOOM!', font=("Arial", "14", "normal"))

t1 = NewTurtle(shape='turtle')
t1.onclick(t1.explode)
t1.forward(100)

time.sleep(4)

B . 2 • T I D B I T S 719

FIGURE B.4 Turtle explosion! [Screenshot by Python. Copyright © 2001 – 2010 by Python
Software Foundation. All Rights Reserved. Reprinted with permission.]

B.2 T I D B I T S

B.2.1 Keeping the Window Open
The drawing window has a tendency to disappear very quickly. One way to “hold” the
window is to use the sleep function in the time module, as follows:

import time
time.sleep(seconds)

The program will wait the number of seconds indicated before it ends.

720 A P P E N D I X B • S I M P L E D R A W I N G W I T H T U R T L E G R A P H I C S

B.2.2 Working Nicely with IDLE
IDLE can be a bit touchy when working with other graphics programs, such as Turtle
Graphics. Subsequently, after you open a program in IDLE that does graphics (such as
Turtle), some of the windows may hang, or not close. To get around this, you can use
the os. exit(1) function from the os module. Note the underline in the name. Make
the os. exit(1) function the last line in the program. Using the time.sleep call
right before the os. exit(1) call works well so that the window will stay open for some
number of seconds and then close.

import os
os. exit(1)

•CA P P E N D I X

Plotting and Numeric
Tools: A Quick Survey

None of us is as smart as all of us.

Ken Blanchard

AS WE HAVE SAID PREVIOUSLY, ONE OF THE STRENGTHS OF PYTHON IS ITS FANTASTIC

user base—in particular, the many useful modules that those users provide. In fact, this is
exactly what open-source software is about—the sharing of effort for the good of all users.

In this chapter, we take a brief look at the numpy and matplotlib modules. Note
that examples of their use are sprinkled throughout the book, so this appendix stands as a
jumping-off point for more details.

C.1 M A T P L O T L I B
Matplotlib is a software package provided for creating graphs. As matplotlib itself puts it:

matplotlib is a python 2D plotting library (and soon some 3D) which produces
publication quality figures in a variety of hard copy formats and interactive
environments across platforms. . . . matplotlib tries to make easy things easy
and hard things possible (http://matplotlib.sourceforge.net).

As you have seen in some of the examples (see Figure 2.10 or Figure 2.11 and their
associated code), it is relatively easy to do simple 2-D plotting. However, matplotlib is not
part of the standard Python distribution. It requires that you download some extra packages
into your existing Python environment. Once downloaded and installed, matplotlib can be
used in your Python code.

721

http://matplotlib.sourceforge.net

722 A P P E N D I X C • P L O T T I N G A N D N U M E R I C T O O L S : A Q U I C K S U R V E Y

C.1.1 Getting matplotlib
As is true for many open-software projects, matplotlib is hosted by SourceForge. SourceForge
(http://sourceforge.net) is the largest open-source collection on the Internet. As of
September 2011, SourceForge reported hosting more 306,000 projects, with more than
2 million registered users.

The matplotlib website is http://matplotlib.sourceforge.net.

The Simplest Way
The simplest way to get matplotlib, and a lot of other tools not packaged with the standard
Python distribution, is to get an augmented Python distribution that comes with all the extra
tools preinstalled! In this way, you can not only get all of the standard Python distribution,
and not only matplotlib, but also a host of other tools that you can explore as you wish.
Two such distributions exist that can be downloaded off the Internet:

� Enthought Python Distribution (EPD). The EPD (http://www.enthought.
com/products/epd.php) distribution contains approximately 100 extra modules
in its distribution. The download is free for educational use and requires a nominal fee
otherwise. It is available for multiple platforms, including Windows, Macintosh, and
Linux.

� Python(x,y). Python(x,y) (http://code.google.com/p/pythonxy) is a Python
distribution focused on scientific and numeric computation, data visualization, and
data analysis. It is specific to the Windows platform only.

If you have not yet installed Python, take a look at these distributions as a possible
alternatives. Installing one of these might save you a bit of time when it comes to adding
modules later.

The Standard Way
The standard way to install any Python module is to begin with the standard Python
distribution, then add modules as you need them by downloading the module from the
Internet. There are even a couple of ways to do the downloading.1 The simplest way is to
go to the appropriate website, download the package, then install it.

Dependencies
One problem with this approach is called a dependency. A dependency occurs when a
module that you download requires another module to function. A dependency necessitates

1 If you are interested, take a look the easy install package (http://peak.telecommunity.com/DevCenter/EasyInstall) in setup-
tools, which will do a pretty good job of downloading a module, as well as any module it depends on.

http://sourceforge.net
http://matplotlib.sourceforge.net
http://www.enthought.com/products/epd.php
http://www.enthought.com/products/epd.php
http://code.google.com/p/pythonxy
http://peak.telecommunity.com/DevCenter/EasyInstall

C . 1 • M A T P L O T L I B 723

downloading the dependency module before you download the module you are interested
in. Sometimes tracking dependencies can be complicated, which is why we bring it up here.

Matplotlib has one dependency. It requires that you download the Numeric Python
(always shortened to numpy, great name!) package first. We will discuss numpy in the next
section, but for now you just need to have it before we can do plotting.

Platform and Python Version
One other thing to worry about when downloading a Python module off the web is getting
the right one, which means two things:

� You need to get the correct version for your platform. Depending on what kind
of computer you have, you need to get the correct distribution. Windows distributions
come with an installer, typically with a suffix of .exe or .msi. Macintosh distributions
come as a disk image, usually with a suffix of .dmg. Linux distributions often come as tar
files with a suffix of .tar.gz or .tar.zip.2 Make sure to select the distribution that is correct
for your platform. It is not hard to do, but it does require that you pay attention.

� You need to get the correct Python version for the Python on your machine. There
are different versions of Python, each with its own unique numeric identifiers. Because
Python is a language that is under constant development, these numeric identifiers are
useful for developers to identify the particular characteristics of any Python distribution.

Consider the current 3.2 Python version (as of the writing of this book), Python
3.2.1. The first number is referred to as the major number, the second the minor
number, and the third the maintenance number. Python versions with different major
numbers are very different. Python 3.x is significantly different from any Python whose
major version number is 2 or 1. Differences in minor numbers on a Python distribution
indicate more subtle differences between versions. Thus Python 3.1 is similar to, but
not the same as, Python 3.2 . The maintenance number indicates the level of bug fixes
that have been applied. There is little difference between Python 3.2.1 and 3.2.2 except
that more bug fixes have been applied to the latter.

When you download a module, you must download it such that the module
matches the major and minor number of your Python distribution. The maintenance
number is not relevant for compatibility.

Thus, for my local machine (a Macintosh) running Python 3.2.1, I would be sure to
select a Mac distribution for Python 3.2 of any module I download.

Download NumPy
Go to the NumPy web site (http://numpy.scipy.org), select the Download link, and
download the correct platform and version number for your computer.

2 Most Linux distributions would use some type of package manager to load a new Python module.

http://numpy.scipy.org

724 A P P E N D I X C • P L O T T I N G A N D N U M E R I C T O O L S : A Q U I C K S U R V E Y

How you start the actual install depends on your computer type. For Windows, double-
clicking the downloaded file should start the installation. For the Mac, the disk image should
open up and allow you to start the install. For Linux, again, a package manager should get
the process going.

Test that numpy works
Before you go any further, it would be good to make sure that NumPy was installed properly.
Open up Python (through IDLE or however you typically do it), and type the following
into the shell:

>>> import numpy
>>> numpy. version
'1.6.0'

NumPy has a version as well, and its version number should be greater than or equal
to 1.5 to work properly with Python 3.x.

Now matplotlib
If NumPy worked, then next install matplotlib. Go the matplotlib website (http://
matplotlib.sourceforge.net) and, as with NumPy, download the proper matplotlib
for your platform and Python version. As with NumPy, install matplotlib.

Test that matplotlib works.
Try the following to see if your matplotlib installed properly:

>>> import pylab
>>> pylab.plot([5,4,3,2,1])
[<matplotlib.lines.Line2D object at 0x1fed8b0>]
>>> pylab.show()

You should get a new window with a plot, titled Figure 1, as in Figure C.1.

Warning About IDLE Shell and matplotlib
IDLE and matplotlib do not always “play well” with each other. They are essentially sharing
the graphics routines that draw to your screen, and they sometimes get confused. It may

http://matplotlib.sourceforge.net
http://matplotlib.sourceforge.net

C . 1 • M A T P L O T L I B 725

FIGURE C.1 First plot with matplotlib.

require that you stop Python and restart. If this is a problem, you can always run your
programs from a command line—covered next.

Working from the Command Line
Although IDLE is a great way to get started with Python, you may find that other editors
are more to your liking. That is fine—Python is not restricted to working with IDLE. In
fact, many people develop Python code using a variety of editors.

There are many Integrated Development Environments (or IDEs) that work well with
Python. The Python wiki page (http://wiki.python.org/moin) is a good place to
find out information about current IDEs for Python.

Whatever your editor (including IDLE), a common way to execute Python code is
to use what is variously called a terminal or command line. All current operating systems
provide access to a command line window.

The name command line or terminal is pretty descriptive of these applications’ func-
tioning. They are windows into which you can type commands to perform various tasks.
It turns out that the list of commands is quite long and occasionally complicated, but a
command line is a useful way to interact with your computer, one that does not involve a
mouse or a graphic user interface (GUI). More important, it is also a way to run a Python
program!

Both Linux and Mac come with a terminal. The Mac Terminal.app can be found in
Applications =⇒ Utilities. Both allow you to either start a Python interactive session by typ-
ing python or to run a Python program you have edited by typing python yourProgram.py.
Most Python programs are stored with the suffix .py.

http://wiki.python.org/moin

726 A P P E N D I X C • P L O T T I N G A N D N U M E R I C T O O L S : A Q U I C K S U R V E Y

FIGURE C.2 (a) The Control Panel search; (b) the System Properties panel. [Screenshot by
Microsoft. Copyright © 2011 by the Microsoft Corporation. Reprinted with permission.]

Setting Up the Windows Command Line
Windows makes things a little harder. You can launch the command line by either clicking
on the Start button and typing in “cmd” and clicking Run, or by going to Computer
=⇒ Local Disk (C:) =⇒ Windows =⇒ System32 and clicking on the “cmd” application.
However, once up, if you type python in the window, you will get an error. What to do?

We need to inform Windows where Python is stored so the command line can run it.
There are various methods, but here is the quickest (yes, there are longer ways):

1. Go to the Start menu and select the Control Panel on the right-hand side.
2. In the Control Panel, type “system path” (no quotes) in the top right-hand corner.

Select “Edit the system environment variables,” as shown in Figure C.2.
3. In the System Properties window that pops up, select the Environment Variables button

at the bottom right.
4. In the Environment Variables window that pops up, look at the lower pane, named

System Variables. Scroll down until you see a variable named Path. Select that line and
click Edit (see Figure C.3).

5. In the Edit System Variable window that pops up, we have to edit the values listed
in Path, listed in the pane called Variable Value. Select the pane and use the arrow
keys to reach the end of the line. Add the following to the end of the line, exactly as
typed: ;C:\Python32;C:\Python32\Lib\idlelib. This assumes that you
installed Python 3.2 in the “standard” or default location. Change the names (e.g.,
Python33) to suit your distribution.

C . 2 • W O R K I N G W I T H M A T P L O T L I B 727

FIGURE C.3 (a) The Environment Variables; (b) editing the Path value. [Screenshot by
Microsoft. Copyright © 2011 by the Microsoft Corporation. Reprinted with permission.]

Once you complete this, you should be able to open a command line and type in
Python commands or start IDLE.

C.2 W O R K I N G W I T H M A T P L O T L I B
Examples of working matplotlib code will be sprinkled throughout the book, but there
are some wonderful repositories of more complicated examples at the matplotlib website.
In particular, the gallery (http://matplotlib.sourceforge.net/gallery.html)
provides a number of beautiful examples of what you can do with matplotlib!

Let’s quickly review some of the basic plotting commands. Remember, the online
documentation is very good and provides a great deal of detail as well as examples.

C.2.1 plot Command
The plot command allows you to make two-dimensional line drawings. We first import
pylab, then we can do plots of the following kinds:

� pylab.plot(x vals,y vals): Assumes two lists of numeric values of equal length.
Plot with default properties.

http://matplotlib.sourceforge.net/gallery.html

728 A P P E N D I X C • P L O T T I N G A N D N U M E R I C T O O L S : A Q U I C K S U R V E Y

� pylab.plot(y vals): Creates x values in range of 0 to len(y vals)-1. Plot with
default properties.

� pylab.plot(x vals, y vals, 'bo'): Plots the x and y values, modifies the
line type to blue circles.

� pylab.plot(x vals,y vals, 'gx', x vals2, y vals2, 'y+'): Plots
with two graphs in the same window. First plot is x vals vs. y vals with green x ’s,
second plot is x vals2 vs. y vals2 with yellow +’s.

See the online documentation for all the variations on color and line styles.

C.2.2 Plot Properties
There are a number of properties you can attach to a plot. Here are some simple examples:

� The x -axis can be labeled in your plot using the pylab.xlabel('a str') com-
mand. The provided string will be used as an x -axis label.

� The y -axis can also be labeled in your plot using the pylab.ylabel('a str')
command. Again the string will be used and printed vertically along the y -axis.

� The figure can be given a title (which shows up just above the plot) using the command
pylab.title('a str').

� The figure can have a grid superimposed on the plot area. The command is pylab.
grid(True).

The program in Code Listing C.1 shows the sine plot from earlier with labels, as shown
in Figure C.4.

Code Listing C.1

import math
import pylab
import numpy

use numpy arange to g e t an array o f f l o a t va lue s .
x values = numpy.arange(0,math.pi*4,0.1)
y values = [math.sin(x) for x in x values]
pylab.plot(x values,y values)
pylab.xlabel('x values')
pylab.ylabel('sine of x')
pylab.title('Plot of sine from 0 to 4pi')
pylab.grid(True)
pylab.show()

C . 2 • W O R K I N G W I T H M A T P L O T L I B 729

FIGURE C.4 Labeled sine wave code and resulting plot.

C.2.3 Tick Labels
Matplotlib provides a command to orient and label each x -axis entry. These entries are often
called “ticks,” so the commands to label them are called xticks and yticks. If you do
not provide such a command, matplotlib will label the ticks with the appropriate number.
However, you have the option to say what each tick label should be and where it should be
located.

The xticks command can take a number of arguments. The first is the location of
the tick being placed. A range can be used by NumPy to center the label in the middle
of the tick. This means we can add a bar width to each element and divide by 2 to center,
such as numpy.arange(5)+bar width/2.0. The second argument is the list of labels.
The remaining arguments are optional; for example, the rotation argument to describe
label orientation. See Section 9.9 for an example.

C.2.4 Bar Graphs
The bar command also takes a number of arguments. The first are the tick locations,
typically a NumPy arange. The second is the list of values to plot. The remaining arguments
are optional, such as the width and the color arguments. See Section 9.9 for an example.

730 A P P E N D I X C • P L O T T I N G A N D N U M E R I C T O O L S : A Q U I C K S U R V E Y

C.2.5 Histograms
A histogram is a graph that shows the number of elements within a range of values. The
range, called a bin, is used uniformly for all the data in the histogram. Thus, the x -axis
indicates the various bins and the y -axis the number of elements in each bin.

The command for a histogram is pylab.hist. There are a number of arguments
that can be provided, but the two most important are the list of values and the number
of bins. For example, the program in Code Listing C.2 generates 10,000 values, randomly
distributed between 0 and 1000. We allow for 100 bins (thus each bin is of size 10, 100
bins for a range from 0–1000). Note that the distribution is fairly, but not exactly, equal in
all bins. See Code Listing C.2 with the associated Figure C.5.

Code Listing C.2

import pylab
import random

x values = [random.randint(0,1000) for x in range(10000)]

pylab.hist(x values,100)
pylab.xlabel('bins of size 10')
pylab.ylabel('frequency')
pylab.title('plot of 10,000 random ints 0-1000, bins of size 10')
pylab.show()

FIGURE C.5 Histogram code and its associated plot.

C . 2 • W O R K I N G W I T H M A T P L O T L I B 731

C.2.6 Pie Charts
Pie charts show the percentage of the whole that each value in the list occupies. The
command is pylab.pie(values,...), and plots each element in the values list as a
“slice” whose size is proportional to that element’s percentage of the whole (the sum of all the
values). It takes a number of optional arguments, but two very useful ones are the following:

� colors=(...): a list of strings, each a single letter indicating a color. This is the
progression of colors in the pie chart. The length of this list must be the same as the
number of values in the chart.

� labels=(...): a list of strings, each one a label for its corresponding pie value. It
also must have the same number of entries as the number of values being plotted.

An example pie chart is provided in Figure C.6 for Code Listing C.3.

Code Listing C.3

import pylab

values = [10,20, 50,100,200,1000]
pie labels = ['first','second','third','fourth','fifth','sixth']

th e s e are the de fau l t c o l o r s . You ge t t h e s e i f you do not provide any
color list = ('b', 'g', 'r', 'c', 'm', 'y', 'k', 'w')

pylab.pie(values,labels=pie labels,colors=color list)
pylab.title('Pie chart of 6 values')
pylab.show()

FIGURE C.6 Pie chart code and its associated plot.

732 A P P E N D I X C • P L O T T I N G A N D N U M E R I C T O O L S : A Q U I C K S U R V E Y

C.3 N U M E R I C P Y T H O N (N U M P Y)
Numeric Python, or NumPy, is the base module for scientific, mathematical, and engineering
computing in Python. It implements a special array data type that is efficient, can be
manipulated easily, and interfaces with other programming languages (C, C++, Fortran,
and others).

As with plotting, a full discussion of NumPy is out of the scope of this book, but we
can take a quick tour and show you how useful it is.

C.3.1 Arrays Are Not Lists
The basic unit of NumPy is the array. An array is a sequence, similar to a list, but it differs
in two important ways:

� Arrays can consist only of numbers.
� The type of the numbers must be the same throughout the entire array.

Arrays can be indexed, sliced, and iterated through, just like lists, but only with numbers
and only with the same type of number (integer or floats) throughout the entire array.

C.3.2 Creating a NumPy Array
An array is created by one of two general methods:

� Using the array constructor. The array constructor takes a single sequence of same-
type, numeric elements and creates an array—for example aray=numpy.array
([10,20,30]).

� NumPy provides a separate range function called arange(). Like range, it takes
three potential arguments (the begin value, the end value, and the increment value),
but it differs in that it can also work with floats. For example: aray=arange(0,
math.pi*4, 0.1) generates the sequence from 0 to 4*π by increments
of 0.1.

� Two special array constructors are zeros and ones. They create arrays of all 0s or all
1s. The argument can be a type of n values, and an n-dimensional array will be created.

C.3.3 Manipulating Arrays
Arrays can be manipulated in ways that lists cannot. Because the type of an array is fixed
at its creation (a float or integer array), you can perform mathematical operations on the
entire array using an approach called broadcasting. By broadcasting, NumPy means that a
single operation is “broadcast” across the entire array. For example:

� my array * 4 multiplies each element of the NumPy array ny array by 4. The
other operations of +, -, / would produce similar results.

C . 3 • N U M E R I C P Y T H O N (N U M P Y) 733

� my array + my array adds each element of my array together, creating a third
array of values. The two NumPy arrays must be of the same “shape,” which for us really
means of the same dimension (length).

The following code (Code Listing C.4) will generate a normal distribution of 10,000
values with μ = 100 and σ = 15, which is then plotted as a histogram (see Figure C.7).

Code Listing C.4

import numpy
import pylab

ones array = numpy.ones((10000))
ones array = ones array * 100
standard di s t r ibu t i on , 10 ,000 elements , mu = 0, s td = 1
sigma = numpy.random.standard normal(10000)
sigma = sigma*15
generate a standard di s t r ibu t i on , mu = 100, s td = 15
ones array = ones array + sigma
pylab.hist(ones array,100)
pylab.show()

FIGURE C.7 Normal distribution and plot as a histogram.

This page intentionally left blank

•DA P P E N D I X

Table of UTF-8 One-Byte
Encodings

UTF-8 IS A MULTIBYTE ENCODING OF THE UNICODE CHARACTER SET. AS IT IMPLEMENTS

the original ASCII character set unchanged, it is the most popular Unicode encoding in use
on the web. Below (Table D.1) is shown the single-byte encodings of UTF-8, which are in
fact the same as the original ASCII encoding.

735

736 A P P E N D I X D • T A B L E O F U T F - 8 O N E - B Y T E E N C O D I N G S

Char Dec Char Dec Char Dec Char Dec
NUL 0 SP 32 @ 64 ` 96
SOH 1 ! 33 A 65 a 97
STX 2 " 34 B 66 b 98
ETX 3 # 35 C 67 c 99
EOT 4 $ 36 D 68 d 100
ENQ 5 % 37 E 69 e 101
ACK 6 & 38 F 70 f 102
BEL 7 ' 39 G 71 g 103
BS 8 (40 H 72 h 104
HT 9) 41 I 73 i 105
LF 10 * 42 J 74 j 106
VT 11 + 43 K 75 k 107
FF 12 , 44 L 76 l 108
CR 13 - 45 M 77 m 109
SO 14 . 46 N 78 n 110
SI 15 / 47 O 79 o 111
DLE 16 0 48 P 80 p 112
DC1 17 1 49 Q 81 q 113
DC2 18 2 50 R 82 r 114
DC3 19 3 51 S 83 s 115
DC4 20 4 52 T 84 t 116
NAK 21 5 53 U 85 u 117
SYN 22 6 54 V 86 v 118
ETB 23 7 55 W 87 w 119
CAN 24 8 56 X 88 x 120
EM 25 9 57 Y 89 y 121
SUB 26 : 58 Z 90 z 122
ESC 27 ; 59 [91 { 123
FS 28 < 60 \ 92 | 124
GS 29 = 61] 93 } 125
RS 30 > 62 ∧ 94 ∼ 126
US 31 ? 63 95 DEL 127

TABLE D.1 Single-Byte UTF-8 (ASCII) Characters

•EA P P E N D I X

Precedence

Operator Description
() Parentheses (grouping)

f(args. . .), x[i:i], x[i], x.attr Fuction call, slicing, subscript, dot
∗∗ Exponentiation

+x, -x, ˜x Positive, negative, bitwise NOT
∗, /, % Multiplication, division, remainder

+, - Addition, subtraction
<<, >> Shifts

& Bitwise AND
ˆ Bitwise XOR
| Bitwise OR

<, <=, >, >=, !=, ==, is, is not, in, not in Comparisons, identity, membership
not x Boolean NOT
and Boolean AND
or Boolean OR

lambda Lambda expression

TABLE E.1 Precedence of Python Operators: Highest to Lowest

737

This page intentionally left blank

•FA P P E N D I X

Naming Conventions

YOU HAVE HEARD IT MANY TIMES BEFORE, AND WE SUMMARIZED IT IN RULE 2:

programs should be readable. Part of that readability is good naming. We have focused
in the book on naming variables and functions based on what they are used for. However,
there are also conventions on how elements should be named and the format of that naming.

As simple as that sounds, the style used for naming can be quite contentious.
For example, see http://en.wikipedia.org/wiki/Naming_conventions_
(programming) for all the different conventions that programmers have used to name
programming elements.

Whatever style you prefer, one consideration in choosing a programming style is fitting
in with the programming style of the group you are working with. Groups establish naming
conventions so that reading a program is even easier. Conventions make it easier to recognize
different programming elements just by how they are formatted.

Python has established such a naming convention. Python provides a special
process called the PEP process, short for Python Enhancement Proposal, for changes
proposed to Python. A PEP is described as follows http://www.python.org/dev/
peps/pep-0001/:

We intend PEPs to be the primary mechanisms for proposing new features, for
collecting community input on an issue, and for documenting the design
decisions that have gone into Python. The PEP author is responsible for
building consensus within the community and documenting dissenting
opinions.

You can see that Python is very open to the community at large when it comes to
improving the language. One of the early PEPs, PEP-8, was focused on a style guide for
writing Python programs (see http://www.python.org/dev/peps/pep-0008/).

739

http://en.wikipedia.org/wiki/Naming_conventions_(programming)
http://en.wikipedia.org/wiki/Naming_conventions_(programming)
http://www.python.org/dev/peps/pep-0001/
http://www.python.org/dev/peps/pep-0001/
http://www.python.org/dev/peps/pep-0008/

740 A P P E N D I X F • N A M I N G C O N V E N T I O N S

For the most part, we have followed the style guidelines provided in PEP-8. Not all of
those guidelines apply to what we have done in this book (there is a lot Python you have
yet to see), but we did stick with those parts that applied to our book. Some prove difficult
to use in a book (where space is at a premium), but we did as much as we felt we could.
Also, remember RULE 4 (which, by the way, shows up prominently in PEP-8). We followed
the rules as long as they helped in readability, but we diverged when we thought there was
a better way!

F.1 P Y T H O N S T Y L E E L E M E N T S
If you read all of PEP-8, you can see that it is quite detailed! In fact, there are enough details
that Python has a package you may download called pep8 (http://pypi.python.org/
pypi/pep8) that will check for you how well you adhere to the style standards. How you
write Python code is prescribed to a level that might surprise many people. Remember,
if we as Python programmers follow these conventions, then our code is likely to more
readable.

These are some of the highlights that we adhered to in the book:

F.2 N A M I N G C O N V E N T I O N S
There are a couple of naming conventions in use in Python:

� lower with underscores: Uses only lowercase letters and connects multiple words with
underscores

� UPPER WITH UNDERSCORES: Uses only uppercase letters and connects multiple
words with underscores

� CapitalWords: Capitalizes the beginning of each letter in a word; no underscores

With these conventions in mind, here are the naming conventions in used in the book.

Variable names: lower with underscores
Constants: UPPER WITH UNDERSCORES
Function names: lower with underscores
Function parameters: lower with underscores
Class names: CapitalWords
Method names: lower with underscores
Method parameters and variables: lower with underscores

� Always use self as the first parameter to a method.
� To indicate privacy, precede name with a single underscore. To invoke the name-

mangling rules, see Section 11.8.2.

http://pypi.python.org/pypi/pep8
http://pypi.python.org/pypi/pep8

F . 3 • O T H E R P Y T H O N C O N V E N T I O N S 741

F.2.1 Our Added Naming Conventions
We adopted two other naming conventions that we use throughout the book.

First, we often (though not always) append a type name to the end of a variable, preceded
with an underscore. As we know, this does not affect the ability to associate whatever type
we wish with a variable, but it helps us as programmers remember the types we intended
to store with this variable. We violate this rule when the type is clear (making the naming
tedious) and usually add a comment in the code to indicate what a name without type is
assumed to be.

Second, when we create variable names that are used to demonstrate some attribute of
programming, as opposed to performing some operation in a program, we name variables
as my str or my list. That is, we preced the name with my just to indicate we need a
“throwaway” variable for some demonstration.

F.3 O T H E R P Y T H O N C O N V E N T I O N S
� Indentation should be done using four spaces per indentation level. If you use IDLE,

you get this kind of indentation “for free”—that is, IDLE does it for you. However,
remember that you are using spaces, not tabs, when you do indentation. This difference
might matter, if you use an editor that does not understand Python.

� Lines that get too long should be aligned in a “reasonable” fashion—for example,
aligned with an open delimiter and at a different indentation level than any following
indented suites.

� Lines should be less than 80 characters. This rule ensures compatibility with many
display formats.

� Blank lines are recommended in many circumstances, which we list below. However,
writing a book and trying to minimize spacing required us to violate these rules
occasionally.
- Separate functions and class definitions with two lines.
- Separate method definitions with one line.
- Use blank lines to group related elements.

� Do individual imports on a separate line at the top of the file.
� Use of whitespace:

- Whitespace should be used to separate binary operators and assignment statements
from other elements (just one space is sufficient).

- No whitespace around default parameter assignments in function definitions.
- No space between a function call and its argument list’s first parenthesis.

This page intentionally left blank

•GA P P E N D I X

Check Yourself Solutions

C H A P T E R 1

Variables and Assignments
1. a,d,e

(b) is invalid because it begins with a number.
(c) is invalid because it has a character that is not a number, letter, or underscore.

2. b,c
3. (a) 6

(b) 10
(c) 5

Types and Operators
1. (a) 1.1666666666666667

float
(b) 1

int
(c) 1

int
(d) 2

int
(e) 7.0

float
2. (a) 16

(b) 26

743

744 A P P E N D I X G • C H E C K Y O U R S E L F S O L U T I O N S

(c) 9
(d) 10

C H A P T E R 2

Basic Control Check
1. 4

0
2. 5

0
3. assignment (to update count)
4. Separate the loop header from the suite.

Loop Control Check
1. (a) 1

2
10
20

(b) 0
0
20
20

(c) 10, 10
15, 5
20, 0
25, -5
30, -10
. . .

More Control Check
1. (a) 3

(b) 0
(c) 4
(d) 1
(e) iv

A P P E N D I X G • C H E C K Y O U R S E L F S O L U T I O N S 745

for and range Check
1. (a) 12

(b) 8
(c) iv
(d) v (line 3 will always print 0)

C H A P T E R 4

Slicing Check
1. (a) bbcc

(b) abb
(c) abc
(d) aabb
(e) a b

String Comparison Check
1. (a) the empty string is printed

(b) cb
(c) cc
(d) infinite loop (loop control variable never changes)
(e) IndexError: string index out of range

C H A P T E R 5

File Check
1. b and c are both correct.

Exception Check
1. c

C H A P T E R 6

Simple Functions Check
1. 5

TypeError: Can’t convert int object to str implicitly
7
8

746 A P P E N D I X G • C H E C K Y O U R S E L F S O L U T I O N S

2. def make_even(n):
return 2*n

The expression 2*n works fine with a string: it concatenates two copies. The reason is
that the * operator is defined for strings and n is a string. However, in make odd the
expression 2*n+1 mixes strings and ints.

Function Practice with Strings
1. (a) bcd45

cd456
(b) aaabbc

aabbcd

C H A P T E R 7

Basic Lists Check
1. (a) [‘hi’, ‘mom’, ‘dad’, 1, 57, 25]

(b) [‘hi’, 25]
(c) None
(d) [‘hi’, ‘mom’, ‘dad’, [1, 57, 25]]
(e) TypeError: unorderable types: list() < str()
(f) [‘hi’, ‘mom’, ‘dad’, [1, 57, 25]]
(g) None
(h) [‘hi’, ‘mom’, ‘dad’, [1, 57, 25], 127, 256]
(i) 256
(j) [‘hi’, ‘mom’, ‘dad’, [1, 57, 25], 127]

Lists and Strings Check
1. (a) [1.6, 2.7, 3.8, 4.9]

(b) [[‘1’, ‘6’], [‘2’, ‘7’], [‘3’, ‘8’], [‘4’, ‘9’]]
(c) [1, 2, 3, 4]
(d) [‘4’, ‘9’]
(e) 4:9

C H A P T E R 8

Passing Mutables Check
1. (a) [‘a’, ‘b’, ‘c’, ‘d’]

(b) [‘goodbye’, ‘mother’, ‘and’, ‘father’]
(c) sister

A P P E N D I X G • C H E C K Y O U R S E L F S O L U T I O N S 747

More on Functions Check
1. (a) (10, [10, 20, 30])

(b) (5, [5, 10, 15, 20])
(c) (3, [3, 6, 9])
(d) (7, [7, 14, 21, 28, 35])
(e) 2

C H A P T E R 9

Dictionary Check
1. (a) 33

(b) walter
(c) True
(d) ‘walter’: 20, ‘bill’: -1, ‘rich’: 2, ‘fred’: 10

Set Check
1. (a) {‘ab’, ‘cd’}

(b) set()
(c) {‘ab’}

C H A P T E R 1 1

Basic Classes Check
1. (a) []

(b) [11, 12]
(c) 23
(d) AttributeError: MyClass object has no attribute local list.

Since method1 was never called, local list was not created.

Defining Special Methods
1. (a) Value 4 is even

(b) even
(c) negative
(d) odd

748 A P P E N D I X G • C H E C K Y O U R S E L F S O L U T I O N S

C H A P T E R 1 2

Check Defining Your Own Operators
1. (a) Value: abc

(b) Value: abcijk
(c) Value: abc
(d) True

C H A P T E R 1 4

Basic File Operations
1. (a) c

Basic Exception Control
1. (a) Enter a key: bill

110
(b) Enter a key: zach

hi mom all done
(c) Enter a key: fred

hi mom
(d) Enter a key: 0

hi mom

•I N D E X

A

Abundant numbers, 95
Accessing text files

reading, 227–229
writing, 229–230

Accumulators, 142
add (), 527, 532–535

add(element), 411
Addition, 63, 191
add word(), 393–394, 412–413
Algorithms, 5

classifier, 441–462
defined, 69, 153–154
developing, 68–72
examples of, 154–155, 327–337
periodic table, overview and example of, 400–401
program design and, example of, 169–177
qualities of, 157–159
versus programs, 155–157

Alias, 50
Alignment descriptors, 202, 203–204, 214
al-Khwārizmı̄, Abū‘d Allāh Muhammad

ibn Mūsā, 154
Anagrams, 299–304
and circuit, 19
and operator 109–110
Annotations, 370–371
Antonelli, Kay Mauchly, 17–18
Apache, 12
append(X), 293, 294

Architecture, 24–26
Argument list, function, 67
Arguments

defined, 195
determining, 198–200
functions and, 257–258, 260
having a varying number of, 668–670
keyword, 669–670
optional, 197
passing information from, to

parameters, 359–361
positional, 668–669

Arithmetic and Logic Unit (ALU), 24
Arrays

defined, 732
manipulating, 732–733
NumPy, creating, 732
range()and, 340–341

Art of Computer Programming, The (Knuth), 153
ASCII (American Standard Code for Information

Interchange), 29, 216
Assembly language, 142
assert statement, 641
Assignment

augmented, operator, 40, 65–67
dictionaries, 385–386
multiple, 114–116, 295–296
rational numbers and, 535
statement, 40, 50, 65–66, 105
variable names and, 50–52

Associative array, 383

749

750 I N D E X

Asterisks
single, 668–669
two, 670

& operator, 407
Attributes, 53

class, 483
class, changing, 484–485
instance, 495
private versus public, 507–508

Augmented assignment operator, 65–67

B

Babylonian square root algorithm, 154–155, 258
Backslash, 41, 46, 180, 181
Bardeen, John, 19
Bar graph of word frequency example, 425–427
Bar graphs, 729
Base case, 650, 654
Basketball lead example, 86–90
Basketball program, example of testing, 636–639
Binary data, 26–28
Binary decision/selection, 81
Binary files, 227
Binary operators, 407
Bits, 29
bool, 57, 104
Boole, George, 103–104
Boolean

operators, 83, 109–110
operators, example of, 111–113
relational operators, 104–108
type, 57, 83
variables, 104

Braces, curly, 57, 58, 385
Brackets, square, 57, 182, 200, 283, 385
Branch instruction (BRZ), 142–143
Brattain, Walter, 19
break statement, 123–127, 131
Breast cancer classifier example. See Program development,

breast cancer classifier example
Broadcasting, 737
Bubble Sort, 5
Buffer, 228–229
Bugs and debugging, 632–633
Built-ins, 422

class and instance, 481–482

data types, 693
modules, 693–694

bytearray, 693
Bytes, 29, 693

C

Calling/ invoking. See Invoking/calling
Cantor, Georg, 405
CapitalWords approach, 483, 740
Carriage return, 181, 596
Case, changing, 211
Central Processing Unit (CPU), 24
Chained relational operators, 108
Chaining methods, 197
Characters

non-printing, 181
representing, 29–30

choice(sequence), 692
chr(), 182
Circumference program, 38–41
Class

See also Instance; Program development,
predator-prey simulation

attributes, 483
attributes, changing, 484–485
built-in, 481–482
definition, 483
definition, format of, 482
elements in, deciding on, 493
hierarchy, 545–547

init (), 494–495
instance-of relationship, 485–488
introspection, 520–522
is-a relationship and class hierarchy, 545–547
keyword, 483
name, 483
properties, 684–688
random numbers, 691–693
rational number (fraction), example, 518–520,

526–539
scope rules, 486–488
serializing an instance, 688–691
simple example, 477–478, 482–484,

493–494
str (), 496–497

use of term, 479–480

I N D E X 751

Class designer
point class example, 499–506
role of, 498–499

Classifier (classification)
See also Program development, breast cancer

classifier example
algorithm, 441–462

classify test set(), 456–460
Class separation value, 441
clear(), 411
Closing files, 228, 599
Code, use of interactive, 706–707
Code point, 217
Collatz conjecture, 136
Collection operations

dictionaries and, 386–387
iterator objects and, 672–673

Collection type, 57, 93, 693
Colons, use of, 183–184, 186, 187, 202
Color, 140

Turtle Graphics, 714–717
Commas, use of, 284, 321–322
Comma-separated value (CSV) format. See CSV

(comma-separated value) format
Comments

designating, 40
readability and, 162–163
role of, 46

Compound statement, 84
Comprehension

dictionary and set, 424–425
list, 337–339

Computation
defined, 13
efficiency of, 5
evolutionary, 15–16
human brain, 14–15
minimal, 142–143
theory of, 4–5

Computer
architecture, 24–26
defined, 13–14
development of, 18–24
human, 17–18

Computer languages, choosing, 11
Computer processing unit (CPU), 21, 22
Computer science

applications, 4

defined, 4
fields, 4–6
importance of, 3–4

Concatenation
string, 189–190
+ symbol, 189–191

Condition, 82
Consistency, 517
Constructors, 59–61
Context, 618
Continuation, 45–46
continue statement, 127–129, 131
Control

See also Recursion; Repetition; Selection
functions and flow of, 262–273
nesting, 134–135
strings and, 205–208
try-except flow of, 234–237

copy(), 389, 411
Copying

dictionaries and shallow, 389
lists, 313–320
shallow versus deep, 316, 318–320

Copy slice, 187, 313–314, 317
Correctness

program, 164–165
testing for, 635

count(), 292
cp1252, 399
CSV (comma-separated value) format, 242,

398–400
defined, 601
module, 601–602
reader, 602–603
updating grades example,

603–605
writer, 603

Current file position, 597–598

D

Data
binary, 26–28
limits, 28–29
plotting, with pylab, 137–141
quantities, 32–34
value, interpreting, 31–32

752 I N D E X

Data structures, 5
See also Dictionaries; Lists; Sets; Strings
defined, 324–325
example, algorithm, 327–337
examples of, 325–327
stacks, 657–661

Data types, built-in, 693
Debugging, 632–633
decimal module, 56
Decision. See Selection
Declaration of Independence,

compared with the Gettysburg
Address, 412–416

Decorators, 678–684
Deep copy, shallow versus, 316, 318–320
Default arguments, 197
Default values, 365–368
Deficient numbers, 95
Definition, functions and, 259–262
def statement, 260–262, 358, 359
Delimiters. See Punctuators
Dependencies, 722–723
deque, 693
Descriptor codes, 202–203
Design errors, 632
Developer errors, 641–643
dict, 57, 385, 386

dict , 369
Dictionaries, 57, 326

collection operations, 386–387
comprehension, 424–425
creating, 385, 424
defined, 383–384
example of, 384
indexing and assignment, 385–386
key types, 386
methods, 387–390
mutable, 385
other terms for, 383
periodic table example, 398–404
word count example, 391–398
zip operator to create, 424

difference method, 408–409
Dijkstra, Edsger, 633
dir(), 371, 483
Directory structure, 606–607
Directory tree, 606, 607
discard(element), 411

Disk, 25
size, 32–33

Divide-and-conquer problem solving, 168, 257, 259,
437–438, 539

functions for, 401–404
Division, 62, 63, 64
Divisors, summing,100–101

doc , 369, 371
Docstrings, 261, 371
doctest, 643–646
Dot notation, 196, 197, 293
Drawing. See Turtle Graphics
dump(obj, file), 688
dumps(obj), 688
Dynamic testing, 634

E

Early exit, 124
Edison, Thomas, 632
Efficiency, 325
Elements (Euclid), 530
else clause, 123, 131, 618
EMC, 33
Empty list, 284
Empty object, 104
Empty set, 405
Encapsulation, 194, 258

object-oriented programming and, 479, 506
Enclosed namespaces, 422–423
Encoding, 217
ENIAC, 18
Enthought Python Distribution (EPD), 722

eq (), 527
Equality, 105–108

reducing rational numbers and, 536–539
Equal to, 83, 105
Errors

See also Exception handling; Testing
bugs and debugging, 632–633
checking, 245–246
design, 632
developer, 641–643
handling, 232–237
IOError, 233, 640–641
names, 233
out of range, 183

I N D E X 753

philosophy concerning, 616–618
runtime, 232, 632
StopError, 671
StopIteration, 674
syntax, 232, 632
try-except construct, 233–234, 235–237
try-except flow of control, 234–235
user, 127, 639–641
ValueError, 233

Escape character, 180
Euclid, 530
evens(), 363, 365
Events, 616
Exabytes (EB), 33, 34
Exception handling, 233, 235–237

basic, 612
creating your own, 621–622
else clause, 123, 131, 618
events, 616
example, 613–616
finally clause, 618–620
multiple, 616
philosophy concerning, 616–618
raising, 620–621
try-except suite, 612–616

Exponentiation operator, 41
Expressions, 43–44
extend(C), 293, 294

F

factorial(), 651–654
Fetch-decode-execute-store cycle, 25–26
Fibonacci sequence, 652–654
file handle.close(), 228, 250
file handle=open(), 228, 250
Files

analysis example (Gettysburg address), 305–310
closing, 228, 599
CSV file format, 601–605
current position, 597–598
defined, 227
descriptor or stream, 228
input-output, 229
modes, 231
moving around in, 597–599
new line format, 596–597

object, 228
opening, 227–228
overwriting, 231
reading, 227–229, 593–595
reading and writing text, in a program, 230–231
review of, 591–593
with statement, 599–600
writing, 229–230, 595–596

filter(), 677–678
Final grade example, determining, 371–375
finally clause, 618–620
find(), 196, 197, 205–208
Firefox, 12
Flag designs based on religion, example, 470–471
Floating-point numbers, 56
Floating-point operators, 63
Floating-point precision descriptor, 204
Floating Point Unit (FPU), 26
float type, 56
Formatting

alignment descriptors, 202, 203–204
command, 202
description of, 213–216
descriptor codes, 202–203
floating-point precision descriptor, 204
output for strings, 201–205
width descriptors, 202, 203–204

for statement/loop, 120–121
else clause, 131
break statement, 131
continue statement, 131
equivalence of, 134
iteration, 91, 93–94
range(), 131–134
sets and, 406
view objects, 388–389
when to use, 134, 673

Fractions, 28, 56–57
See also Rational number (fraction) example
adding, 529–535

frozenset, 693
Functional programming, 676
Functional programming languages, 649
Function calls, stacks and, 659–661
Functions

See also specific one
annotations, 370–371
argument list, 67

754 I N D E X

Functions (Contd.)
arguments, 257–258, 260
decorators, 678–684
defined, 40, 135, 194–195, 257–258
definition and invocation, 259–262
for divide-and-conquer, 401–404
example, determining final grade, 371–375
examples, 265–273
flow of control, 262–273
invoking/calling, 195, 259–262, 273
lists and, 289–290
name, 67, 358–359
names associated with, 369
namespaces, 357–359
as objects, 369–371
os (operating system) module, 608–609
parameter, 260, 263–265
parts of, 261
passing information from arguments to

parameters, 359–361
passing mutable objects, 361–363
reasons for, 258–259
returning complex objects, 363–364
return statements, 274–275
scope, 357–358
string, 195, 201–205
when to use, 273–274

G

Generators, 673–676
Genetic algorithms, 16
get(), 390
Gettysburg address, file analysis, 305–310,

393–398
compared with the Declaration of Independence,

412–416
Gigabytes (GB), 32
Global namespace, 418–420
global statement, 421
Google Style Guide, variable names, 50
Graph theory, 4
Greater than or equal to symbol, 83, 410
Greater than/right symbol, 83, 214
Greatest common divisor (GCD), 529–532
Group development, 548
Grouping statements, 45, 84–85

H

Hailstone sequence example, 136–137
Half-open range, 184
Halting problem, 5
Hard drive, 25
Haskell, 649
Header, 84
Heron of Alexandria, 154
Hexadecimal, 55
Hierarchy, 545–547
Histograms, 730
Hopper, Grace, 632–633
Howard, Michael, 234
How to Solve It (Pólya), 165
Human brain, 14–15
Hungarian notation, 59

I

IBM, 21, 32
id(), 53
IDC Digital Universe study, 33
Identification number, 53, 54
IDLE, 38, 39

indentation and, 45
matplotblib and, 725–725
method names and arguments, determining,

198–200
if-elif-else statement, 116–120
if-else statement, 85–86, 116
if statement, 83–85, 116
Images, 30–31
Immutable strings, 193–194
import command, 67
Import files, 39
import module, 43

variation using from, 519–520
Indentation, 45, 84–85, 741

readability and, 163
Index

assignment, 291
character, 182

index(), 292
Indexing

dictionaries, 385–386
lists, 286–287

I N D E X 755

operator, 182, 385
strings, 183–187

Infinite loop, 121
Infinite recursion, 650
Inheritance

changing code using, 552–554
finding, 544–547
is-a relationship and class hierarchy, 545–547
object-oriented programming and, 479, 506–507
Standard Model, 549–554
init (), 494–495, 526, 528

Initialization, 121
in operator, 192–193, 211, 406
Input, program design and, 171–173
input function, 40
Input/output

devices, 25
file streams, 229

insert(i, x), 293, 294
Instance

See also Class
attributes, 495
built-in, 481–482
changing, 497, 509–510
creating, 483–484

init (), 494–495
initializing, 495–496
printing, 496–497
serializing an, 688–691

str (), 496–497
use of term, 479–480

instance-of relationship, 485–488
Instructions, 43
Integer operators, 61–63
Integers, 26, 55–56
Integrated circuits, 20–21
Integration testing, 634
Intel, 21, 22, 635
Internet, 4
Interpreted language, 42
intersection method, 407
int function/type, 40–41, 55
Introspection, 520–522, 540–542
Invocation, functions and, 259–262, 366
Invoking/calling

functions, 195, 259–262, 273
methods, 196

IOError, 233, 640–641

is-a relationship and class hierarchy,
545–547

isinstance(), 521–522
items(), 387–390

iter (), 671
Iterables

lists, 286, 290
range, 133
string, 187–188

iter(a collection), 672
iter(an iterator), 671
Iteration, 91, 93–94
Iterator objects, 671–673

J

join(), 296–297

K

key, 57
keys(), 387–390
Key types, dictionaries and, 386
Keywords, 47

arguments, multiple, 669–670
class, 483
parameters as, 366

Kilby, Jack, 20–21
Kilobytes (KB), 32
Knuth, Donald, 153–154

L

lambda expression, 676–677
Last In, First Out (LIFO), 657
Leading whitespace, 45
Leading zeros, 55
Least common multiple (LCM), 529–530
LeBlanc, David, 234
LEGB rule, 416–417, 486
len(), 195, 265–267, 289, 406
Less than/left symbol, 83, 214
Less than or equal to symbol, 83, 410
Linux, 12
Lisp, 649

756 I N D E X

Lists, 57
See also Tuples
appending itself, 315
converting back and forth between strings and, 296–297
copying, 313–320
creating, 283–284
defined, 283
difference between strings and, 283, 290–294
empty, 284
example, anagrams, 299–304
example, comprehension, 337–339
example, file analysis (Gettysburg address), 305–310
functions and, 289–290
indexing and slicing, 286–287
iteration, 286, 290
list of, 285
methods, 292–294
mutable, 290–292, 310–321
naming, 284
nesting, 285
operators and, 287–289
plotting using, 138–140
sorting, 297–299

Literals, 48
load(file), 688
Local assignment rule, 420–421
Local namespace, 357–359, 417–418
Logo, 709
Loops

break statement and non-normal exit, 123–127
control, 93
control variable, 121
for, 91, 93–94, 120–121
infinite, 121
initialization, 121
sentinel, 130
while, 91–93, 120–122

lower(), 211, 309

M

main(), 374, 393, 396, 412, 413
make averages(), 453
make test set(), 450–451
make training set(), 446–450
map, 57, 181–182

dictionary, 383

map(), 677–678
Markers, 140
math.cos(), 68
Mathematical operations, precedence of, 64–65
math.fabs(), 68
math.hypot(), 68
math module, 67–68
math.pow(), 68
math.sin(), 68
math.sqrt(), 68
matplotlib

command line, 725
command line, Windows, 726–727
defined, 721
getting, 722–726
IDLE and, 724–725
plotting data with, 137–141
working with, 727–731

Matrix, 327
max(), 289
Megabytes (MB), 32
Memory, main/random access, 24
Methods

arguments, determining, 198–200
arguments, optional, 197
chaining, 197
defined, 195–196
dictionary, 387–390
invoking/calling, 196
list, 292–294
names, determining, 198–200
nesting, 197–198
object, 488–493
set, 407–410
string, 195–198, 200

min(), 289
mirror(), 258, 363–364
Mixed operations, 63–64
Modules

built-in, 693–694
csv, 601–602
defined, 40, 43, 67
Internet, 694
math, 67–68
os (operating system), 606–612

Moore, Gordon, 22
Multiplication, 41, 63
Music, 31

I N D E X 757

Mutable
dictionaries, 385
lists, 290–292, 310–321
objects and references, 310–321
passing mutable objects, 361–363
sets, 406

N

name , 369
namedtupel, 693
Namespaces, 50, 262, 311

built-ins, 422
enclosed, 422–423
global, 418–420
global statement, 421
local, 357–359, 417–418
local assignment rule, 420–421
scope and, 416

Naming
class, 483
conventions, 739–741
functions, 67, 358–359
Hungarian notation, 59
lists, 284
objects, 48–49
parameters, 367
readability and, 160–162
recommendations on, 49
variables, 50–52

Nesting
control and, 134–135
lists, 285
of methods, 197–198

Netflix, 33
Network, 25
Neumann, John von, 24
New line format, 596–597
Newton’s method, 155

next (), 671
next(an iterator), 671
Non-empty object, 104
Non-normal exit, 123–127
Non-printing characters, 181
Not equal to symbol, 83
not operator, 109–110
Null set, 405

Numbers
example of classifying, 99–102
range(), 131–134

Numeric types, 55–57
NumPy module, 340, 723–724, 732–733

O

Object-oriented programming (OOP), 676
characteristics of, 478–480, 506–507
group development, 548
public versus private, 507–508

Objects
functions as, 369–371
generator, 675
identity and attributes, 53
iterator, 671–673
mutable, 310–321
naming, 48–49
passing mutable, 361–363
passing references, 375
returning complex, 363–364
scope rules, 486–488
string, 180
types, 53–55, 58–59
view, 388–389

Octal, 55
Onion approach, 168–169
Opening files, 227–228
Open source model, 12–13
Operations

augmented assignment, 65–67
object, 53
precedence of mathematical, 64–65, 737
shortcut, 65–66

Operators
Boolean, 83, 109–110
exponentiation, 41
floating-point, 63
indexing, 182, 385
integer, 61–63
list of, 47
lists and, 287–289
mapping, to special methods, 524–525
mixed operations, 63–64
overloading, 61, 190, 523–526
precedence of, 64–65, 110–111, 737

758 I N D E X

Operators (Contd.)
rational number (fraction), 518–520
relational, 104–108
ternary, 339
tuples, 322–323

Operators, string
comparison, 191–192
+ (concatenation), 189–190
determining when + means addition or

concatenation, 190–191
in, 192–193
lists and, 287–289
∗ (repetition), 189–190

or circuit, 19
ord(), 182, 217
OrderedDict, 693
Ordering, 294
or operator, 109–110
os (operating system) module

directory (folder) structure, 606–607
example, 609–612
functions, 608–609

os.chdir(), 608
os.getcwd(), 608
os.listdir(), 608
os.path(), 608
os.walk(), 609
Out of range error, 183
Output, 170–171
Overloading, operator, 61, 190, 523–526
Overwriting files, 231

P

Palindromes, 210–213
Parallel processing, 5–6
Parameters, 260

default values and passing, by name, 365–368
having a varying number of, 668–670
as keywords, 366
naming, 367
passing, 263–265
passing information from arguments

to, 359–361
Parentheses, 65
parse element(), 401, 402–404
parse line(), 373–374

Passing
by value or by reference, 375
information from arguments to parameters, 359–361
mutable objects, 361–363
of object references, 375
parameters, 263–265

pass statement, 129–130, 399
Password manager example, 622–625
PEP (Python Enhancement Proposal) 8

naming conventions, 49, 740–741
Perfect number, example, 95–99, 119–120
Periodic table example, 398–404
Petabytes, 32–33
pickle module, 688–691
Pie charts, 731
Pixels, 30–31
plot command, 727–728
Plotting

arrays and range(), 340–341
data with pylab/matplotlib, 137–141
properties, 728
trigonometric functions, 342–343

Poker hands, counting example, 238–249
Pólya, George, 165
Polymorphism, object-oriented programming

and, 479, 507
pop(), 293, 294
Pop operation, stack, 657–659
Positional arguments, 668–669
Post-coding, 634
Pound sign, 40, 214
Powers of 2 or 10, 32
Precedence

of mathematical operations, 64–65, 737
of operators, 64–65, 110–111, 737

Precision descriptor, 202, 204
Precoding, 634
Predator-prey simulation. See Program development,

predator-prey simulation
pretty print(), 393, 395–396, 412, 414
print statement, 41, 496

comment and uncommenting in, 532
Private attributes, 507–508
Problem solving, 9

divide-and-conquer, 168, 257, 259, 401–404,
437–438, 539

program designing, 165–169
Procedural programming, 676

I N D E X 759

Procedures, 274
process line(), 393, 394–395, 412, 413
Processor, 24
Program development, breast cancer classifier example

basic information, 438–441
classifier algorithm, designing, 441–462
classify test set(), 456–460
data structures, 445
divide-and-conquer, 168, 257, 259, 401–404,

437–438
file format, 445–446
make averages(), 453
make test set(), 450–451
make training set(), 446–450
report results(), 460–462
sum lists(), 452–453
testing, 455–460
top-down refinement, 438
train classifier(), 451–452, 453–455
training versus testing, 462–466
utility functions for manipulating lists, 452

Program development, examples
flag designs based on religion, 470–471
S&P 500 predictions, 467–470
tag clouds, 466–467

Program development, predator-prey simulation
animal object, 565–568
breeding, eating, and keeping time, 576–584
filling the island, 569–572
graphing population size, 585–586
how many times to move, 584–585
island class, 563–565
movement, adding, 572–575
object diagram, 569, 570
overview of, 561–562
predator and prey classes, 568–569
rules, 562
simulation using object-oriented

programming, 563
time simulation loop, 575–576

Programming
difficulty of, 6–9
functional, 676
object-oriented, 478–480, 506–507, 676
procedural, 676
role of, 10–11
rules, 37
what constitutes good, 9–10

Programs
algorithms versus, 155–157
changing, 99
correctness, 164–165
defined, 10, 159–165
design, example, 169–177
designing, 165–169
parts of, 43–49
readability, 159–163
robustness, 163–164
skeleton, 100

Properties, 684–688
Public attributes, 507–508
Punctuators (delimiters), list of, 47
Push operation, stack, 657–659
.py suffix, 38
pylab, plotting data with, 137–141
Python

history of, 697
making a program, 702–705
obtaining, 698–699
philosophy, 12
platform and version, 723
reasons for using, 11–13
shell, use of, 43
starting up, 699–700
working with, 700–701

Python Enhancement Proposal (PEP) 8
naming conventions, 49, 740–741

Python Package Index, 694
Python 3, 697–698

Q

Queue, 326
Quick Sort, 5
Quotation marks

single or double, 43, 57, 180
triple, 180–181

Quotient, 62, 63

R

Raising exceptions, 620–621
randint(a,b), 692
random(), 692

760 I N D E X

Random numbers, 691–693
range(), 131–134

arrays and, 340–341
half-open, 184

Range of numbers, 99–100
Rational number (fraction) example, 518–520, 526

assignment, 535
equality and reducing, 536–539
fractions, adding, 529–535
introspection, 520–522, 540–542
making the class, 527–529
methods used, 527
mixed-type comparisons, 544
reversed methods, using, 542–544
testing problems, 539–540

read(), 593, 595
Readability, 159–163
Reader, CSV, 602–603
Reading files, 227–229, 593–595

example of, in a program, 230–231
readline(), 593, 594
readlines(), 593, 594–595
read table(), 401–402
Recursion

converting to nonrecursion, 664
defined, 649–651
factorial(), 651–654
Fibonacci sequence, 652–654
how it works, 656–661
infinite, 650
Sierpinski triangles, 663–664
step, 650
of a string, 654–656
tree, 661–663

reduce(), 677–678
Refactoring, 119, 302, 365, 618–620
References, 359, 361

mutable, 310–321
object, 375

Relational operators, 104–108
Remainder, 62
remove(x), 293, 294
remove(element), 411
Repetition, 90
for statement, 91, 93–94, 120–121
∗ (string operator), 189–190
while statement, 91–93, 120–121

replace(), 212–213

report results(), 460–462
repr (), 527, 528

Returning complex objects, 363–364
return statements, functions and, 260, 274–275
Return value, 43–44, 68, 195
reverse(), 293
Robustness, 163–164
Rossum, Guido van, 697
Routers, 4
Runtime errors, 232, 632

S

sample(sequence, num), 692
S&P 500 predictions, example, 467–470
Scheme, 649
Scope

functions and role of, 357–358
global namespaces, 418–420
global statement, 421
local assignment rule, 420–421
local namespaces, 357–359, 417–418
namespaces and, 416
rules for objects, 486–488
search rule for, 416–417

seed(obj), 692
seek(n), 598
Selection

binary, 81
Boolean, 83, 103–113
break statement and non-normal exit, 123–127, 131
continue statement, 127–129, 131
control flow, 82
else clause, 123, 131
example, basketball lead, 86–90
example, classifying numbers, 99–102
example, finding perfect numbers, 94–99, 119–120
for statement, 91, 93–94, 120–121, 131–134
if-elif-else statement, 116–120
if-else statement, 85–86, 116
if statement, 83–85, 116
pass statement, 129–130
repetition, 90–94, 120–122
sentinel loop, 130
while statement, 91–93, 120–121, 130

self, 495, 501, 503, 505, 528
Self- referencing, 315

I N D E X 761

sentinel loop, 130
Sequence, 57, 93

strings as, 180, 182–183
sub-183

Serializing an instance, 688–691
set(), 405
SET constructor, 405
Sets, 58, 93, 326, 404

applications, 411–416
comprehension, 424–425
defined, 405
empty or null, 405
history of, 405
methods, 407–410
subset and superset, 409–410

Sets, Python
creating, 405–406
mutable, 406
operations, 406

Shallow versus deep copy, 316, 318–320
Shanks, William, 17
Shannon, Claude, 104
Shockley, William, 19
shuffle(sequence), 692
Side effect, 44
Sierpinski triangles, 663–664
Sign format, 214
Simonyi, Charles, 59
Sine wave, plotting, 140–141
Skeleton, 100, 170, 443
Slice assignment, 291
Slicing

lists, 286–287
strings, 183–187

Smartphones, 4
Social networking, 4
Software engineering, 6, 548
sort()method, 293, 294, 397
sorted()function, 297–299
Spaces (spacing), 85
special sum(), 522
split(), 209–210, 295–296
Square roots, calculating, 154–155, 258
Stacks, 657–661
Standard Model, 549–554
Stars

single, 668–669
two, 670

Statements
compound, 84
defined, 44
grouping, 45, 84–85

Static testing, 634
StopError, 671
StopIteration error, 674
Stop words, 397, 467
str, 57, 180
str (), 368, 496–497, 527, 528

string(), 195
String operators

comparison, 191–192
+ (concatenation), 189–190
determining when + means addition or concatenation,

190–191
in, 192–193
lists and, 287–289
∗ (repetition), 189–190

Strings
comparing, 191–192
control, 205–208
converting back and forth between lists and, 296–297
defined, 40–41, 179
difference between lists and, 283, 290–294
example, palindromes, 210–213
example, reordering person’s name, 208–210
formatted output for, 201–205
formatting, 213–216
functions, 195, 201–205
immutable, 193–194
indexing and slicing, 183–187
iterable, 187–188
methods, 195–198, 200
non-printing characters, 181
objects, 180
operators, 189–194
recursive, 654–656
representation, 181–182
as a sequence, 180, 182–183
triple-quote, 180–181
type, 57

strip(), 268–269, 309
sub (), 527

Subsequences, 183
Subset, 409–410
Subtraction, 63
Suite, 84

762 I N D E X

sum(), 134, 289
sum lists(), 452–453
Summing divisors, 100–101
Superset, 409–410
Swapping, 115–116
Switches, 18–19
Symbols

+ (addition), 63, 191
alignment, 214
= (assignment statement), 40, 50, 65–66, 105
∗ (asterisk or star), 668–669
∗∗ (asterisks or stars), 670
& operator, 407
\(backslash), 41, 46, 180, 181
Boolean operators, 83
{} (braces, curly), 57, 58, 385
[] (brackets, square), 57, 182, 200, 283, 385
∧ (center), 214, 409
: (colon), 183–184, 186, 187, 202
, (comma), 284, 321–322
+ (concatenation), 189–191
/ (division), 62, 63, 64
. (dot notation), 196, 197, 293
== (equal to), 83, 105
\(escape character), 180
** (exponentiation), 41, 63
floating-point operators, 63
= (force fill between sign and digits), 214
|operator, 408
> (greater than/right), 83, 214
>= (greater than or equal to), 83, 410
integer operators, 61–63
< (less than/left), 83, 214
<= (less than or equal to), 83, 410
- operator, 408
∗ (multiplication), 41, 63
!= (not equal to), 83
operators, list of, 47
() (parentheses), 65
(pound sign), 40, 214
punctuators, list of, 47
quotation marks, single or double, 43, 57, 180
quotation marks, triple, 180–181
// (quotient), 62, 63
% (remainder), 62
∗ (repetition), 189–190
sign, 214
∗ (star), 668–669

∗∗ (stars), 670
- (subtraction), 63

(underscore), 48
(underscores, double), 483, 494, 508

Symmetric difference, 409
Synchronizing file contents, 599
Syntax errors, 232, 632
System testing, 634

T

Tabs, 181
Tag clouds, 466–467
tell(), 598
Terabytes, 32, 33
Ternary operator, 339
Testing

automatic, 643–646
basketball program example, 636–639
bugs and debugging, 632–633
difficulty of, 634–635
importance of, 72–73, 173–177, 635
incorporating, 639–643
levels of, 634
post-coding versus precoding, 634
reasons for, 631–633
static versus dynamic, 634
types of, 633–634, 647

Texas Instruments, 20–21
Text files

Declaration of Independence compared with
Gettysburg Address, 412–416

defined, 227
example of file analysis (Gettysburg Address), 305–310,

393–398
example of reading and writing, in a program, 230–231
reading, 227–229, 593–595
writing, 229–230, 595–596

Thunderbird, 12
Ticks, 426–427, 729
Tokens

defined, 46
keywords, 47
literals, 48
operators, 47
punctuators (delimiters), 47

Top-down refinement, 438

I N D E X 763

Top operation, stack, 657–659
Top-tested loop, 121
train classifier(), 451–452, 453–455
Transistors, development of, 19–24
Trigonometric functions, plotting, 342–343
Triple-quote strings, 180–181
True and False. See Boolean
try-except construct, 233–234, 235–237
try-except flow of control, 234–235
try-except suite, 612–616
Tuples

creating, 321–322
defined, 321
from lists, 323–324
operators, 322–323
reasons for, 324

Turtle Graphics, 73–74
color, 714–717
development of, 709–711
drawing a flag, 276
drawing commands, 711–713, 717–718
drawing window, 719
IDLE and, 720
motion, 711

type(), 190–191
Types

See also under specific one
Boolean, 57, 83
collection, 57
dictionary, 57
floating-point, 56
fractions, 56–57
integer, 55–56
introspection, 520–522
list, 57
map, 57
numeric, 55–57
object, 53–55, 58–59
set, 58
string, 57
value, 41

U

Underscore
double, 483, 494, 508
single

Unicode, 29, 216
union method, 408
unittest, 647
Unit testing, 634
Universal New Line format, 596–597
update(), 497
U.S. Army, Ballistics Research Laboratory, 17
upper(), 211
User errors, 127, 639–641
UTF-8, 29–30, 216–217

mapping, 181–182
single-byte characters, 736

V

ValueError, 233
Values

constructing new, 59–61
default, 365–368
map type, 57
return, 43–44, 68, 195
types, 41

values(), 387–390
Variables, 25, 40

Boolean, 104
defined, 49
Google Style Guide, 50
names, creating, 50–52, 311
naming conventions, 49–50

View objects, 388–389

W

weighted grade(), 372–373
Weinshank, Don, 179
while statement/loop, 91–93, 120–122
else clause, 123
break statement and non-normal exit, 123–127
continue statement, 127–129
equivalence of, 134
summary of, 130
when to use, 134

Whitespace, 45–46, 741
Width descriptors, 202, 203–204
Windows-1252, 399
with statement, 599–600, 618

764 I N D E X

Word count
add word(), 393–394, 412–413
bar graph example, 425–427
Declaration of Independence compared with the

Gettysburg Address, 412–416
dictionaries and, 391–398
example of text file analysis (Gettysburg Address),

305–310, 393–398
main(), 393, 396, 412, 413
pretty print(), 393, 395–396, 412, 414
process line(), 393, 394–395, 412, 413
in a string, 392

Word puzzle example, 267–272
write(), 595–596
writelines(), 595, 596
Writer, CSV, 603

Writing Secure Code (Howard and LeBlanc), 234
Writing files, 229–230, 595–596

example of, in a program, 230–231

Y

Yield, 673–674
YouTube, 33

Z

Zeros, leading, 55
Zettabytes, 33–34
zip operator, 424

	Cover
	Title Page
	Copyright Page
	SUPPLEMENTARY MATERIAL
	ACKNOWLEDGMENTS
	CONTENTS
	PREFACE
	PART 1 THINKING ABOUT COMPUTING
	Chapter 0 The Study of Computer Science
	0.1 Why Computer Science?
	0.2 The Difficulty and Promise of Programming
	0.3 Choosing a Computer Language
	0.4 What Is Computation?
	0.5 What Is a Computer?
	0.6 The Modern, Electronic Computer
	0.7 A High-Level Look at a Modern Computer
	0.8 Representing Data
	0.9 Overview of Coming Chapters

	PART 2 STARTING TO PROGRAM
	Chapter 1 Beginnings
	1.1 Practice, Practice, Practice
	1.2 QuickStart, the Circumference Program
	1.3 An Interactive Session
	1.4 Parts of a Program
	1.5 Variables
	1.6 Objects and Types
	1.7 Operators
	1.8 Your First Module, Math
	1.9 Developing an Algorithm
	1.10 Visual Vignette: Turtle Graphics

	Chapter 2 Control
	2.1 The Selection Statement for Decisions: if
	2.2 In-Depth Control
	2.3 Visual Vignette: Plotting Data with Pylab
	2.4 Computer Science Perspectives

	Chapter 3 Algorithms and Program Development
	3.1 What Is an Algorithm?
	3.2 Algorithm Features
	3.3 What Is a Program?
	3.4 Strategies for Program Design
	3.5 A Simple Example

	Chapter 4 Working with Strings
	4.1 The String Type
	4.2 String Operations
	4.3 A Preview of Functions and Methods
	4.4 Formatted Output for Strings
	4.5 Control and Strings
	4.6 Working with Strings
	4.7 More String Formatting
	4.8 Computer Science Perspectives: Unicode

	Chapter 5 Files and Exceptions I
	5.1 What Is a File?
	5.2 Accessing Files: Reading Text Files
	5.3 Accessing Files: Writing Text Files
	5.4 Reading and Writing Text Files in a Program
	5.5 File Creation and Overwriting
	5.6 First Cut, Handling Errors
	5.7 Example: Counting Poker Hands

	PART 3 FUNCTIONS AND DATA STRUCTURES
	Chapter 6 Functions—QuickStart
	6.1 What Is a Function?
	6.2 Python Functions
	6.3 Flow of Control with Functions
	6.4 Visual Vignette: Turtle Flag

	Chapter 7 Lists and Tuples
	7.1 What Is a List?
	7.2 What You Already Know How to Do with Lists
	7.3 Lists Are Different than Strings
	7.4 Old and New Friends: Split and Other Functions and Methods
	7.5 Working with Some Examples
	7.6 Mutable Objects and References
	7.7 Tuples
	7.8 Lists: The Data Structure
	7.9 Algorithm Example: U.S. EPA Automobile Mileage Data
	7.10 Python Diversion: List Comprehension
	7.11 Visual Vignette: More Plotting

	Chapter 8 More on Functions
	8.1 Scope: A First Cut
	8.2 Default Values and Parameters
	8.3 Functions as Objects
	8.4 Example: Determining a Final Grade
	8.5 Esoterica: “by value" or “by reference"

	Chapter 9 Dictionaries and Sets
	9.1 Dictionaries
	9.2 Word Count Example
	9.3 Periodic Table Example
	9.4 Sets
	9.5 Set Applications
	9.6 Scope: The Full Story
	9.7 Python Pointer: Using zip to Create Dictionaries
	9.8 Python Diversion: Dictionary and Set Comprehension
	9.9 Visual Vignette: Bar Graph of Word Frequency

	Chapter 10 More Program Development
	10.1 Introduction
	10.2 Divide and Conquer
	10.3 The Breast Cancer Classifier
	10.4 Designing the Classifier Algorithm
	10.5 Running the Classifier on Full Data
	10.6 Other Interesting Problems

	PART 4 CLASSES, MAKING YOUR OWN DATA STRUCTURES AND ALGORITHMS
	Chapter 11 Introduction to Classes
	11.0.5 Simple Student Class
	11.1 Object-Oriented Programming
	11.2 Working with Object-Oriented Programming
	11.3 Working with Classes and Instances
	11.4 Object Methods
	11.5 Fitting into the Python Class Model
	11.6 Example: Point Class
	11.7 Python and OOP
	11.8 An Aside: Python and Other OOP Languages

	Chapter 12 More on Classes
	12.1 More About Class Properties
	12.2 How Does Python Know?
	12.3 Creating Your Own Operator Overloading
	12.4 Building the Rational Number Class
	12.5 What Doesn’t Work (Yet)
	12.6 Inheritance

	Chapter 13 Program Development with Classes
	13.1 Predator-Prey Problem
	13.2 Classes
	13.3 Adding Behavior
	13.4 Refinement: Eating, Breeding, and Keeping Time
	13.5 Refinements

	PART 5 BEING A BETTER PROGRAMMER
	Chapter 14 Files and Exceptions II
	14.1 More Details on Files
	14.2 CSV Files
	14.3 Module: os
	14.4 More on Exceptions
	14.5 Exception: else and finally
	14.6 More on Exceptions
	14.7 Example: Password Manager

	Chapter 15 Testing
	15.1 Why Testing?
	15.2 Kinds of Testing
	15.3 Example Problem
	15.4 Incorporating Testing
	15.5 Automation of Testing

	Chapter 16 Recursion: Another Control Mechanism
	16.1 What Is Recursion?
	16.2 Mathematics and Rabbits
	16.3 Let’s Write Our Own: Reversing a String
	16.4 How Does Recursion Actually Work?
	16.5 Recursion in Figures
	16.6 Recursion to Nonrecursion

	Chapter 17 Other Fun Stuff with Python
	17.1 Function Stuff
	17.2 Classes
	17.3 Other Things in Python

	Chapter 18 The End, or Perhaps the Beginning

	APPENDICES
	Appendix A: Getting and Using Python
	A.1 About Python
	A.2 Some Conventions for This Book
	A.3 Summary

	Appendix B: Simple Drawing with Turtle Graphics
	B.1.1 What Is a Turtle?
	B.1.2 Motion
	B.1.3 Drawing
	B.1.4 Color
	B.1.5 Drawing with Color
	B.1.6 Other Commands
	B.2 Tidbits

	Appendix C: Plotting and Numeric Tools: A Quick Survey
	C.1 Matplotlib
	C.2 Working with matplotlib
	C.3 Numeric Python (NumPy)

	Appendix D: Table of UTF-8 One-Byte Encodings
	Appendix E: Precedence
	Appendix F: Naming Conventions
	F.1 Python-Style Elements
	F.2 Naming Conventions
	F.3 Other Python Conventions

	Appendix G: Check Yourself Solutions
	Chapter 1
	Chapter 2
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 11
	Chapter 12
	Chapter 14

	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

