
Introduction

Welcome

Minetest uses Lua scripts to provide modding support. This online book
aims to teach you how to create your own mods, starting from the basics.

What you will need

A Code Editor. Talked about in the Lua Scripts chapter.
A copy of Minetest in the 0.4 series. (eg: 0.4.13)
The ability to work independently, without pestering other
developers to write your code for you.
Motivation to keep trying when things go wrong.

So, go on then.

Start reading. Use the navigation bar on the left (or on the top on mobiles)
to open a chapter.

GitHub.
Download for offline use.
Forum Topic.

About this Book

Noticed a mistake, or want to give feedback? Tell us about it using one of
these methods:

GitHub Issue.
Post in the Forum Topic.
Send me a PM on the Forum.
Submit a report below.

You can contribute to this project on GitHub.
Read the contribution README.

Written by rubenwardy.
License: CC-BY-SA 3.0

file:///home/ruben/dev/web/minetest_modding_book/_site/en/chapters/lua.html#tools
https://github.com/rubenwardy/minetest_modding_book
https://github.com/rubenwardy/minetest_modding_book/releases
https://forum.minetest.net/viewtopic.php?f=14&t=10729
https://github.com/rubenwardy/minetest_modding_book/issues
https://forum.minetest.net/viewtopic.php?f=14&t=10729
https://forum.minetest.net/ucp.php?i=pm&mode=compose&u=2051
https://github.com/rubenwardy/minetest_modding_book
file:///home/ruben/dev/web/minetest_modding_book/_site/README.html
https://creativecommons.org/licenses/by-sa/3.0/

Folder Structure

Introduction

In this chapter we will learn the basic structure of a mod’s folder. This is
an essential skill when creating mods.

Mod Folders
Dependencies
Mod Packs

Mod Folders

Each mod has its own folder where all its Lua code, textures, models, and
sounds are placed. These folders need to be placed in a mod location
such as minetest/mods. Mods can be grouped into mod packs which are
explained below.

A “mod name” is used to refer to a mod. Each mod should have a unique
mod name, which you can choose - a good mod name should describe
what the mod does. Mod names can be made up of letters, numbers, or
underscores. The folder a mod is in needs to be called the same as the
mod name.

Mod Folder Structure

Only the init.lua file is required in a mod for it to run on game load;
however, the other items are needed by some mods to perform their
functionality.

Dependencies

The depends text file allows you to specify which mods this mod requires
to run and what needs to be loaded before this mod.

depends.txt

modone
modtwo
modthree?

As you can see, each modname is on its own line.

Mod names with a question mark following them are optional
dependencies. If an optional dependency is installed, it is loaded before
the mod. However, if the dependency is not installed, the mod still loads.
This is in contrast to normal dependencies which will cause the current
mod not to work if the dependency is not installed.

Mod Packs

Modpacks allow multiple mods to be packaged together and be moved
together. They are useful if you want to supply multiple mods to a player
but don’t want to make them download each one individually.

Mod Pack Folder Structure

Mod name (eg: "mymod")
- init.lua - the main scripting code file, which is r
- (optional) depends.txt - a list of mod names that n
- (optional) textures/ - place images here, commonly
- (optional) sounds/ - place sounds in here
- (optional) models/ - place 3d models in here
...and any other lua files to be included by init.lua

modpackfolder/
- modone/

Example Time

Are you confused? Don’t worry, here is an example putting all of this
together.

Mod Folder

mymod/
- textures/
- - mymod_node.png
- init.lua
- depends.txt

depends.txt

default

init.lua

print("This file will be run at load time!")

minetest.register_node("mymod:node", {
 description = "This is a node",
 tiles = {
 "mymod_node.png",
 "mymod_node.png",
 "mymod_node.png",
 "mymod_node.png",
 "mymod_node.png",
 "mymod_node.png"
 },
 groups = {cracky = 1}
})

- modtwo/
- modthree/
- modfour/
- modpack.txt – signals that this is a mod pack, cont

Our mod has a name of “mymod”. It has two text files: init.lua and
depends.txt.
The script prints a message and then registers a node – which will be
explained in the next chapter.
The depends text file adds a dependency to the default mod which is in
minetest_game.
There is also a texture in textures/ for the node.

Complex Chat Commands

Introduction

This chapter will show you how to make complex chat commands, such
as /msg <name> <message> , /team join <teamname> or

/team leave <teamname> .

Why ChatCmdBuilder?
Routes.
Subcommand functions.
Installing ChatCmdBuilder.
Admin complex command.

Why ChatCmdBuilder?

Traditionally mods implemented these complex commands using Lua
patterns.

local name = string.match(param, "^join ([%a%d_-]+)")

I however find Lua patterns annoying to write and unreadable. Because of
this, I created a library to do this for you.

ChatCmdBuilder.new("sethp", function(cmd)
 cmd:sub(":target :hp:int", function(name, target, hp
 local player = minetest.get_player_by_name(targe
 if player then
 player:set_hp(hp)
 return true, "Killed " .. target
 else
 return false, "Unable to find " .. target
 end
 end)
end, {
 description = "Set hp of player",
 privs = {
 kick = true

ChatCmdBuilder.new(name, setup_func, def) creates a new

chat command called name . It then calls the function passed to it (

setup_func), which then creates sub commands. Each

cmd:sub(route, func) is a sub command.

A sub command is a particular response to an input param. When a
player runs the chat command, the first sub command that matches their
input will be run, and no others. If no subcommands match then the user
will be told of the invalid syntax. For example, in the above code snippet if
a player types something of the form /sethp username 12 then the

function passed to cmd:sub will be called. If they type /sethp 12 bleh

then a wrong input message will appear.

:name :hp:int is a route. It describes the format of the param passed

to /teleport.

Routes

A route is made up of terminals and variables. Terminals must always be
there. For example, join in /team join :username :teamname .

The spaces also count as terminals.

Variables can change value depending on what the user types. For
example, :username and :teamname .

Variables are defined as :name:type . The name is used in the help

documention. The type is used to match the input. If the type is not

given, then the type is word .

Valid types are:

 -- ^ probably better to register a custom priv
 }
})

word - default. Any string without spaces.

int - Any integer/whole number, no decimals.

number - Any number, including ints and decimals.

pos - 1,2,3 or 1.1,2,3.4567 or (1,2,3) or 1.2, 2 ,3.2

text - Any string. There can only ever be one text variable, no

variables or terminals can come afterwards.

In :name :hp:int , there are two variables there:

name - type of word as no type is specified. Accepts any string

without spaces.
hp - type of int

Subcommand functions

The first argument is the caller’s name. The variables are then passed to
the function in order.

cmd:sub(":target :hp:int", function(name, target, hp)
 -- subcommand function
end)

Installing ChatCmdBuilder

There are two ways to install:

1. Install ChatCmdBuilder as a mod and depend on it.
2. Include the init.lua file in ChatCmdBuilder as chatcmdbuilder.lua in

your mod, and dofile it.

Admin complex command

Here is an example that creates a chat command that allows us to do this:

/admin kill <username> - kill user

/admin move <username> to <pos> - teleport user

/admin log <username> - show report log

/admin log <username> <message> - log to report log

local admin_log
local function load()
 admin_log = {}
end
local function save()
 -- todo
end
load()

ChatCmdBuilder.new("admin", function(cmd)
 cmd:sub("kill :name", function(name, target)
 local player = minetest.get_player_by_name(targe
 if player then
 player:set_hp(0)
 return true, "Killed " .. target
 else
 return false, "Unable to find " .. target
 end
 end)

 cmd:sub("move :name to :pos:pos", function(name, tar
 local player = minetest.get_player_by_name(targe
 if player then
 player:setpos(pos)
 return true, "Moved " .. target .. " to " .
 else
 return false, "Unable to find " .. target
 end
 end)

 cmd:sub("log :username", function(name, target)
 local log = admin_log[target]
 if log then
 return true, table.concat(log, "\n")
 else
 return false, "No entries for " .. target
 end
 end)

 cmd:sub("log :username :message", function(name, tar
 local log = admin_log[target] or {}
 table.insert(log, message)
 admin_log[target] = log
 save()
 return true, "Logged"
 end)
end, {
 description = "Admin tools",
 privs = {
 kick = true,
 ban = true
 }
})

Player Physics

Introduction

Player physics can be modified using physics overrides. Physics
overrides can set the walking speed, jump speed and gravity constants.
Physics overrides are set on a player by player basis, and are multipliers -
a value of 2 for gravity would make gravity twice as strong.

Basic Interface
Your Turn

Basic Interface

Here is an example which adds an antigravity command, which puts the
caller in low G:

Possible Overrides

player:set_physics_override() is given a table of overrides.
According to lua_api.txt, these can be:

speed: multiplier to default walking speed value (default: 1)
jump: multiplier to default jump value (default: 1)
gravity: multiplier to default gravity value (default: 1)
sneak: whether player can sneak (default: true)
sneak_glitch: whether player can use the sneak glitch (default: true)

minetest.register_chatcommand("antigravity", {
 func = function(name, param)
 local player = minetest.get_player_by_name(name)
 player:set_physics_override({
 gravity = 0.1 -- set gravity to 10% of its o
 -- (0.1 * 9.81)
 })
 end
})

file:///home/ruben/dev/web/minetest_modding_book/_site/en/lua_api.html#player-only-no-op-for-other-objects

The sneak glitch allows the player to climb an ‘elevator’ made out of a
certain placement of blocks by sneaking (pressing shift) and pressing
space to ascend. It was originally a bug in Minetest, but was kept as it is
used on many servers to get to higher levels. They added the option
above so you can disable it.

Multiple mods

Please be warned that mods that override the same physics values of a
player tend to be incompatible with each other. When setting an override,
it overwrites any overrides that have been set before, by your or anyone
else’s mod.

Your Turn

sonic: Set the speed multiplayer to a high value (at least 6) when a
player joins the game.
super bounce: Increase the jump value so that the player can jump
up 20 meters (1 meter is 1 block).
space: Make the gravity decrease as the player gets higher and
higher up.

Screenshot of furnace formspec, labelled.

Formspecs

Introduction

In this chapter we will
learn how to create a
formspec and display it to
the user. A formspec is
the specification code for
a form. In Minetest, forms
are windows like the
Inventory which allow you
to move your mouse and
enter information. You
should consider using
Heads Up Display (HUD)
elements if you do not
need to get user input -
notifications, for example
- as unexpected windows
tend to disrupt game play.

Formspec syntax
Displaying Forms
Callbacks
Contexts
Node Meta Formspecs

Formspec Syntax

Formspecs have a rather weird syntax. They consist of a series of tags
which are in the following form:

element_type[param1;param2;...]

Firstly the element type is declared, and then the attributes are given in
square brackets.

(An element is an item such as a text box or button, or it is meta data
such as size or background).

Here are two elements, of types foo and bar.

foo[param1]bar[param1]

Size[w, h]

Nearly all forms have a size tag. They are used to declare the size of the
window required. Forms don’t use pixels as co-ordinates, they use a
grid, based on inventories. A size of (1, 1) means the form is big enough
to host a 1x1 inventory. The reason this is used is because it is
independent on screen resolution - The form should work just as well on
large screens as small screens. You can use decimals in sizes and co-
ordinates.

size[5,2]

Co-ordinates and sizes only use one attribute. The x and y values are
separated by a comma, as you can see above.

Field[x, y; w, h; name; label; default]

This is a textbox element. Most other elements have a similar style of
attributes. The “name” attribute is used in callbacks to get the submitted
information. The others are pretty self-explaintary.

field[1,1;3,1;firstname;Firstname;]

It is perfectly valid to not define an attribute, like above.

Other Elements

You should look in lua_api.txt for a list of all possible elements, just search
for “Formspec”. It is near line 1019, at time of writing.

Displaying Formspecs

Here is a generalized way to show a formspec

minetest.show_formspec(playername, formname, formspec)

https://github.com/minetest/minetest/blob/master/doc/lua_api.txt#L1019

The formspec generated by
the example's code

Formnames should be itemnames, however that is not enforced. There is
no need to override a formspec here, formspecs are not registered like
nodes and items are, instead the formspec code is sent to the player’s
client for them to see, along with the formname. Formnames are used in
callbacks to identify which form has been submitted, and see if the
callback is relevant.

Example

The above example shows a
formspec to a player when they use
the /formspec command.

Note: the .. is used to join two strings together. The following two lines are
equivalent:

"foobar"
"foo" .. "bar"

Callbacks

Let’s expand on the above example.

-- Show form when the /forms
minetest.register_chatcomman
 func = function(name, pa
 minetest.show_formsp
 "size[4,3]"
 "label[0,0;H
 "field[1,1.5
 "button_exit
 end
})

-- Show form when the /formspec command is used.
minetest.register_chatcommand("formspec", {
 func = function(name, param)
 minetest.show_formspec(name, "mymod:form",
 "size[4,3]" ..
 "label[0,0;Hello, " .. name .. "]" ..
 "field[1,1.5;3,1;name;Name;]" ..
 "button_exit[1,2;2,1;exit;Save]")

The function given in minetest.register_on_player_receive_fields is called
everytime a user submits a form. Most callbacks will check the formname
given to the function, and exit if it is not the right form. However, some
callbacks may need to work on multiple forms, or all forms - it depends on
what you want to do.

Fields

The fields parameter to the function is a table, index by string, of the
values submitted by the user. You can access values in the table by doing
fields.name, where ‘name’ is the name of the element.

As well as having the values of each element, you can also get which
button was clicked. In this case, the button called ‘exit’ was clicked, so
fields.exit will be true.

Some elements can submit the form without the user having to click a
button, such as a check box. You can detect for these cases by looking for
a clicked button.

-- An example of what fields could contain,
-- using the above code
{
 name = "Foo Bar",
 exit = true
}

 end
})

-- Register callback
minetest.register_on_player_receive_fields(function(play
 if formname ~= "mymod:form" then
 -- Formname is not mymod:form,
 -- exit callback.
 return false
 end

 -- Send message to player.
 minetest.chat_send_player(player:get_player_name(),

 -- Return true to stop other minetest.register_on_pl
 -- from receiving this submission.
 return true
end)

Contexts

In quite a lot of cases you want your minetest.show_formspec to give
information to the callback which you don’t want to have to send to the
client. Information such as what a chat command was called with, or what
the dialog is about.

Let’s say you are making a form to handle land protection information.

--
-- Step 1) set context when player requests the formspec
--

-- land_formspec_context[playername] gives the player's
local land_formspec_context = {}

minetest.register_chatcommand("land", {
 func = function(name, param)
 if param == "" then
 minetest.chat_send_player(name, "Incorrect p
 return
 end

 -- Save information
 land_formspec_context[name] = {id = param}

 minetest.show_formspec(name, "mylandowner:edit",
 "size[4,4]" ..
 "field[1,1;3,1;plot;Plot Name;]" ..
 "field[1,2;3,1;owner;Owner;]" ..
 "button_exit[1,3;2,1;exit;Save]")
 end
})

--
-- Step 2) retrieve context when player submits the form
--
minetest.register_on_player_receive_fields(function(play
 if formname ~= "mylandowner:edit" then
 return false
 end

 -- Load information
 local context = land_formspec_context[player:get_pla

Node Meta Formspecs

minetest.show_formspec is not the only way to show a formspec, you can
also add formspecs to a node’s meta data. This is used on nodes such as
chests to allow for faster opening times - you don’t need to wait for the
server to send the player the chest formspec.

 if context then
 minetest.chat_send_player(player:get_player_name
 fields.plot .. " and owned by " .. field

 -- Delete context if it is no longer going to be
 land_formspec_context[player:get_player_name()]

 return true
 else
 -- Fail gracefully if the context does not exist
 minetest.chat_send_player(player:get_player_name
 end
end)

minetest.register_node("mymod:rightclick", {
 description = "Rightclick me!",
 tiles = {"mymod_rightclick.png"},
 groups = {cracky = 1},
 after_place_node = function(pos, placer)
 -- This function is run when the chest node i
 -- The following code sets the formspec for ches
 -- Meta is a way of storing data onto a node.

 local meta = minetest.get_meta(pos)
 meta:set_string("formspec",
 "size[5,5]"..
 "label[1,1;This is shown on right click]
 "field[1,2;2,1;x;x;]")
 end,
 on_receive_fields = function(pos, formname, fields,
 if(fields.quit) then return end
 print(fields.x)
 end
})

file:///home/ruben/dev/web/minetest_modding_book/_site/en/chapters/node_metadata.html

Formspecs set this way do not trigger the same callback. In order to
receive form input for meta formspecs, you must include an
on_receive_fields entry when registering the node.

This style of callback can trigger the callback when you press enter in a
field, which is impossible with minetest.show_formspec , however,

this kind of form can only be shown by right-clicking on a node. It cannot
be triggered programmatically.

HUD
Experimental Feature
The HUD feature will probably be rewritten in an upcoming Minetest
release. Be aware that you may need to update your mods if the API
is changed.

Introduction

Heads Up Display (HUD) elements allow you to show text, images, and
other graphical elements.

HUD doesn’t accept user input. For that, you should use a Formspec.

Basic Interface
Positioning
Text Elements
Image Elements
Other Elements

Basic Interface

HUD elements are created using a player object. You can get the player
object from a username like this:

local player = minetest.get_player_by_name("username")

Once you have the player object, you can create an element:

local idx = player:hud_add({
 hud_elem_type = "text",
 position = {x = 1, y = 0},
 offset = {x=-100, y = 20},
 scale = {x = 100, y = 100},
 text = "My Text"
})

file:///home/ruben/dev/web/minetest_modding_book/_site/en/chapters/formspecs.html

This attributes in the above table and what they do vary depending on the
hud_elem_type .

A number is returned by the hud_add function which is needed to identify
the HUD element at a later time, if you wanted to change or delete it.

You can change an attribute after creating a HUD element, such as what
the text says:

player:hud_change(idx, "text", "New Text")

You can also delete the element:

player:hud_remove(idx)

Positioning

Screens come in different sizes, and HUD elements need to work well on
all sizes. You locate an element using a combination of a position and an
offset.

The position is a co-ordinate between (0, 0) and (1, 1) which determines
where, relative to the screen width and height, the element goes. For
example, an element with a position of (0.5, 0.5) will be in the center of
the screen.

The offset applies a pixel offset to the position.
An element with a position of (0, 0) and an offset of (10, 10) will end up at
the screen co-ordinates (0 * width + 10, 0 * height + 10).

Please note that offset scales to DPI and a user defined factor.

Text Elements

A text element is the simplest form of a HUD element.
Here is our earlier example, but with comments to explain each part:

local idx = player:hud_add({
 hud_elem_type = "text", -- This is a text elemen
 position = {x = 1, y = 0},
 offset = {x=-100, y = 20},
 scale = {x = 100, y = 100}, -- Maximum size of text,

Colors

You can apply colors to the text, using the number attribute. Colors are

in Hexadecimal form.

local idx = player:hud_add({
 hud_elem_type = "text",
 position = {x = 1, y = 0},
 offset = {x=-100, y = 20},
 scale = {x = 100, y = 100},
 text = "My Text",
 number = 0xFF0000 -- Red
})

Image Elements

Displays an image on the HUD.

The X co-ordinate of the scale attribute is the scale of the image, with 1

being the original texture size. Negative values represent that percentage
of the screen it should take; e.g. x=-100 means 100% (width).

Use text to specify the name of the texture.

Other Elements

Have a look at lua_api.txt for a complete list of HUD elements.

 text = "My Text" -- The actual text shown
})

http://www.colorpicker.com/
file:///home/ruben/dev/web/minetest_modding_book/_site/lua_api.html#hud-element-types

ItemStacks

Introduction

In this chapter you will learn how to use ItemStacks.

Creating ItemStacks
Name and Count
Adding and Taking Items
Wear
Lua Tables
Metadata
More Methods

Creating ItemStacks

An item stack is a… stack of items. It’s basically just an item type with a
count of items in the stack.

You can create a stack like so:

local items = ItemStack("default:dirt")
local items = ItemStack("default:stone 99")

You could alternatively create a blank ItemStack and fill it using methods:

local items = ItemStack()
if items:set_name("default:dirt") then
 items:set_count(99)
else
 print("An error occured!")
end

And you can copy stacks like this:

local items2 = ItemStack(items)

Name and Count

local items = ItemStack("default:stone")
print(items:get_name()) -- default:stone
print(items:get_count()) -- 1

items:set_count(99)
print(items:get_name()) -- default:stone
print(items:get_count()) -- 99

if items:set_name("default:dirt") then
 print(items:get_name()) -- default:dirt
 print(items:get_count()) -- 99
else
 error("This shouldn't happen")
end

Adding and Taking Items

Adding

Use add_item to add items to an ItemStack. An ItemStack of the items

that could not be added is returned.

Taking

The following code takes up to 100. If there aren’t enough items in the
stack, it will take as much as it can.

local items = ItemStack("default:stone 50")
local to_add = ItemStack("default:stone 100")
local leftovers = items:add_item(to_add)

print("Could not add" .. leftovers:get_count() .. " of t
-- ^ will be 51

local taken = items:take_item(100)
-- taken is the ItemStack taken from the main ItemStack

Wear

ItemStacks also have wear on them. Wear is a number out of 65535, the
higher it is, the more wear.

You use add_wear() , get_wear() and set_wear(wear) .

When digging a node, the amount of wear a tool gets may depends on the
node being dug. So max_uses varies depending on what is being dug.

Lua Tables

local data = items:to_table()
local items2 = ItemStack(data)

Metadata

ItemStacks can also have a single field of metadata attached to them.

local meta = items:get_metadata()
print(dump(meta))
meta = meta .. " ha!"
items:set_metadata(meta)
-- if ran multiple times, would give " ha! ha! ha!"

More Methods

print("Took " .. taken:get_count() .. " items")

local items = ItemStack("default:dirt")
local max_uses = 10

-- This is done automatically when you use a tool that d
-- It increases the wear of an item by one use.
items:add_wear(65535 / (max_uses - 1))

Inventories

Introduction

In this chapter you will learn how to use manipulate inventories, whether
that is a player inventory, a node inventory, or a detached inventory. This
chapter assumes that you already know how to create and manipulate
ItemStacks.

Basic Concepts.
Types of Inventories.

Player Inventories.
Node Inventories.
Detached Inventories.

InvRef and Lists.
Type of inventory.
List sizes.
List is empty.
Lua Tables.
Lua Tables for Lists.

InvRef, Items and Stacks.
Adding to a list.
Checking for room.
Taking items.
Contains.
Manipulating Stacks.

Basic Concepts

Components of an inventory:

An Inventory is a collection of Inventory Lists (also called a list
when in the context of inventories).
An Inventory List is an array of slots. (By array, I mean a table
indexed by numbers).
A slot is a place a stack can be - there may be a stack there or
there may not.
An InvRef is an object that represents an inventory, and has
functions to manipulate it.

file:///home/ruben/dev/web/minetest_modding_book/_site/en/chapters/itemstacks.html

There are three ways you can get inventories:

Player Inventories - an inventory attached to a player.
Node Inventories - an inventory attached to a node.
Detached Inventories - an inventory which is not attached to a
node or player.

This image shows the two inventories visible when you press i. The gray
boxes are inventory lists.
The creative inventory, left (in red) is detached and it made up of a single
list.
The player inventory, right (in blue) is a player inventory and is made up of
three lists.
Note that the trash can is a formspec element, and is not part of the
inventory.

Types of Inventories

There are three types of Inventories.

Player Inventories.

This is what you see when you press i. A player inventory usually has two
grids, one for the main inventory, one for crafting.

local inv = minetest.get_inventory({type="player", name=

file:///home/ruben/dev/web/minetest_modding_book/_site/en/chapters/formspecs.html

Node Inventories.

An inventory related to a position, such as a chest. The node must be
loaded, as it’s stored in Node Metadata.

Detached Inventories

A detached inventory is independent of players and nodes. One example
of a detached inventory is the creative inventory is detached, as all
players see the same inventory. You may also use this if you want multiple
chests to share the same inventory.

This is how you get a detached inventory:

And this is how you can create one:

Creates a detached inventory. If it already exists, it is cleared. You can
supply a table of callbacks.

InvRef and Lists

Type of Inventory

You can check where the inventory is from by doing:

local location = inv:get_location()

It will return a table like the one passed to
minetest.get_inventory() .

If the location is unknown, {type="undefined"} is returned.

local inv = minetest.get_inventory({type="node", pos={x=

local inv = minetest.get_inventory({type="detached", nam

minetest.create_detached_inventory("inventory_name", cal

file:///home/ruben/dev/web/minetest_modding_book/_site/en/chapters/node_metadata.html
file:///home/ruben/dev/web/minetest_modding_book/_site/en/lua_api.html#detached-inventory-callbacks

List sizes

Inventory lists have a size, for example main has size of 32 slots by

default. They also have a width, which is used to divide them into a grid.

if inv:set_size("main", 32) then
 inv:set_width("main", 8)
 print("size: " .. inv.get_size("main"))
 print("width: " .. inv:get_width("main"))
else
 print("Error!")
end

List is empty

if inv:is_empty("main") then
 print("The list is empty!")
end

Lua Tables

You can convert an inventory to a Lua table using:

local lists = inv:get_lists()

It will be in this form:

{
 list_one = {
 ItemStack,
 ItemStack,
 ItemStack,
 ItemStack,
 -- inv:get_size("list_one") elements
 },
 list_two = {
 ItemStack,
 ItemStack,
 ItemStack,
 ItemStack,
 -- inv:get_size("list_two") elements

 }
}

You can then set an inventory like this:

inv:set_lists(lists)

Please note that the sizes of lists will not change.

Lua Tables for Lists

You can do the same as above, but for individual lists

local list = inv:get_list("list_one")

It will be in this form:

{
 ItemStack,
 ItemStack,
 ItemStack,
 ItemStack,
 -- inv:get_size("list_one") elements
}

You can then set the list like this:

inv:set_list("list_one", list)

Please note that the sizes of lists will not change.

InvRef, Items and Items

Adding to a list

local stack = ItemStack("default:stone 99")
local leftover = inv:add_item("main", stack)
if leftover:get_count() > 0 then
 print("Inventory is full! " .. leftover:get_count()
end

"main" is the name of the list you’re adding to.

Checking for room

if not inv:room_for_item("main", stack) then
 print("Not enough room!")
end

Taking items

local taken = inv:remove_item("main", stack)
print("Took " .. taken:get_count())

Contains

This works if the item count is split up over multiple stacks, for example
looking for “default:stone 200” will work if there are stacks of 99 + 95 + 6.

if not inv:contains_item(listname, stack) then
 print("Item not in inventory!")
end

Manipulating Stacks

Finally, you can manipulate individual stacks like so:

local stack = inv:get_stack(listname, 0)
inv:set_stack(listname, 0, stack)

Releasing a Mod

Introduction

In this chapter we will find out how to publish a mod so that other users
can use it.

License Choices
Packaging
Uploading
Forum Topic

Before you release your mod, there are some things to think
about:

Is there another mod that does the same thing? If so, how does
yours differ or improve on it?
Is your mod useful?

License Choices

You need to specify a license for your mod. Public domain is not a valid
licence, as the definition varies in different countries.

First thing you need to note is that your code and your art need different
things from the license they use. Creative Commons licenses shouldn’t be
used with source code, but rather with artistic works such as images, text
and meshes.

You are allowed any license, however mods which disallow derivatives
are banned from the forum. (Other developers must be able to take your
mod, modify it, and release it again.)

LGPL and CC-BY-SA

This is a common license combination in the Minetest community, as it is
what Minetest and minetest_game use. You license your code under
LGPL 2.1 and your art under CC-BY-SA.

Anyone can modify, redistribute and sell modified or unmodified
versions.
If someone modifies your mod, they must give their version the
same license.
Your copyright notice must be kept.

Add this copyright notice to your README.txt, or as a new file called
LICENSE.txt

WTFPL or CC0

These licenses allows anyone to do what they want with your mod.
Modify, redistribute, sell, leave out attribution. They can be used for both
code and art.

Packaging

There are some files that we recommend you include in your mod when
you release it.

License for Code

Copyright (C) 2010-2013 Your Name <emailaddress>

This program is free software; you can redistribute it a
it under the terms of the GNU Lesser General Public Lice
the Free Software Foundation; either version 2.1 of the
(at your option) any later version.

This program is distributed in the hope that it will be
but WITHOUT ANY WARRANTY; without even the implied warra
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. Se
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser Genera
with this program; if not, write to the Free Software Fo
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 U

License for Textures, Models and Sounds

CC-BY-SA 3.0 UNPORTED. Created by Your Name

README.txt

You should provide a readme file. This should state:

What the mod does.
What the license is.
Current version of mod.
How to install the mod.
What dependencies there are / what the user needs to install.
Where to report problems/bugs or get help.

See appendix for an example and a generator

description.txt

Write a sentence or two explaining what your mod does. Be concise
without being too vague. This is displayed in the mod store.

For example:

screenshot.png

Screenshots should be 3:2 (3 pixels of width for every 2 pixels of height)
and a minimum size of 300 x 200px. This is displayed in the mod store.

Uploading

In order for a potential user to download your mod, you need to upload it
to somewhere which is publicly accessible.
I will outline several methods you can use, but really you should use the
one that works best for you, as long as it mets these requirements:
(and any other requirements which may be added by forum moderators)

Stable - the hosting website should not just shutdown randomly.
Direct link - you should be able to click a link on the forum and
download the file, without having to view another page.
Virus Free - pretty obvious.

Github, or another VCS

GOOD: Adds soups, cakes, bakes and juices. The food mod
BAD: The food mod for Minetest.

https://github.com/minetest/minetest/issues/2874

It is recommended that you use a Version Control System for the following
reasons:

Allows other developers to submit changes (easily).
Allows the code to be previewed before downloading.
Allows users to submit bug reports.

However, such systems may be hard to understand when you first start
out.

The majority of Minetest developers use GitHub as a website to host their
code, however that doesn’t matter that much.

Using Git - Basic concepts. Using the command line.
GitHub for Windows - Use a graphical interface on Windows to
upload your code.

Forum Attachments

You could use forum attachments instead. This is done when creating a
mod’s topic - covered below.

First, you need to zip the files into a single file. This varies from operating
system to operating system.

On Windows, go to the mod’s folder. Select all the files. Right click, Send
To > Compressed (zipped) folder. Rename the resulting zip file to the
name of your modfolder.

On the create a topic page, see below, go to the “Upload Attachment” tab
at the bottom. Click browse and select the zipped file. I suggest that you
enter the version of your mod in the comment field.

Upload Attachment tab.

Forum Topic

http://git-scm.com/book/en/v1/Getting-Started
https://help.github.com/articles/getting-started-with-github-for-windows/

You can now create a forum topic. You should create it in the “WIP Mods”
(Work In Progress) forum.
When you consider your mod no longer a work in progress, you can
request that it be moved to “Mod Releases.”

Content

The requirements of a forum topic are mostly the same as what is
recommended for a README.txt

What the mod does.
What the license is.
Current version of mod.
How to install the mod.
What dependencies there are.
Where to report problems/bugs or get help.
Link to download, or an attachment.

You should also include screenshots of your mod in action, if relevant.

Here is an example. The Minetest forum uses bbcode for formating.

Adds magic, rainbows and other special things.

See download attached.

[b]Version:[/b] 1.1
[b]License:[/b] LGPL 2.1 or later

Dependencies: default mod (found in minetest_game)

Report bugs or request help on the forum topic.

[h]Installation[/h]

Unzip the archive, rename the folder to to modfoldername
place it in minetest/mods/minetest/

(GNU/Linux: If you use a system-wide installation plac
 it in ~/.minetest/mods/minetest/.)

(If you only want this to be used in a single world, p
 the folder in worldmods/ in your worlddirectory.)

For further information or help see:
[url]http://wiki.minetest.com/wiki/Installing_Mods[/url]

https://forum.minetest.net/viewforum.php?f=9
https://forum.minetest.net/viewtopic.php?f=11&t=10418

If you modify the above example for your mod topic, remember to change
“modfldername” to the name of the folder your mod should be in.

Title

Subject of topic must be in one of these formats:

[Mod] Mod Title [modname]
[Mod] Mod Title [version number] [modname]
eg: [Mod] More Blox [0.1] [moreblox]

Profit

Appendix: Readme and Forum Generator

Title: My Super Special Mod
Modname: mysuperspecial
Description:
Version: 1.1
License: LGPL 2.1 or later
Dependencies:

Adds magic, rainbows and ot

default mod (found in minete

Download:
Additional:

http://example.com/download

Report bugs or
request help on the
f i

My Super Special Mod
====================

Adds magic, rainbows and other special things.

Version: 1.1
License: LGPL 2.1 or later
Dependencies: default mod (found in minetest_game)

Report bugs or request help on the forum topic.

Installation

Unzip the archive, rename the folder to mysuperspecial a
place it in minetest/mods/

(GNU/Linux: If you use a system-wide installation plac
 it in ~/.minetest/mods/.)

(If you only want this to be used in a single world, p
 the folder in worldmods/ in your worlddirectory.)

For further information or help see:
http://wiki.minetest.com/wiki/Installing_Mods

Adds magic, rainbows and other special things.

[b]Version:[/b] 1.1
[b]License:[/b] LGPL 2.1 or later
[b]Dependencies:[/b] default mod (found in minetest_game
[b]Download:[/b] http://example.com/download.zip

Report bugs or request help on the forum topic.

[h]Installation[/h]

Unzip the archive, rename the folder to mysuperspecial a
place it in minetest/mods/

(GNU/Linux: If you use a system-wide installation plac
 it in ~/.minetest/mods/.)

(If you only want this to be used in a single world, p
 the folder in worldmods/ in your worlddirectory.)

For further information or help see:
http://wiki.minetest.com/wiki/Installing_Mods

Read More

List of Resources

After you’ve read this book, take a look at the following

Minetest Modding

Minetest’s Lua API Reference - HTML version | Text version.
Explore the Developer Wiki.
Look at existing mods.

Lua Programming

Programming in Lua (PIL).
Lua Crash Course.

3D Modelling

Blender 3D: Noob to pro.
Using Blender with Minetest.

file:///home/ruben/dev/web/minetest_modding_book/_site/en/lua_api.html
https://github.com/minetest/minetest/blob/master/doc/lua_api.txt
http://dev.minetest.net/Main_Page
https://forum.minetest.net/viewforum.php?f=11
http://www.lua.org/pil/
http://luatut.com/crash_course.html
https://en.wikibooks.org/wiki/Blender_3D:_Noob_to_Pro
http://wiki.minetest.net/Using_Blender

Lua Scripts

Introduction

In this chapter we will talk about scripting in Lua, the tools required, and
go over some techniques which you will probably find useful.

Tools
Recommended Editors
Integrated Programming Environments

Coding in Lua
Selection

Programming
Local and Global
Including other Lua Scripts

Tools

A text editor with code highlighting is sufficient for writing scripts in Lua.
Code highlighting gives different colors to different words and characters
depending on what they mean. This allows you to spot mistakes.

function ctf.post(team,msg)
 if not ctf.team(team) then
 return false
 end
 if not ctf.team(team).log then
 ctf.team(team).log = {}
 end

 table.insert(ctf.team(team).log,1,msg)
 ctf.save()

 return true
end

For example, keywords in the above snippet are highlighted such as if,
then, end, return. table.insert is a function which comes with Lua by
default.

Recommended Editors

Other editors are available, of course.

Windows: Notepad++, Atom
Linux: Kate, Gedit, Atom
OSX: Atom

Integrated Programming Environments

IDEs allow you to debug code like a native application. These are harder
to set up than just a text editor.

One such IDE is Eclipse with the Koneki Lua plugin:

Install Eclipse + Koneki.
Create a new Lua project from existing source (specify Minetest’s
base directory).
Follow instructions from Koneki wiki how to do “Attach to remote
Application” debugging (just a few steps).
It is suggested to add those lines from wiki at beginning of
builtin.lua.
Start the debugger (set “Break on first line” in debugger
configuration to see if it is working).
Start Minetest.
Enter the game to startup Lua.

Coding in Lua

This section is a Work in Progress. May be unclear.

Programs are a series of commands that run one after another. We call
these commands “statements.”

Program flow is important, it allows you to direct or skip over statements.
There are three main types of flow:

Sequence: Just run one statement after another, no skipping.
Selected: Skip over statements depending on conditions.
Iteration: Repeating, looping. Keep running the same statements
until a condition is met.

So, what do statements in Lua look like?

http://notepad-plus-plus.org/
http://atom.io/
http://atom.io/
http://atom.io/

Woah, what happened there? a, b, and result are variables. They’re like
what you get in mathematics, A = w * h. The equals signs are
assignments, so “result” is set to a + b. Variable names can be longer
than one character unlike in mathematics, as seen with the “result”
variable. Lua is case sensitive. A is a different variable than a.

The word “local” before they are first used means that they have local
scope, I’ll discuss that shortly.

Variable Types

Type Description Example
Integer Whole number local A = 4

Float Decimal local B = 3.2, local C = 5 /
2

String A piece of text local D = “one two three”

Boolean True or False local is_true = false, local
E = (1 == 1)

Table Lists Explained below

Function Can run. May require inputs and
may return a value local result = func(1, 2, 3)

Not an exhaustive list. Doesn’t contain every possible type.

Arithmetic Operators

Symbol Purpose Example
A + B Addition 2 + 2 = 4
A - B Subtraction 2 - 10 = -8
A * B Multiplication 2 * 2 = 4
A / B Division 100 / 50 = 2
A ^ B Powers 2 ^ 2 = 22 = 4
A .. B Join strings “foo” .. “bar” = “foobar”

A string in programming terms is a piece of text.

local a = 2 -- Set 'a' to 2
local b = 2 -- Set 'b' to 2
local result = a + b -- Set 'result' to a + b, which is
a = a + 10
print("Sum is "..result)

Not an exhaustive list. Doesn’t contain every possible operator.

Selection

The most basic selection is the if statement. It looks like this:

That example generates a random number between 1 and 100. It then
prints “Woohoo!” if that number is bigger than 50, otherwise it prints “No!”.
What else can you get apart from ‘>’?

Logical Operators

Symbol Purpose Example
A == B Equals 1 == 1 (true), 1 == 2 (false)
A ~= B Doesn’t equal 1 ~= 1 (false), 1 ~= 2 (true)
A > B Greater than 5 > 2 (true), 1 > 2 (false), 1 > 1 (false)
A < B Less than 1 < 3 (true), 3 < 1 (false), 1 < 1 (false)

A >= B Greater than or equals 5 >= 5 (true), 5 >= 3 (true), 5 >= 6
(false)

A <= B Less than or equals 3 <= 6 (true), 3 <= 3 (true)

A and B And (both must be
correct)

(2 > 1) and (1 == 1) (true), (2 > 3) and
(1 == 1) (false)

A or B either or. One or both
must be true.

(2 > 1) or (1 == 2) (true), (2 > 4) or (1
== 3) (false)

not A not true not (1 == 2) (true), not (1 == 1) (false)

That doesn’t contain every possible operator, and you can combine
operators like this:

if not A and B then
 print("Yay!")
end

local random_number = math.random(1, 100) -- Between 1 a

if random_number > 50 then
 print("Woohoo!")
else
 print("No!")
end

Which prints “Yay!” if A is false and B is true.

Logical and arithmetic operators work exactly the same, they both accept
inputs and return a value which can be stored.

local A = 5
local is_equal = (A == 5)

if is_equal then
 print("Is equal!")
end

Programming

Programming is the action of talking a problem, such as sorting a list of
items, and then turning it into steps that a computer can understand.

Teaching you the logical process of programming is beyond the scope of
this book; however, the following websites are quite useful in developing
this:

Codecademy

Codecademy is one of the best resources for learning to ‘code’, it
provides an interactive tutorial experience.

Scratch

Scratch is a good resource when starting from absolute basics, learning
the problem solving techniques required to program.
Scratch is designed to teach children how to program, it isn’t a serious
programming language.

Local and Global

Whether a variable is local or global determines where it can be written to
or read to. A local variable is only accessible from where it is defined.
Here are some examples:

http://www.codecademy.com/
https://scratch.mit.edu/

-- Accessible from within this script file
local one = 1

function myfunc()
 -- Accessible from within this function
 local two = one + one

 if two == one then
 -- Accessible from within this if statement
 local three = one + two
 end
end

Whereas global variables can be accessed from anywhere in the script
file, and from any other mod.

my_global_variable = "blah"

function one()
 my_global_variable = "three"
end

print(my_global_variable) -- Output: "blah"
one()
print(my_global_variable) -- Output: "three"

Locals should be used as much as possible

Lua is global by default (unlike most other programming languages). Local
variables must be identified as such.

function one()
 foo = "bar"
end

function two()
 print(dump(foo)) -- Output: "bar"
end

one()
two()

dump() is a function that can turn any variable into a string so the
programmer can see what it is. The foo variable will be printed as “bar”,

including the quotes which show it is a string.

This is sloppy coding, and Minetest will in fact warn you about this:

To correct this, use “local”:

function one()
 local foo = "bar"
end

function two()
 print(dump(foo)) -- Output: nil
end

one()
two()

Nil means not initalised. The variable hasn’t been assigned a value yet,
doesn’t exist, or has been uninitialised. (ie: set to nil)

The same goes for functions. Functions are variables of a special type.
You should make functions as local as much as possible, as other mods
could have functions of the same name.

local function foo(bar)
 return bar * 2
end

If you want your functions to be accessible from other scripts or mods, it is
recommended that you add them all into a table with the same name as
the mod:

mymod = {}

function mymod.foo(bar)
 return "foo" .. bar
end

-- In another mod, or script:
mymod.foo("foobar")

[WARNING] Assigment to undeclared global 'foo' inside fu

Including other Lua Scripts

You can include Lua scripts from your mod or another mod like this:

“local” variables declared outside of any functions in a script file will be
local to that script. You won’t be able to access them from any other
scripts.

As for how you divide code up into files, it doesn’t matter that much. The
most important thing is that your code is easy to read and edit. You won’t
need to use it for smaller projects.

dofile(minetest.get_modpath("modname") .. "/script.lua")

Nodes, Items, and Crafting

Introduction

In this chapter we will learn how to register a new node or craftitem, and
create craft recipes.

Item Strings
Textures
Registering a Craftitem
Foods
Registering a basic Node
Crafting
Groups

Item Strings

Each item, whether that be a node, craftitem, tool, or entity, has an item
string.
This is sometimes referred to as registered name or just name. A string in
programming terms is a piece of text.

modname:itemname

The modname is the name of the folder your mod is in. You may call the
itemname anything you like; however, it should be relevant to what the
item is and it can’t already be registered.

Overriding

Overriding allows you to:

Redefine an existing item.
Use an item string with a different modname.

To override, you prefix the item string with a colon, : . Declaring an item

as :default:dirt will override the default:dirt in the default mod.

Textures

Textures are usually 16 by 16 pixels. They can be any resolution, but it is
recommended that they are in the order of 2 (eg, 16, 32, 64, 128, etc), as
other resolutions may not be supported correctly on older devices.

Textures should be placed in textures/. Their name should match
modname_itemname.png .

JPEGs are supported, but they do not support transparency and are
generally bad quality at low resolutions.

Registering a Craftitem

Craftitems are the simplest items in Minetest. Craftitems cannot be placed
in the world. They are used in recipes to create other items, or they can
be used by the player, such as food.

Item definitions like the one seen above are usually made up of a unique
item string and a definition table. The definition table contains attributes
which affect the behaviour of the item.

Foods

Foods are items that cure health. To create a food item you need to define
the on_use property like this:

minetest.register_craftitem("mymod:mudpie", {
 description = "Alien Mud Pie",
 inventory_image = "myfood_mudpie.png",
 on_use = minetest.item_eat(20)
})

The number supplied to the minetest.item_eat function is the number of
hit points that are healed by this food. Two hit points make one heart and
because there are 10 hearts there are 20 hitpoints. Hitpoints don’t have to
be integers (whole numbers), they can be decimals.

minetest.register_craftitem("mymod:diamond_fragments", {
 description = "Alien Diamond Fragments",
 inventory_image = "mymod_diamond_fragments.png"
})

Sometimes you may want a food to be replaced with another item when
being eaten, for example smaller pieces of cake or bones after eating
meat. To do this, use:

minetest.item_eat(hp, replace_with_item)

Where replace_with_item is an item string.

Foods, extended

How about if you want to do more than just eat the item, such as send a
message to the player?

If you are creating a hunger mod, or if you are affecting foods outside of
your mod, you should consider using minetest.register_on_item_eat

Registering a basic node

minetest.register_craftitem("mymod:mudpie", {
 description = "Alien Mud Pie",
 inventory_image = "myfood_mudpie.png",
 on_use = function(itemstack, user, pointed_thing)
 hp_change = 20
 replace_with_item = nil

 minetest.chat_send_player(user:get_player_name()

 -- Support for hunger mods using minetest.regist
 for _ , callback in pairs(minetest.registered_on
 local result = callback(hp_change, replace_w
 if result then
 return result
 end
 end

 if itemstack:take_item() ~= nil then
 user:set_hp(user:get_hp() + hp_change)
 end

 return itemstack
 end
})

In Minetest, a node is an item that you can place. Most nodes are 1m x
1m x 1m cubes; however, the shape doesn’t have to be a cube - as we
will explore later.

Let’s get onto it. A node’s definition table is very similar to a craftitem’s
definition table; however, you need to set the textures for the faces of the
cube.

minetest.register_node("mymod:diamond", {
 description = "Alien Diamond",
 tiles = {"mymod_diamond.png"},
 is_ground_content = true,
 groups = {cracky=3, stone=1}
})

Let’s ignore groups for now, and take a look at the tiles. The tiles

property is a table of texture names the node will use. When there is only
one texture, this texture is used on every side.

What if you would like a different texture for each side? Well, you give a
table of 6 texture names, in this order:
up (+Y), down (-Y), right (+X), left (-X), back (+Z), front (-Z). (+Y, -Y, +X, -
X, +Z, -Z)

Remember: +Y is upwards in Minetest, along with most video games. A
plus direction means that it is facing positive co-ordinates, a negative
direction means that it is facing negative co-ordinates.

minetest.register_node("mymod:diamond", {
 description = "Alien Diamond",
 tiles = {
 "mymod_diamond_up.png",
 "mymod_diamond_down.png",
 "mymod_diamond_right.png",
 "mymod_diamond_left.png",
 "mymod_diamond_back.png",
 "mymod_diamond_front.png"
 },
 is_ground_content = true,
 groups = {cracky = 3},
 drop = "mymod:diamond_fragments"
 -- ^ Rather than dropping diamond, drop mymod:diamo
})

The is_ground_content attribute allows caves to be generated over the
stone.

Crafting

There are several different types of crafting, identified by the type

property.

shaped - Ingredients must be in the correct position.
shapeless - It doesn’t matter where the ingredients are, just that
there is the right amount.
cooking - Recipes for the furnace to use.

fuel - Defines items which can be burned in furnaces.
tool_repair - Used to allow the repairing of tools.

Craft recipes do not use Item Strings to uniquely identify themselves.

Shaped

Shaped recipes are the normal recipes - the ingredients have to be in the
right place. For example, when you are making a pickaxe the ingredients
have to be in the right place for it to work.

This is pretty self-explanatory. You don’t need to define the type, as
shaped crafts are default. The 99 after the itemname in output makes the
craft create 99 chairs rather than one.

If you notice, there is a blank column at the far end. This means that the
craft must always be exactly that. In most cases, such as the door recipe,
you don’t care if the ingredients are always in an exact place, you just
want them correct relative to each other. In order to do this, delete any
empty rows and columns. In the above case, there is an empty last
column, which, when removed, allows the recipe to be crafted if it was all
moved one place to the right.

minetest.register_craft({
 output = "mymod:diamond_chair 99",
 recipe = {
 {"mymod:diamond_fragments", "", ""},
 {"mymod:diamond_fragments", "mymod:diamond_fragm
 {"mymod:diamond_fragments", "mymod:diamond_fragm
 }
})

Shapeless

Shapeless recipes are a type of recipe which is used when it doesn’t
matter where the ingredients are placed, just that they’re there. For
example, when you craft a bronze ingot, the steel and the copper do not
need to be in any specific place for it to work.

When you are crafting the diamond, the three diamond fragments can be
anywhere in the grid.
Note: You can still use options like the number after the result, as
mentioned earlier.

Cooking

Recipes with the type “cooking” are not made in the crafting grid, but are
cooked in furnaces, or other cooking tools that might be found in mods.
For example, you use a cooking recipe to turn ores into bars.

minetest.register_craft({
 type = "cooking",
 output = "mymod:diamond_fragments",
 recipe = "default:coalblock",
 cooktime = 10,
})

As you can see from this example, the only real difference in the code is
that the recipe is just a single item, compared to being in a table (between

minetest.register_craft({
 output = "mymod:diamond_chair",
 recipe = {
 {"mymod:diamond_fragments", ""},
 {"mymod:diamond_fragments", "mymod:diamond_fragm
 {"mymod:diamond_fragments", "mymod:diamond_fragm
 }
})

minetest.register_craft({
 type = "shapeless",
 output = "mymod:diamond",
 recipe = {"mymod:diamond_fragments", "mymod:diamond_
})

braces). They also have an optional “cooktime” parameter which defines
how long the item takes to cook. If this is not set it defaults to 3.

The recipe above works when the coal block is in the input slot, with some
form of a fuel below it. It creates diamond fragments after 10 seconds!

Fuel

This type is an accompaniment to the cooking type, as it defines what can
be burned in furnaces and other cooking tools from mods.

minetest.register_craft({
 type = "fuel",
 recipe = "mymod:diamond",
 burntime = 300,
})

They don’t have an output like other recipes, but they have a burn time
which defines how long they will last as fuel in seconds. So, the diamond
is good as fuel for 300 seconds!

Groups

Items can be members of many groups and groups can have many
members. Groups are usually identified using group:group_name

There are several reasons you use groups.

Groups can be used in crafting recipes to allow interchangeability of
ingredients. For example, you may use group:wood to allow any wood
item to be used in the recipe.

Dig types

Let’s look at our above mymod:diamond definition. You’ll notice this line:

groups = {cracky = 3}

Cracky is a digtype. Dig types specify what type of the material the node
is physically, and what tools are best to destroy it.

Group Description

Group Description
crumbly dirt, sand
cracky tough but crackable stuff like stone.

snappy something that can be cut using fine tools;
e.g. leaves, smallplants, wire, sheets of metal

choppy something that can be cut using force; e.g.
trees, wooden planks

fleshy Living things like animals and the player. This
could imply some blood effects when hitting.

explody Especially prone to explosions
oddly_breakable_by_hand Torches, etc, quick to dig

Creating Textures

Introduction

In this chapter we will learn how to create and optimise textures for
Minetest. We will use techniques relevant for pixel art.

Resources
Editors
Common Mistakes

Resources

16×16 Pixel Art Tutorial

About MS Paint

You need to be aware that MS Paint does not support transparency. This
won’t matter if you’re making textures for the side of nodes, but generally
you need transparency for craft items, etc.

Editing in GIMP

GIMP is commonly used in the Minetest community. It has quite a high
learning curve as lots of its features are hidden away.

Use the pencil tool to edit individual pixels

http://www.photonstorm.com/art/tutorials-art/16x16-pixel-art-tutorial

Pencil in GIMP

Set the rubber to hard edge

Rubber in GIMP

Common Mistakes

Blurred textures through usage of incorrect tools

For the most part, you want to manipulate pixels on an individual basis.
The tool for this in most editors is the pencil tool.

Node Drawtypes
This chapter is incomplete
Some drawtypes have not been explained yet, and placeholder
images are being used.

Introduction

In this chapter we explain all the different types of node drawtypes there
are.

First of all, what is a drawtype? A drawtype defines how the node is to be
drawn. A torch looks different to water, water looks different to stone.

The string you use to determine the drawtype in the node definition is the
same as the title of the sections, except in lower case.

Normal
Airlike
Liquid

FlowingLiquid
Glasslike
Glasslike_Framed

Glasslike_Framed_Optional
Allfaces

Allfaces_Optional
Torchlike
Nodebox

This article is not complete yet. These drawtypes are missing:

Signlike
Plantlike
Firelike
Fencelike
Raillike
Mesh

Normal

Normal Drawtype

This is, well, the normal drawtypes. Nodes that
use this will be cubes with textures for each side,
simple-as.
Here is the example from the Nodes, Items and
Crafting chapter. Notice how you don’t need to
declare the drawtype.

Airlike

These nodes are see through and thus have no textures.

minetest.register_node("mymod:diamond
 description = "Alien Diamond",
 tiles = {
 "mymod_diamond_up.png",
 "mymod_diamond_down.png",
 "mymod_diamond_right.png",
 "mymod_diamond_left.png",
 "mymod_diamond_back.png",
 "mymod_diamond_front.png"
 },
 is_ground_content = true,
 groups = {cracky = 3},
 drop = "mymod:diamond_fragments"
})

minetest.register_node("myair:air", {
 description = "MyAir (you hacker you!)",
 drawtype = "airlike",

 paramtype = "light",
 -- ^ Allows light to propagate through the node with
 -- light value falling by 1 per node.

 sunlight_propagates = true, -- Sunlight shines throu
 walkable = false, -- Would make the player colli
 pointable = false, -- You can't select the node
 diggable = false, -- You can't dig the node
 buildable_to = true, -- Nodes can be replace this n
 -- (you can place a node and r
 -- that used to be there)

 air_equivalent = true,
 drop = "",

file:///home/ruben/dev/web/minetest_modding_book/_site/en/chapters/nodes_items_crafting.html#registering-a-basic-node

Liquid Drawtype

Liquid

These nodes are complete liquid nodes, the
liquid flows outwards from position using the
flowing liquid drawtype. For each liquid node you
should also have a flowing liquid node.

 groups = {not_in_creative_inventory=1}
})

-- Some properties have been removed
minetest.register_node("default:water
 drawtype = "liquid",
 paramtype = "light",

 inventory_image = minetest.invent
 -- ^ this is required to stop the

 tiles = {
 {
 name = "default_water_sou
 animation = {
 type = "vertical_
 aspect_w = 16,
 aspect_h = 16,
 length = 2.0
 }
 }
 },

 special_tiles = {
 -- New-style water source mat
 {
 name = "default_wate
 animation = {type = "vert
 backface_culling = false,
 }
 },

 --
 -- Behavior
 --
 walkable = false, -- The play
 pointable = false, -- The play

FlowingLiquid

See default:water_flowing in the default mod in minetest_game, it is
mostly the same as the above example.

Glasslike

When you place multiple glasslike nodes
together, you’ll notice that the internal edges are
hidden, like this:

 diggable = false, -- The play
 buildable_to = true, -- Nodes ca

 alpha = 160,

 --
 -- Liquid Properties
 --
 drowning = 1,
 liquidtype = "source",

 liquid_alternative_flowing = "def
 -- ^ when the liquid is flowing

 liquid_alternative_source = "defa
 -- ^ when the liquid is a source

 liquid_viscosity = WATER_VISC,
 -- ^ how fast

 liquid_range = 8,
 -- ^ how far

 post_effect_color = {a=64, r=100,
 -- ^ color of screen when the pla
})

Glasslike Drawtype

Glasslike's Edges

minetest.register_node("default:obsidian_glass", {
 description = "Obsidian Glass",
 drawtype = "glasslike",
 tiles = {"default_obsidian_glass.png"},
 paramtype = "light",
 is_ground_content = false,
 sunlight_propagates = true,
 sounds = default.node_sound_glass_defaults(),
 groups = {cracky=3,oddly_breakable_by_hand=3},
})

Glasslike_Framed

This makes the node’s edge go around the whole thing with a 3D effect,
rather than individual nodes, like the following:

Glasslike_Framed's Edges

Glasslike_Framed_Optional

“optional” drawtypes need less rendering time if deactivated on the client’s
side.

minetest.register_node("default:glass", {
 description = "Glass",
 drawtype = "glasslike_framed",

 tiles = {"default_glass.png", "default_glass_detail
 inventory_image = minetest.inventorycube("default_gl

 paramtype = "light",
 sunlight_propagates = true, -- Sunlight can shine th
 is_ground_content = false, -- Stops caves from being

 groups = {cracky = 3, oddly_breakable_by_hand = 3},
 sounds = default.node_sound_glass_defaults()
})

Allfaces drawtype

Allfaces

Allfaces nodes are partially transparent nodes -
they have holes on the faces - which show every
single face of the cube, even if sides are up
against another node (which would normally be
hidden). Leaves in vanilla minetest_game use
this drawtype.

Allfaces_Optional

Allows clients to disable it using new_style_leaves = 0 , requiring

less rendering time.

TorchLike

TorchLike nodes are 2D nodes which allow you to have different textures
depending on whether they are placed against a wall, on the floor, or on
the ceiling.

TorchLike nodes are not restricted to torches, you could use them for
switches or other items which need to have different textures depending
on where they are placed.

minetest.register_node("default:leave
 description = "Leaves",
 drawtype = "allfaces_optional",
 tiles = {"default_leaves.png"}
})

minetest.register_node("foobar:torch", {
 description = "Foobar Torch",
 drawtype = "torchlike",
 tiles = {
 {"foobar_torch_floor.png"},
 {"foobar_torch_ceiling.png"},
 {"foobar_torch_wall.png"}
 },
 inventory_image = "foobar_torch_floor.png",
 wield_image = "default_torch_floor.png",
 light_source = LIGHT_MAX-1,

Nodebox drawtype

Nodebox

Nodeboxes allow you to create a node which is
not cubic, but is instead made out of as many
cuboids as you like.

The most important part is the nodebox table:

{-0.5, -0.5, -0.5, 0.5, 0, 0.5},
{-0.5, 0, 0, 0.5, 0.5, 0.5}

Each row is a cubiod which are joined to make a single node. The first
three numbers are the co-ordinates, from -0.5 to 0.5 inclusive, of the
bottom front left most corner, the last three numbers are the opposite
corner. They are in the form X, Y, Z, where Y is up.

 -- Determines how the torch is selected, ie: the wir
 -- each value is { x1, y1, z1, x2, y2, z2 }
 -- (x1, y1, y1) is the bottom front left corner
 -- (x2, y2, y2) is the opposite - top back right.
 -- Similar to the nodebox format.
 selection_box = {
 type = "wallmounted",
 wall_top = {-0.1, 0.5-0.6, -0.1, 0.1, 0.5, 0.1},
 wall_bottom = {-0.1, -0.5, -0.1, 0.1, -0.5+0.6,
 wall_side = {-0.5, -0.3, -0.1, -0.5+0.3, 0.3, 0
 }
})

minetest.register_node("stairs:stair_
 drawtype = "nodebox",
 paramtype = "light",
 node_box = {
 type = "fixed",
 fixed = {
 {-0.5, -0.5, -0.5, 0.5, 0
 {-0.5, 0, 0, 0.5, 0.5, 0.
 },
 }
})

You can use the NodeBoxEditor to create node boxes by dragging the
edges, it is more visual than doing it by hand.

Wallmounted Nodebox

Sometimes you want different nodeboxes for when it is placed on the
floor, wall, or ceiling like with torches.

minetest.register_node("default:sign_wall", {
 drawtype = "nodebox",
 node_box = {
 type = "wallmounted",

 -- Ceiling
 wall_top = {
 {-0.4375, 0.4375, -0.3125, 0.4375, 0.5, 0.31
 },

 -- Floor
 wall_bottom = {
 {-0.4375, -0.5, -0.3125, 0.4375, -0.4375, 0
 },

 -- Wall
 wall_side = {
 {-0.5, -0.3125, -0.4375, -0.4375, 0.3125, 0
 }
 },
})

https://forum.minetest.net/viewtopic.php?f=14&t=2840

Node Metadata

Introduction

In this chapter you will learn how to manipulate a node’s metadata.

What is Node Metadata?
Getting a Metadata Object
Reading Metadata
Setting Metadata
Lua Tables
Infotext
Your Turn

What is Node Metadata?

Metadata is data about data. So Node Metadata is data about a node.

You may use metadata to store:

an node’s inventory (such as in a chest).
progress on crafting (such as in a furnace).
who owns the node (such as in a locked chest).

The node’s type, light levels, and orientation are not stored in the
metadata, but rather are part of the data itself.

Metadata is stored in a key value relationship.

Key Value
foo bar
owner player1
counter 5

Getting a Metadata Object

Once you have a position of a node, you can do this:

local meta = minetest.get_meta(pos)
-- where pos = { x = 1, y = 5, z = 7 }

Reading Metadata

local value = meta:get_string("key")

if value then
 print(value)
else
 -- value == nil
 -- metadata of key "key" does not exist
 print(value)
end

Here are all the get functions you can use, as of writing:

get_string
get_int
get_float
get_inventory

In order to do booleans, you should use get_string and

minetest.is_yes :

local value = minetest.is_yes(meta:get_string("key"))

if value then
 print("is yes")
else
 print("is no")
end

Setting Metadata

Setting meta data works pretty much exactly the same way.

local value = "one"
meta:set_string("key", value)

meta:set_string("foo", "bar")

Here are all the set functions you can use, as of writing:

set_string
set_int
set_float

Lua Tables

You can convert to and from lua tables using to_table and

from_table :

local tmp = meta:to_table()
tmp.foo = "bar"
meta:from_table(tmp)

Infotext

The Minetest Engine reads the field infotext in order to make text

appear on mouse-over. This is used by furnaces to show progress and
signs to show their text.

Your Turn

Make a block which disappears after it has been punched 5 times.
(use on_punch in the node def and minetest.set_node)

meta:set_string("infotext", "Here is some text that will

Active Block Modifiers

Introduction

In this chapter we will learn how to create an Active Block Modifier
(ABM). An active block modifier allows you to run code on certain nodes
at certain intervals. Please be warned, ABMs which are too frequent or
act on too many nodes cause massive amounts of lag. Use them lightly.

Special Growing Grass
Your Turn

Special Growing Grass

We are now going to make a mod (yay!). It will add a type of grass called
alien grass - it grows near water on grassy blocks.

Every ten seconds the ABM is run. Each node which has the correct
nodename and the correct neighbors then has a 1 in 5 chance of being
run. If a node is run on, an alien grass block is placed above it. Please be
warned, that will delete any blocks above grass blocks - you should check
there is space by doing minetest.get_node.

minetest.register_node("aliens:grass", {
 description = "Alien Grass",
 light_source = 3, -- The node radiates light. Values
 tiles = {"aliens_grass.png"},
 groups = {choppy=1},
 on_use = minetest.item_eat(20)
})

minetest.register_abm({
 nodenames = {"default:dirt_with_grass"},
 neighbors = {"default:water_source", "default:water_
 interval = 10.0, -- Run every 10 seconds
 chance = 50, -- Select every 1 in 50 nodes
 action = function(pos, node, active_object_count, ac
 minetest.set_node({x = pos.x, y = pos.y + 1, z =
 end
})

That’s really all there is to ABMs. Specifying a neighbor is optional, so is
chance.

Your Turn

Midas touch: Make water turn to gold blocks with a 1 in 100
chance, every 5 seconds.
Decay: Make wood turn into dirt when water is a neighbor.
Burnin’: Make every air node catch on fire. (Tip: “air” and
“fire:basic_flame”). Warning: expect the game to crash.

Privileges

Introduction

Privileges allow server owners to grant or revoke the right to do certain
actions.

When should a priv be used?
Checking for privileges
Getting and Setting

When should a priv be used?

A privilege should give a player the right to do something. They are not
for indicating class or status.

The main admin of a server (the name set by the name setting) has all

privileges given to them.

Good:

interact
shout
noclip
fly
kick
ban
vote
worldedit
area_admin - admin functions of one mod is ok

Bad:

moderator
admin
elf
dwarf

Declaring a privilege

minetest.register_privilege("vote", {
 description = "Can vote on issues",
 give_to_singleplayer = true
})

If give_to_singleplayer is true, then you can remove it as that’s the

default value when not specified:

minetest.register_privilege("vote", {
 description = "Can vote on issues"
})

Checking for privileges

There is a quicker way of checking that a player has all the required
privileges:

has is true if the player has all the privileges needed.

If has is false, then missing will contain a dictionary of missing

privileges[checking needed].

local has, missing = minetest.check_player_privs(player_
 interact = true,
 vote = true })

if minetest.check_player_privs(name, {interact=true, vot
 print("Player has all privs!")
else
 print("Player is missing some privs!")
end

local has, missing = minetest.check_player_privs(name, {
 interact = true,
 vote = true })
if has then
 print("Player has all privs!")
else

Getting and Setting

You can get a table containing a player’s privileges using
minetest.get_player_privs :

local privs = minetest.get_player_privs(name)
print(dump(privs))

This works whether or not a player is logged in.
Running that example may give the following:

{
 fly = true,
 interact = true,
 shout = true
}

To set a player’s privs, you use minetest.set_player_privs :

minetest.set_player_privs(name, {
 interact = true,
 shout = true })

To grant a player some privs, you would use a mixture of those two:

local privs = minetest.get_player_privs(name)
privs.vote = true
minetest.set_player_privs(name, privs)

Adding privileges to basic_privs

Workaround / PR pending
This is a workaround for a missing feature. I have submitted a pull
request / patch to make it so you don't need to edit builtin to add a
priv to basic_privs.

 print("Player is missing privs: " .. dump(missing))
end

https://github.com/minetest/minetest/pull/3976

To allow people with basic_privs to grant and revoke your priv, you’ll need
to edit builtin/game/chatcommands.lua:

In both grant and revoke, change the following if statement:

For example, to add vote:

if priv ~= "interact" and priv ~= "shout" and
 not core.check_player_privs(name, {privs=true})
 return false, "Your privileges are insufficient."
end

if priv ~= "interact" and priv ~= "shout" and priv ~= "v
 not core.check_player_privs(name, {privs=true})
 return false, "Your privileges are insufficient."
end

https://github.com/minetest/minetest/blob/master/builtin/game/chatcommands.lua#L164-L252

Chat and Commands

Introduction

In this chapter we will learn how to interact with player chat, including
sending messages, intercepting messages and registering chat
commands.

Send a message to all players.
Send a message to a certain player.
Chat commands.
Complex subcommands.
Intercepting messages.

Send a message to all players

It’s as simple as calling the chat_send_all function, as so:

Here is an example of how it would appear ingame (there are other
messages around it).

<player1> Look at this entrance
This is a chat message to all players
<player2> What about it?

Send a message to a certain player

It’s as simple as calling the chat_send_player function, as so:

Only player1 can see this message, and it’s displayed the same as above.

Older mods

minetest.chat_send_all("This is a chat message to all pl

minetest.chat_send_player("player1", "This is a chat mes

Occasionally you’ll see mods with code like this:

The boolean at is no longer used, and has no affect [commit].

Chat commands

In order to register a chat command, such as /foo, use
register_chatcommand:

minetest.register_chatcommand("foo", {
 privs = {
 interact = true
 },
 func = function(name, param)
 return true, "You said " .. param .. "!"
 end
})

Calling /foo bar will result in You said bar! in the chat console.

Let’s do a break down:

privs = {
 interact = true
},

This makes it so that only players with the interact privilege can run

the command. Other players will see an error message informing them
which privilege they’re missing.

return true, "You said " .. param .. "!"

This returns two values, firstly a boolean which says that the command
succeeded and secondly the chat message to send to the player.

The reason that a player name rather than a player object is passed is
because the player might not actually be online, but may be running
commands from IRC. So don’t assume that

minetest.chat_send_player("player1", "This is a server m
minetest.chat_send_player("player1", "This is a server m

https://github.com/minetest/minetest/commit/9a3b7715e2c2390a3a549d4e105ed8c18defb228
file:///home/ruben/dev/web/minetest_modding_book/_site/en/chapters/privileges.html

minetest.get_player_by_name will work in a chat command call

back, or any other function that requires an ingame player.
minetest.show_formspec will also not work for IRC players, so you

should provide a text only version. For example, the email mod allows
both /inbox to show the formspec, and /inbox text to send to

chat.

Complex subcommands

It is often required to make complex chat commands, such as:

/msg
/team join
/team leave
/team list

Traditionally mods implemented this using Lua patterns. However, a much
easier way is to use a mod library that I wrote to do this for you. See
Complex Chat Commands.

Intercepting messages

You can use register_on_chat_message, like so:

By returning false, we’re allowing the chat message to be sent by the
default handler. You can actually miss out the line return false , and

it would still work the same.

WARNING: CHAT COMMANDS ARE ALSO INTERCEPTED. If you only
want to catch player messages, you need to do this:

minetest.register_on_chat_message(function(name, message
 print(name .. " said " .. message)
 return false
end)

minetest.register_on_chat_message(function(name, message
 if message:sub(1, 1) == "/" then
 print(name .. " ran chat command")

file:///home/ruben/dev/web/minetest_modding_book/_site/en/chapters/chat_complex.html

 return false
 end

 print(name .. " said " .. message)
 return false
end)

